
AN FPGA-BASED EIGENFILTER USING FAST HEBBIAN LEARNING

K.P. Lam and S.T. Mak

Department of Systems Engineering & Engineering Management
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

ABSTRACT

We present a high-gain, multiple learning/ decay rate, “cool-
ing off” annealing strategy to a modified Generalized Heb-
bian Algorithm (GHA) that gives good approximate solu-
tion within one training epoch, and with fast convergence to
accurate principal components within a few more epochs.
A novel bit-shifting normalization procedure is shown to
bound the weight vector norm effectively and eliminates the
need for performing division. This leads to an FPGA-based
computational framework using only fixed point arithmetic
instead of more complicated floating point design. Simula-
tion results on Xilinx DSP System Generator tool indicate
the practicality of the approach, where real-time eigenfilter
can be readily implemented on field programmable gate ar-
rays with limited resources.

1. INTRODUCTION

Recently, eigenfilters have received wide interest in adap-
tive design, and in different applications including smart
antenna, finite impulse response (FIR) filter, and channel
equalisation. For most of the systems, numerically inten-
sive matrix factorisation computations are required for cal-
culating eigenvalues with high precision. While such real-
time computations can often be met with today’s highly effi-
cient digital signal processor (DSP), simpler procedures are
needed in less critical situation by using limited resources
to give acceptable solution and performance. Based on the
Hebbian learning network, this paper addresses the use of
only simple matrix multiplication and addition for eigenfil-
ter construction.

Many gradient-based neural networks use a small, con-
stant learning rate for simplicity, and rely on a measurable
model difference (as from the “teacher”) to drive the weight
change to zero for convergence. Non-supervisory neural
networks, such as the Hebbian network, do not possess this
explicit evaluation feedback mechanism and hence require
some internal self-organization for the learning process. The

Funding support from the Hong Kong Research Grants Council is
gratefully acknowledged

Generalized Hebbian Algorithm (GHA) is known to find
the principal components based on the work of [1] and [2].
Oja’s maximumeigenfilter is derived from consideration of
a small learning rate� to the basic single-neuron Hebbian
learning, given as

���� � �� ������� (1)

����� �� � ���� ��� ���� (2)

�
���� � ���������

����� � ����������
� ���� (3)

� ���������� � ��������� (4)

when� is small

where���� is the�-dimensional input vector and���� is
the�-dimensional weight vector. Sanger’s extended work
on the GHA is significant in giving a unified treatment on
obtaining all the eigenvectors using a generally decreasing
learning rate for a single layer of� neurons. The previous
learning equation now extends to

���� � � � ������� (5)

�� ��� �� � ����������� ���

� 	
 ������� ������ (6)

where� is the���weight matrix�� ���� ��� � � � � ����,
and	
 ��� stands for the lower triangular matrix of���.

As detailed in [3], the convergence proof establishes the
strong global ”attractors” of the eigenvectors, although the
existence of “two” global attractors for each eigenvector (it-
self and its negative counterpart) is not explicitly stated. In
section 2 we extend the basic GHA with an annealing pro-
cedure to give fast convergence.

However, the importance of two constraints for this fast
eigenfilter is often overlooked: one is the explicit normal-
ization of the weight vectors during each learning step; the
other is the use of constant learning/ decay rates within the
same training epoch. The first bounds all weight trajectories

II - 7650-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

onto the surface of a hypersphere. The second provides the
necessary high gain for learning uniformly from the input,
and results in a useful chaotic regularity given a fixed order
of input data.

2. A MODIFIED GHA WITH ANNEALING

We generalize the learning/ decay rate from a scalar���� to
diagonal matrices
��� � �������, ���� � �������, for � �
�� �����, in order to take account of the different attraction
of the eigenvectors.

�� ��� �� �
��������� ���

�����	
 ������� ����� (7)

The maximal eigenvector has a very strong attraction
while the others are substantially weaker. By assigning a
different learning rate to each neuron, especially with much
greater values to the weaker neurons, the convergence of the
network can be more synchronized with�� � ���� � ��

and/or�� � ���� � ��.

2.1. A high-gain approach

A high-gain approach is needed to approach the global at-
tractors through bypassing most of the local minima. As the
magnitude information of the eigenvector is not relevant, a
normalization step is taken to constrain the weight vector in
each learning step. This will retain the input variance in-
formation without an unnecessary growth of the magnitude
of the weight vector. Although the basic GHA will auto-
matically constrain the weight vector in the long run, it is
intended to constrain it more explicitly in the high-gain ap-
proach without much increase in the computational load.

2.2. An annealing strategy

An annealing strategy is required to get the precision in the
converged solution. A high-gain approach can often allow
us to go to a region close to the global attractor quickly.
However, it also brings in very large input excitation to the
change (���) of the weight vector. This will affect the ac-
curacy of the estimated eigenvectors. A rough estimation of
the Euclidean norm of��� for the maximal eigenvector can
be readily shown to be

�������� �����
� � ����������

���� � ��� (8)

Various “cooling-off” annealing strategies can be im-
posed on the time-varying learning rate and decay rate, in
order to reduce the magnitude of the input excitation and
bring in the necessary accuracy to the estimated values.

2.3. Example on stock data

We process a 100-day stock price data���� to obtain the
5-day return series���� � �	
�������������. Then a three-
neuron Hebbian network is used to process the three-input
data of���� � ���� � ��� ��� � ��� �� �
��� and generates
three outputs of���� � � �������, where� ��� is the esti-
mated weight matrix for the Hebbian network. 100 samples
of ���� are used for testing the 3-neuron network. The trans-
formed outputs are then used by a Radial-basis-function net-
work for estimating a model for����, which is subsequently
used for both in-sample and out-of-sample price prediction.
Here we focus only on the first part concerning the Hebbian
network for the transformed output���� � � �������.

2.4. Problem of using a small constant learning rate

Getting stuck in local minima is a major problem as the net-
work does not have the necessary momentum to go over
them to reach the global attractors. It is not uncommon that
a small learning rate of 0.001 runs into over 4,000 epochs
for the necessary convergence; and sometimes even a local
minimum is reached instead of a global one. In almost all
cases the norm of the weight change (���) for the maximal
eigenvector still fluctuates within a small range. The second
and third eigenvectors are still not completely converged af-
ter 4,000 epochs. Incorrect local solutions are possible even
under such long training period.

2.5. Fast convergence through annealing

We intend to use as few epochs as possible to reach the
global attractors by using a large learning and decay rates
(
 � � � diag([50, 300, 500]), and a linearly decreas-
ing annealing procedure of changing the
�� matrices to
diag([0.001, 0.01, 0.01]) at the�� �� epoch. The global at-
tractors are almost reached after about 2 to 3 epochs as ob-
served in the Euclidean difference norm of the three eigen-
vectors. The transformed outputs also show an exact match
with that obtained by using the correct eigenvectors.

3. NORMALIZATION SCHEMES

As previously discussed, one important aspect that is often
overlooked in GHA is the normalization step. Although not
explicitly required in the basic algorithm, such procedure
is necessary to bound the magnitude of the learned weight
vector without its growing to exceedingly large value that
may cause numerical problems. This is especially impor-
tant for our approach during the initial stage when a very
high gain is applied. One simple scheme of normalization
is to find the Euclidean norm�������� of the weight vec-
tor, and self-divided by this value in each iterative step for
normalizing to unit magnitude. Hence, the trajectory of the

II - 766

➡ ➡

weight vector is confined to the surface of a unit magnitude
hypersphere.

However, the essential information of an eigenvector is
contained in its direction and not in its magnitude. If the
GHA effectively learns the eigenvector information, then
other normalizaton schemes can be applied to result in the
same directional convergence point. Thus, GHA conver-
gence does not necessarily imply converging to the unit eigen-
vectors, but to the directions of the eigenvectors instead. In
the following, we confine the variation of the norm to sev-
eral types: (i) ascaled Euclidean norm, as��������� where
� is a scaling constant; (ii) an infinity norm, as��������;
and (iii) a bit-shifting infinity norm defined as

�������� � ������ ����������	�
��� (9)

where� � � � �, and�	 	 	
 defines the integer less than or
equal to the contained argument. Notice that��� �����	������
is the infinity norm��������. The use of normalization us-
ing (iii) then constrains�������������� with a lower bound
of the infinity norm. The calculation of (iii) is quite straight-
forward using digital logic, and the normalization step can
be carried out by bit-shifting without any division. This is
particularly useful for FPGA implementation (as will be dis-
cussed in the following section) with fixed point arithmetic
and limited resources.

3.1. Scaled Euclidean norm

In the study of evaluating (i) where the magnitude of� ����
is scaled as���, we notice that when� increases from 1,
the GHA has increasing difficulty to reach the correct di-
rectional convergence point (with the exception of the first
eigenvector). However, when� decreases from 1, correct
directional convergence is maintained as with the case of
� � �. This finding is interesting as it supports our ear-
lier postulation that the GHA can effectively learn the same,
correct directional information of the eigenvectors for dif-
ferent scaled magnitude of�����.

3.2. Infinity norm

In contrast against (i), the use of infinity norm normaliza-
tion in (ii) does not confine the weight vector� ���� on a
hyperspherical surface. A simulation run of 20 epochs us-
ing a shorter data length of 30 was attempted. As shown
in Fig. 1, the Euclidean norms�������� tend to oscillate at
high-gain period and finally settle to non-unity levels. How-
ever, correct directional convergence is obtained despite the
fluctuations in Euclidean norms, indicating that the GHA
is effective in learning directional information of the eigen-
vectors.

0 100 200 300 400 500 600 700
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
data1
data2
data3

Fig. 1. �������� when normalized using infinity norm

3.3. Bit-shifting infinity norm

Using the same simulation data as in the infinity norm case,
we evaluate the bit-shifting infinity norm normalization pro-
cedure (Eqn. (9)). It is interesting to note that, as illustrated
in Fig. 2, the oscillations in the Euclidean norm�� ������
are much less violent than in (ii), and settle eventually very
close to unity (despite no explicit normalization based on
Euclidean norm). Fig. 3 demonstrates good directional con-
vergence to the correct eigenvectors.

0 100 200 300 400 500 600 700
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
data1
data2
data3

Fig. 2. �������� when ����� is normalized using bit-
shifting infinity norm

0 100 200 300 400 500 600 700
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
data1
data2
data3

Fig. 3. Dot products between�������������� and the
correct eigenvectors when����� is normalized using bit-
shifting infinity norm

II - 767

➡ ➡

4. FPGA COMPUTATIONAL ARCHITECTURE

Over the past decade field programmable gate arrays (FPGA)
have emerged as powerful reconfigurable computing engines
for many applications. In addition to the provision of a very
flexible connection network for millions of logic gates on
a single FPGA chip, the recent availability of high-level
tools, such as Xilinx’s System Generator [4], overcomes
much of the tedious bottleneck of gate-level details with a
user-friendly Simulink design environment of DSP block-
sets. However, the current FPGA technology still suffers
from a lack of powerful floating point support; and some in-
tensive computing needs (such as division) may also cause a
serious drain on the available gate resources. Our design of
an FPGA-based eigenfilter takes account of these practical
constraints, by realizing GHA computation with only fixed
point arithmetic and a no-division normalization procedure.

The general FPGA architecture1 of our Hebbian eigen-
filter is shown in Fig. 4. While the current design is tar-
geted on 3x3 matrix calculation, the conceptual framework
can readily be extended to a more general�-dimensional
eigenfilter. In realizing the required bit-shifting normaliza-
tion (see Eqn. (9)), four blocks are constructed: ToPositive,
MaxValue, Maxlis, and DisAmplify.

Fig. 4. General FPGA architecture for hardware GHA
(HGHA)

ToPositive makes all values to positive and records their
sign, and restores their sign after normalization; MaxValue
finds the max value of the vector; Maxlis finds the most
MSB bit of the max value (��	
���������	������
); and
DisAmplify does the shifting when the MSB value is greater
than zero.

4.1. Implementation using fixed point arithmetic

Our FPGA architecture was designed using the fixed point
arithmetic blocksets of Xilinx’s System Generator under the

1We thank Winston Wong for his work in constructing the early design
prototype of the FPGA-based eigenfilter

Simulink environment. The software GHA (SGHA) imple-
ments Eqn. (9) with the usual floating point precision of
MATLAB. In constrast, the hardware GHA (HGHA) must
suffer from truncation errors due to finite bit length in fixed
point number representation. Using a 64-bit length with
different binary point positions, several combinations were
tested: 32/32, 24/40, and 40/24. The 40/24 combination
gives the best results, indicating that 40 bits are quite ade-
quate to minimize truncation error due to large values. Fig.
5 tabulates a comparative evaluation between the SGHA and
HGHA based on the error variances. The results demon-
strates that our FPGA-based Hebbian eigenfilter can learn
the eigenvectors reasonably well.

Fig. 5. Evaluating SGHA and HGHA

5. CONCLUSIONS

The normalization step of a modified generalized Hebbian
algorithm (GHA) based on high-gain and annealing has been
studied, with respect to both the Euclidean norm and the in-
finity norm. A bit-shifting infinity norm normalization pro-
cedure is successfully derived, showing good convergence
property and providing the basis for an FPGA-based de-
sign. Simulation results show very good performances for
the hardware GHA (HGHA) using only fixed point arith-
metic of the FPGA.

6. REFERENCES

[1] E. Oja, “Neural networks, principal components, and
subspaces,”Internal Journal of Neural Systems, vol. 1,
pp. 61–68, 1989.

[2] T.D. Sanger, “Optimal unsupervised learning in a
single-layer linear feedforward neural network,”Neural
Networks, vol. 12, pp. 459–473, 1989.

[3] S. Haykin,Neural networks: A comprehensive founda-
tion, New York : Macmillan College Publishing Com-
pany, 1994.

[4] Xilinx, Xilinx System Generator for Simulink: Xilinx
blockset reference guide and basic tutorial, San Jose:
Xilinx Inc., 2000.

II - 768

➡ ➠

