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ABSTRACT

Sequential Monte Carlo (SMC) isapowerful sampling based
inference/learning algorithm for Bayesian scheme. The pur-
pose of this paper is two fold. It first attempts to recon-
struct and predict nonlinear dynamical systems from one
dimensional data which arrives in a sequential manner in-
stead of batch manner. Second purpose is to test the per-
formance of the Rao-Blackwellisation in reconstructing and
predicting nonlinear dynamical systems. We demonstrate
that Rao-Blackwellised Sequential Monte Carlo (RBSMC)
on achaotic time series prediction problem outperforms generic
SMC.

1. INTRODUCTION

Time series prediction problem amounts to making predic-
tions of future values of given data set. Thisis one of the
fundamental problems in science and engineering as well
as in other disciplines. A time series prediction algorithm
needs to contain a scheme for capturing mechanisms be-
hind which generate given time series data. In other words,
it is required to reconstruct the dynamical systems behind
the data. There are at least three fundamental issues to
be addressed: The dynamics behind the data is unknown.
The data contains uncertainties. Observation is often 1-
dimensional, while the order of the dynamicsis higher. One
way of approaching this problem is to prepare model dy-
namica systems and fit it to given data. Many of the con-
temporary learning schemes formulate the problem within
the probability/statistics frameworks and the Bayesian schemes
often work well for such purposes.

This paper proposes an on-line Bayesian scheme[1] with
Rao-Blackwellisation [2, 3] and test the scheme against a
chaotic time series data. The proposed a gorithm appearsto
be reasonably sound. It outperforms the conventional Se-
guential Monte Carlo.
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2. FORMULATION

Problem : Giventime seriesdata{x; }'_j, predict {z;}/1},
k=0,1,2,---.

Architecture : Specification of a family of functions for
datafitting, e. g., threelayer perceptron with h hidden units.
Model dynamical System :
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where f(-; w;) denotes the output of perceptron, ~ denotes
the order of the model dynamical system. 3, stands for the
uncertainty level, w; denotes the perceptron parameters and
Z(B:) is normalizing constant.

Weight Update Equation :
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where 1/, is the variance and Z(~y:) is normalizing con-
stant.

Remark: The weight update equation often suffers from
“over dispersion” when ~ fixed. We propose a learning
sheme for hyperparameter v which prevents over disper-
sion. We also propose a learning scheme for hyperparame-
ter 5, the uncertainty level of the dynamics.

Hyperparameter Update Equations::
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whereo., > 0 and og > 0 are assumed.

Posterior Distribution : The joint posterior follows from
the Bayes formula:
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Predictive Distribution : The predictivedistributionisgiven
by:
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3. SEQUENTIAL MONTE CARLO

Typically, when the model has non-linearity, (5),(6) and (7)
cannot be computed analytically since they require compli-
cated high-dimensional integrals.

3.1. Bayesian Importance Sampling

Letd := (w,[,) , if onehasaproposal distribution Q(9)
and if theimportance weight €2 is well-defined,
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the posterior distribution P(6 | D) is described with © and
Q(0):
QQ(0)
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Giveni.i.d. samples 9" ~ Q(f) , aMonte Carlo approxi-
mation of P(6 | D) is given by:

P(0| D) ~ QW5;(0)

where  is the normalized importance weight:
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3.2. Resampling

Samples with low importance weights are eliminated, sam-
ples with high importance weights are multiplied, so that
un-weighted samples from the posterior distribution P(6 |
D) are obtained.

4. RAO-BLACKWELLIZATION

Since some of the weight parameters of perceptron are lin-
ear, marginalizations can be performed without approxima:
tions via Kalman Filter or any other linear optima filters.
This leads to dimension reduction in the parameter space
which, in turn, leads to prediction accuracy improvements
aswell as computationtimereduction. Thisschemeisknown
as Rao-Blackwellization.

4.1. Rao-Blackwellised Sequential Monte Carlo

The posterior distribution of parameter w, can be decom-
posed as follows:
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where w(l) is the parameter between input layer and hid-

den layer, w( ) is the parameter between hidden layer and
output. Observe thefirst termis given by:
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while the second term is given by:
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Givenwt Y| the conditional posterior distribution P(w, 2 |

{z;}io,w )andthemarglnal likelihood P(x; | {a:J o)

in (10), can be computed by the Kalman Filter, since wt( )
appearslinearly . Then, giventhemarginal likelihood P(z; |
{z; };;é) , samples can be drawn from (11) with the Bayesian
Importance Sampling and Resampling.

5. DEMONSTRATION

5.1. Chaoctictimeseriesprediction

Equation (12) is the well-known Rossler system where
(a,b,¢) = (0.36,0.4,4.5).

T =
y =
z

We consider a discretized noisy Rossler system:

Tt+1) =
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A+l =

where f, gand h are Runge—Kuttad|scret|zat|0n of (12), and
vi are noise processes. v} ~ i.i.d. N(0,0%), i =1,2,3.
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In this demonstration, the data is generated according
to (13) with ¢ = 0.01, and only the x-coordinate of (13)
can be observed (Fig.1), while the y- and z-coordinates are
not available for learning. The difficulty of this problem is
worth noting; in addition to the complex chaotic behavior,
noise processes exist, and only single quantity x, is avail-
able.

5.1.1. Delay Coordinate Embedding

Even if z; is one dimensional quantity instead of vector
guantity, thereis away of handling the order of the dynam-
ics behind the onedimensional data. Thisisknown asDelay
Coordinate Embedding [4].

Inthisdemonstration, 7 = 4 is assumed which has been
estimated in our previous work [5].

5.2. Prediction of dynamical systems

Givenlearned posterior distribution P(w, 87, vr | {2;}]),
the prediction of {x/;}%_ is given by the following:

if t=0,1,2,3
J?t:J?;
if t>4
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Fig.3 and Fig.4 show predicted x-coordinate trajectory
{a: 1524 by generic SMC (Fig.3) and RBSMC (Fig.4), where
= 1000
Fig.5 shows evolution of cumulative prediction errors:

t
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RBSMC results appears to reconstruct the Rossler system
better than SMC. The errors of RBSMC is lower than that
of SMC.
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Fig. 1. Training data

Fig. 3. Predictionon SMC
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Fig. 4. Prediction on RBSMC
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