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ABSTRACT

Physiological signals are usually patient specific, and they
are difficult to predict, especially for the cardiovascular
system. New methods capable to be adapted to each case
and to learn the singular behavior of heart functions should
be developed to support physicians in their decision-
making. One of the most widely studied relations is the
QT-RR one, between the total duration of the ventricle
activation and inactivation, and the heart rate. In the past,
different studies were made to approach this relation in the
steady state. In this paper, a new method for modeling and
predicting the transient dynamic behavior of QT interval
in relation to changing RR intervals is presented using
parametric models and multilayer perceptrons (MLP).

1. INTRODUCTION

Cardiac disease is the underlying cause in two-thirds of
out-of-hospital sudden deaths. Despite expanding insight
into the mechanisms causing sudden cardiac death (SCD),
the population at high risk is not yet going to be
effectively identified, and mechanisms of SCD in subjects
with apparently normal hearts are poorly understood. A
non-invasive method for early detection of heart
pathologies becomes an important challenge for public
health interest.

New methods of signal processing and Quantitative
Electrocardiology made the electrocardiogram (ECG) a
privileged way to detect heart arrhythmias and acute
myocardial ischemia that might lead to SCD. Among the
different measurements that are performed on the ECG,
one of the most studied one is the QT interval. It measures
the time after which the ventricles are again repolarized.
One of the main reasons for the great interest in measuring
the QT interval is that its prolongation has been related to
cardiac arrhythmia, like ventricular fibrillation and
torsades de pointes. The study of the dynamicity of
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ventricular repolarisation in ambulatory patients is of
major interest to assess the risk of sudden death [1].

The duration of QT is influenced principally by the
inverse of the heart rate, measured by the RR duration
between two successive heart beats. QT duration is also
influenced by gender, age, the central nervous system and
circadian cycles [2].

Bazett already proposed a variation model of the QT-
RR relationship in 1920 [2]:

QT, =k4RR,

Since then many other relationships were proposed.
These non-linear models are valid only for heart beats
corresponding to steady rhythm periods lasting almost one
minute. In the absence of the steady state situation, the
study of the QT-RR relationship becomes more complex
and usual methods are not adapted [3].

It has been shown by invasive studies that the QT
interval has a delayed adaptation to sudden changes in
heart rate in normal subjects. The QT-RR relationship
seems to behave like a first order system with a time
constant of about one minute [3]. Abnormalities in the
adaptation of the QT interval to changes in the RR interval
may facilitate the development of ventricular arrhythmia.

In this paper we propose to model the QT dynamic
behavior in function of the history of RR intervals by
means of parametric models and multilayer perceptrons.

2. MATERIALS AND METHODS

Time series prediction is based on the idea that the time
series carry within them the potential for predicting their
future behavior. Linear models (such as MA, AR, and
ARMA) have been most frequently used for time series
analysis, although often there is no inherent reason to
restrict consideration to such models. Linear models have
two particularly desirable features: they can be understood
in great detail, and they are straightforward to implement.
Linear models can give good prediction results for simple
time series but can fail to predict time series with a wide
band spectrum, a stochastic or chaotic time series, in
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which the power spectrum is not a useful characterization.
The analysis of such series requires a long history of the
series, which results in a very high order linear model.

A number of new nonlinear techniques, such as neural
networks (NNs) and wavelets, promise insight that
traditional linear approaches cannot provide. Some recent
work shows that a feed-forward NN, trained with back-
propagation and a weight elimination algorithm,
outperforms traditional nonlinear statistical approaches in
time series prediction [4]. The simplest approach for
learning a time series model by means of an NN is to
provide its time-delayed samples to the input layer of the
NN. The more complex the series are, the more
information about the past is needed, so the size of the
input layer and the corresponding number of weights are
increased.

2.1. Pre-Processing on RR and QT Signals

The ambulatory ECGs are recorded by means of a
3-channel analog Holter recorder [5]. RR and QT
sequences were chosen over the 24H recording using as a
selection criterion the richness in variations of the RR
interval. Several twenty minutes length ECG sequences
were selected for six patients without heart diseases and
the following steps are performed:

- The RR intervals and the QT duration are calculated
using the “Lyon System” and the “Caviar” methods [6].

- Because of the variability of the heart rate, an over-
sampling of 4Hz with linear interpolation is used to pass
from an unequally sampled to an equally sampled time
series sequence.

- The RR and QT time series are low-pass filtered at
0.05Hz to eliminate the high frequencies (HF) and low
frequencies (LF) components due to the parasympathic
(HF) and the sympathic (LF) activities.

- Finally the filtered RR and QT sequences are down
sampled to 0.5 sample per second by keeping one point
over eight.

2.2. Artificial Data Description

The complexity of physiological signals makes difficult to
finalize and to validate the predictive models. Therefore
we will also use, in addition to real data, simulated data for
the assessment of the models performances. The quality of
the predictive models learned on real data will also be
tested on artificial sequences covering the usual RR and
QT situations. The artificial data are used to simulate
data that could have been recorded in invasive
electrophysiology.
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Figure 1: Artificial data used to assess prediction
capacities of the models.

To simulate a first order one-minute time constant
behavior of the QT-RR relationship, the following steps
are performed:

- Generation of RRs, a RR sequence simulating a step
function. RRs is composed of a 5 minutes baseline, an
abrupt change in amplitude of 200 milliseconds that is
maintained for 5 minutes, a return to the baseline that is
kept for 5 minutes. The total duration of the step function
is 15 minutes.

- Computation of RRresp, the first order one minute time
constant response to RRs:

1-i

RRresp; = RRs; +[RR5i - RRsl] X[l—expw}

where td is the one minute time constant and RRs; is the
first sample of RRs.

- Filtering RRs using the same low-pass filter used for the
real RR and QT data, RRsf is the filtered signal.

- Computation of QTs, the simulated QT, according to the
following function where all values are in milliseconds

[2]:
QTs=8.7* [RRresp,_, +123.7

RRsf is presented to the entry of the models and their
output is compared to the expected QTs (fig. 1).

2.3. Multilayer Perceptrons

The MLP model will learn the following patient specific
relationship:

QT, = f(RR,,RR,
where M is a time delay.

For the modeling of the QT dynamics we have chosen
the MLP architecture with NbE entries (RR values), k
sigmoidal hidden neurons and one linear output neuron
(QT value) as shown in figure 2.
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Figure 2: MLP architecture with NbE entries, k hidden
neurons and 1 output neuron

The number of entries NbE in the input layer will
depend on the time delay M to be taken into account for
modeling the relationship described in equation (1). The
number of entries NbE is determined by equation:

NbE=M x 30 2
where M is the time delay expressed in minutes.

2.4. Parametric Models

There are several elaborations of the basic ARX model,
where different disturbance models are introduced. These
include well known model types, such as ARMAX,
Output-Error (OE), and Box-Jenkins (BJ). All these
models have been tested on the real sequences and only
the results of the best model are presented in this paper.

After validation of the parametric models on real data,
the Akaike’s Final Prediction Error (FPE) criterion will
be used to select the best model.

2.5. Prediction Quality Evaluation

Beside the visual criterion, another criterion is needed to
compare only the dynamical behavior of real and predicted
signals. Therefore, the standard deviation over the
prediction error is used as a complementary criterion.

3. RESULTS AND DISCUSSION
To determine the appropriated models, night ECG

sequences recorded at 4:25 am and belonging to patient
“Clav” were selected. The RR and QT signals are used

respectively as input and output values in the learning
phase for the parametric models and the MLP.

3.1. Parametric Models

The best parametric model obtained was the OE with the
following parameters nb=2, nf=1 and nk=0, where nb and
nf are the orders of the output error model and nk is the
delay. The FPE value for this model is 23.4
The QT-RR relationship is:

QT (t) =0.99*QT (t -1) +0.034 *RR(t) —0.023 *RR (t - 1)

3.2. MLP Architecture

To determine the value of the delay M necessary for a
good learning of the QT-RR relationship, an additional
ECG sequence recorded at 6:05 am and belonging to
“Clav” is selected. This sequence is used as a test set to
stop the training when no further amelioration on the
prediction performance is noticed. The mean square error
(MSE) is taken as a measure for evaluating the
performance:

MSE @)
where QTpj; is the i-th network output, and QTm; is the i-th
target output out of N instances.

The delay M was set to vary from one minute up to
eight minutes [2], and the number of hidden neurons from
2 to 22 using 10.000 training iterations. For a delay greater
than 4 minutes no significant improvement was noticed on
the learning quality and the MSE in equation (3) stayed
constant. Therefore the number of neurons in the input
layer was set to 120, using equation (2). The best MLP
was the one with 120 entries and 10 hidden neurons.

_ Z (QTp, —QTm,)?
: N

3.3. Results on Artificial and Real Data

The responses of the OE model and the MLP were tested
on the step function as shown in figure (3). The dynamical
behavior of the MLP response is much closer to the
expected one than the OE model. The result is also noticed
on figure (4) where an RR sequence belonging to the same
patient used in learning phase is presented to the entry of
the two models. The superiority of the MLP model is
clearly shown where the dynamical behavior of the
predicted QT by the MLP follows closely the real
measured QT even after fast variation of the RR signal.
All RR sequences are then presented to the MLP model
and the predict QT signal is compared to the real
measured one. A standard deviation (SD) on the prediction
error less than 5 milliseconds is considered as an
acceptable result. This value was chosen experimentally
by watching sequences one by one.
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Figure 3: Prediction results of OE and MLP models
compared to the expected signal in response to the step
function.

The SD for night sequences is 3.85+0.73ms and
7.21+ 2.5 ms for day sequences is. The results on the day
sequences show that the MLP model established on a night
sequence is not appropriate to predict day signals. This
might be due to differences between the QT-RR
relationship between night and day. The MLP training on
day sequences didn’t give good results in generalization,
this is probably due to a more complex relationship in the
day. Additional parameters might be used in the entry of
the day models, such as sympathetic and parasympathetic
activities measured by the ratio LF/HF.

The number of entries can be reduced by changing the
time delay value M or reducing the sampling rate. The
time delay of 4 minutes found in this study is coherent
with the findings that can be derived from invasive
physiological tests: the step response of a one minute time
constant first order system will reach 98% of the expected
amplitude after 4 minutes.

4. CONCLUSION

Although preliminary, our results indicate that Multi-Layer
Perceptrons are able to approach the non-linear aspects of
the QT-RR relationship, and can model both the dynamic
behavior (response to a step function) and the

steady state dynamic behavior QT=f(RR) (response to
different, fixed RR intervals).

The predictive models can measure the difference
between the measured QT interval and the predicted one
and could trigger an alarm each time a given threshold is
passed. Further studies are needed to determine such
thresholds and to assess the predictive value of the step
impulse responses.

Further studies must be carried out to determine the
influence of gender and age over the prediction quality.
Predictive models could be established depending on
gender, age or patient specific models.
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Figure 4: Predicted QT signal of OE and MLP models
compared to the measured QT (figure below) in response
to the RR signal (figure above). The standard deviation on
the prediction error is 3.6ms.
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