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ABSTRACT

We present a high-gain, multiple learning/ decay rate, “cool-
ing off” annealing strategy to a modified Generalized Heb-
bian Algorithm (GHA) that gives good approximate solu-
tion within one training epoch, and with fast convergence to
accurate principal components within a few more epochs.
A novel bit-shifting normalization procedure is shown to
bound the weight vector norm effectively and eliminates the
need for performing division. This leads to an FPGA-based
computational framework using only fixed point arithmetic
instead of more complicated floating point design. Simula-
tion results on Xilinx DSP System Generator tool indicate
the practicality of the approach, where real-time eigenfilter
can be readily implemented on field programmable gate ar-
rays with limited resources.

1. INTRODUCTION

Recently, eigenfilters have received wide interest in adap-
tive design, and in different applications including smart
antenna, finite impulse response (FIR) filter, and channel
equalisation. For most of the systems, numerically inten-
sive matrix factorisation computations are required for cal-
culating eigenvalues with high precision. While such real-
time computations can often be met with today’s highly effi-
cient digital signal processor (DSP), simpler procedures are
needed in less critical situation by using limited resources
to give acceptable solution and performance. Based on the

Hebbian learning network, this paper addresses the use ofW

only simple matrix multiplication and addition for eigenfil-
ter construction.

Many gradient-based neural networks use a small, con-
stant learning rate for simplicity, and rely on a measurable
model difference (as from the “teacher”) to drive the weight
change to zero for convergence. Non-supervisory neural

networks, such as the Hebbian network, do not possess this

explicit evaluation feedback mechanism and hence require
some internal self-organization for the learning process. The;
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Generalized Hebbian Algorithm (GHA) is known to find
the principal components based on the work of [1] and [2].
Oja’'s maximumeigenfilter is derived from consideration of
a small learning rate to the basic single-neuron Hebbian
learning, given as

y(t) = w’ (t)z(t) 0
dw(t+1) = wt+1)—w(t) @

_w® +uy@a)

= T rmeze) @

~ ny(6)(x(t) —y)w(t)) @)

whenn is small

wherez(t) is them-dimensional input vector and(t) is

the m-dimensional weight vector. Sanger’s extended work
on the GHA is significant in giving a unified treatment on
obtaining all the eigenvectors using a generally decreasing
learning rate for a single layer af neurons. The previous
learning equation now extends to

y(t) = WT(t)(t) ®)
AW (t+1) = nt){y®)z" ()
— LT[y (t)y" ()W} (6)
herelV is them xm weight matrix(= [w1, ws, . . ., wm]),

andLT|[.] stands for the lower triangular matrix pf.

As detailed in [3], the convergence proof establishes the
strong global "attractors” of the eigenvectors, although the
existence of “two” global attractors for each eigenvector (it-
self and its negative counterpart) is not explicitly stated. In
section 2 we extend the basic GHA with an annealing pro-
cedure to give fast convergence.

However, the importance of two constraints for this fast
eigenfilter is often overlooked: one is the explicit normal-
ization of the weight vectors during each learning step; the
other is the use of constant learning/ decay rates within the
same training epoch. The first bounds all weight trajectories
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onto the surface of a hypersphere. The second provides the2.3. Example on stock data
necessary high gain for learning uniformly from the input,
and results in a useful chaotic regularity given a fixed order
of input data.

We process a 100-day stock price data) to obtain the
5-day return series(t) = log(p(t)/p(t—5)). Then athree-
neuron Hebbian network is used to process the three-input
data ofz(t) = [r(t — 1),7(t — 2), (r — 3)]T and generates

2. AMODIFIED GHA WITH ANNEALING three outputs ofi(t) = W (t)z(t), whereW (¢) is the esti-
i i mated weight matrix for the Hebbian network. 100 samples
We generalize the learning/ decay rate from a scalarto of z(t) are used for testing the 3-neuron network. The trans-
diagonal matricesl(¢) = [ai(1)], B(t) = [:(?)], fori = formed outputs are then used by a Radial-basis-function net-

1,...,m, in order to take account of the different attraction .k for estimating a model for(¢), which is subsequently

of the eigenvectors. used for both in-sample and out-of-sample price prediction.
Here we focus only on the first part concerning the Hebbian
network for the transformed outputt) = W (t)z(¢).

dAW(t+1) = AW)yt)zT () Putt) = W () (?)

_ T
BWOLTy(t)y” (OIW (7) 2.4. Problem of using a small constant learning rate
The maximal eigenvector has a very strong attraction Getting stuck in local minima is a major problem as the net-

while the others are substantially weaker. By assigning aork does not have the necessary momentum to go over
different learning rate to each neuron, especially with much them to reach the global attractors. It is not uncommon that
greater values to the weaker neurons, the convergence of thg small learning rate of 0.001 runs into over 4,000 epochs

network can be more synchronized with, > a1 > o for the necessary convergence; and sometimes even a local

and/orBp, > fm-1 > fi. minimum is reached instead of a global one. In almost all
cases the norm of the weight change () for the maximal

2.1. A high-gain approach eigenvector still fluctuates within a small range. The second

hiah-aai hi ded h the alobal and third eigenvectors are still not completely converged af-
A hig -gﬁm apﬁroac is neede tfo r<’?1ppl)r0alc the globa r"]"t'ter4,000 epochs. Incorrect local solutions are possible even
tractors through bypassing most of the local minima. As the |, o1 such long training period.

magnitude information of the eigenvector is not relevant, a
normalization step is taken to constrain the weight vector in
each learning step. This will retain the input variance in-
formation_without an unnecessary grow'gh of the magnitude We intend to use as few epochs as possible to reach the
of the weight vector. Although the basic GHA will auto-  g1ohg attractors by using a large learning and decay rates
matically constrain the weight vector in the long run, it is (A = B = diag([50, 300, 500]), and a linearly decreas-
intended to constrain it more explicitly in the high-gain ap- ing annealing procedure of changing tHe B matrices to
proach without much increase in the computational load. diag([0.001, 0.01, 0.01]) at tH20** epoch. The global at-

tractors are almost reached after about 2 to 3 epochs as ob-
2.2. An annealing strategy served in the Euclidean difference norm of the three eigen-
vectors. The transformed outputs also show an exact match
with that obtained by using the correct eigenvectors.

2.5. Fast convergencethrough annealing

An annealing strategy is required to get the precision in the
converged solution. A high-gain approach can often allow
us to go to a region close to the global attractor quickly.
However, it also brings in very large input excitation to the 3. NORMALIZATION SCHEMES

change ¢w;) of the weight vector. This will affect the ac- ) _ ) )
curacy of the estimated eigenvectors. A rough estimation of AS previously discussed, one important aspect that is often

the Euclidean norm atw; for the maximal eigenvector can overlooked in GHA is the normalization step. Although not
be readily shown to be explicitly required in the basic algorithm, such procedure

is necessary to bound the magnitude of the learned weight
vector without its growing to exceedingly large value that

(lldwy (t + 1)]|2)* = k([Ja(®)]l2)* (a1 + B1)  (8) may cause numerical problems. This is especially impor-

tant for our approach during the initial stage when a very

Various “cooling-off” annealing strategies can be im- high gain is applied. One simple scheme of normalization

posed on the time-varying learning rate and decay rate, inis to find the Euclidean norrjw;(t)||» of the weight vec-

order to reduce the magnitude of the input excitation and tor, and self-divided by this value in each iterative step for
bring in the necessary accuracy to the estimated values.  normalizing to unit magnitude. Hence, the trajectory of the
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weight vector is confined to the surface of a unit magnitude
hypersphere.

However, the essential information of an eigenvector is ‘
contained in its direction and not in its magnitude. If the . nil

GHA effectively learns the eigenvector information, then . Ik W }1 E ﬂFf LM
other normalizaton schemes can be applied to result in the ) it %v ‘ L b“ e
same directional convergence point. Thus, GHA conver- AT

gence does not necessarily imply converging to the unit eigen- | hil L

100 200 300 00 500

vectors, but to the directions of the eigenvectors instead. In
the following, we confine the variation of the norm to sev-
eral types: (i) escaled Euclidean norm, as||w;(t)||2 where

7 is a scaling constant; (ii) an infinity norm, §8;(t)||c;

and (iii) a bit-shifting infinity norm defined as

Fig. 1. [Jw;(t)]|2 when normalized using infinity norm

3.3. Bit-shifting infinity norm
, — 9llogy max; {|ws,;(¢)[}]

il =2 © Using the same simulation data as in the infinity norm case,
wherel < j < m, and|- - - | defines the integer less thanor W€ evaluate the bit—shif_ting infir_1ity norm normalizqtion pro-
equal to the contained argument. Notice ihat { w; ; (£)|} pedl_Jre (Egn. (9))._ Itis interesting to note that, as illustrated
is the infinity norm||w; ()||. The use of normalizationus- " Fig. 2, the os_C|IIat|ons n th__e Euclidean notfw;(¢)||»
ing (iii) then constrainsv; (¢) /||w:(t)||, with a lower bound "€ much Ie_ss V|0Ien_t than in (||_),_and settl_e eyentually very
of the infinity norm. The calculation of (iii) is quite straight-  ¢/0S€ to unity (despite no explicit normalization based on
forward using digital logic, and the normalization step can Euclidean norm). Fig. 3 d_emonstrates good directional con-
be carried out by bit-shifting without any division. This is VErgence to the correct eigenvectors.
particularly useful for FPGA implementation (as will be dis-
cussed in the following section) with fixed point arithmetic
and limited resources.

3.1. Scaled Euclidean norm

In the study of evaluating (i) where the magnitudewaf(t) ‘ e
is scaled as1/~, we notice that whery increases from 1, L
the GHA has increasing difficulty to reach the correct di- Mo w w W

rectional convergence point (with the exception of the first
eigenvector). However, when decreases from 1, correct Fig- 2. |lw;(t)|]> when w;(t) is normalized using bit-
directional convergence is maintained as with the case of Shifting infinity norm

~v = 1. This finding is interesting as it supports our ear-
lier postulation that the GHA can effectively learn the same,
correct directional information of the eigenvectors for dif-
ferent scaled magnitude af;(¢).

3.2. Infinity norm

In contrast against (i), the use of infinity norm normaliza-
tion in (ii) does not confine the weight vectar;(¢) on a
hyperspherical surface. A simulation run of 20 epochs us- “ AN
ing a shorter data length of 30 was attempted. As shown W m w w W
in Fig. 1, the Euclidean normjgu;(t)||» tend to oscillate at

high-gain period and finally settle to non-unity levels. How- Fig. 3. Dot products between;(t)/||w;(t)||> and the
ever, correct directional convergence is obtained despite theCorrect eigenvectors when;(t) is normalized using bit-
fluctuations in Euclidean norms, indicating that the GHA shifting infinity norm

is effective in learning directional information of the eigen-

vectors.
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4. FPGA COMPUTATIONAL ARCHITECTURE Simulink environment. The software GHA (SGHA) imple-

ments Eqgn. (9) with the usual floating point precision of
Overthe past decade field programmable gate arrays (FPGAWATLAB. In constrast, the hardware GHA (HGHA) must
have emerged as powerful reconfigurable computing enginesuffer from truncation errors due to finite bit length in fixed
for many applications. In addition to the provision of a very point number representation. Using a 64-bit length with
flexible connection network for millions of logic gates on different binary point positions, several combinations were
a single FPGA chip, the recent availability of high-level tested: 32/32, 24/40, and 40/24. The 40/24 combination
tools, such as Xilinx's System Generator [4], overcomes gives the best results, indicating that 40 bits are quite ade-
much of the tedious bottleneck of gate-level details with a quate to minimize truncation error due to large values. Fig.
user-friendly Simulink design environment of DSP block- 5 tabulates a comparative evaluation between the SGHA and
sets. However, the current FPGA technology still suffers HGHA based on the error variances. The results demon-
from a lack of powerful floating point support; and some in- strates that our FPGA-based Hebbian eigenfilter can learn
tensive computing needs (such as division) may also cause dhe eigenvectors reasonably well.
serious drain on the available gate resources. Our design of

an FPGA-based eigenfilter takes account of these practical Tialah oot TPCA oror Taio
constraints, by realizing GHA computation with only fixed Sepochs | 7.8183¢-008 4.1566¢-007 3.32
. . L - . . 10 epochs 3.578e-8 1.1545e-007 323
point arithmetic and a no-division normalization procedure. W eports | 262098 R ETENTT 041
The general FPGA architectdref our Hebbian eigen- 30epochs | 1.427¢-8 1.1582¢-007 812

40 epochs 8.4330e-% 5.8224e-008 6.8

filter is shown in Fig. 4. While the current design is tar-
geted on 3x3 matrix calculation, the conceptual framework
can readily be extended to a more genenatiimensional
eigenfilter. In realizing the required bit-shifting normaliza-
tion (see Eqn. (9)), four blocks are constructed: ToPositive,
MaxValue, Maxlis, and DisAmplify.

Fig. 5. Evaluating SGHA and HGHA

5. CONCLUSIONS

I

The normalization step of a modified generalized Hebbian

e algorithm (GHA) based on high-gain and annealing has been
2 N, studied, with respect to both the Euclidean norm and the in-

N I finity norm. A bit-shifting infinity norm normalization pro-
B cedure is successfully derived, showing good convergence

Energy Sequences ‘

RAM for Output

Fig. 4. General FPGA architecture for hardware GHA
(HGHA)

property and providing the basis for an FPGA-based de-
sign. Simulation results show very good performances for
the hardware GHA (HGHA) using only fixed point arith-
metic of the FPGA.
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