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ABSTRACT

We developed a real-time wideband speech codec adopting a
wavelet packet based methodology. The transform domain
coefficients were first quantized by using a psycho-acoustic
model and then encoded with an arithmetic coding. The
arithmetic coding was carried out by adapting the probability
model of the quantized coefficients frame by frame by means of
a competitive neural network, which was trained to detect
regularities in the distribution of the wavelet packet coefficients.
The weight matrix of the neural network is periodically updated
during the compression in order to model better the speech
characteristics of the current speakers. The coding/decoding
agorithm was first written in C and then optimized on the
TMS320C6000 DSP platform in a QoS-compliant fashion.

1. INTRODUCTION

Several applications such as teleconferencing, multimedia
services and high-quality wideband telephony require advanced
coding algorithms for wideband speech. In contrast to the
standard telephony band of 200 to 3400 Hz, wideband speech is
assigned the band 50 to 7000 Hz and is sampled at a rate of
16000 Hz for subsequent digital processing. The added low
frequencies increase the voice naturalness whereas the added
high frequencies make the speech sound moreintelligible.

The uneven and time varying distribution of the wideband
speech energy provides motivation for using adaptive subband
coding. We developed a red-time wideband speech
coder/decoder adopting a wavelet packet transform based
methodology [20].

The transform domain coefficients were first quantized by
means of a uniform quantizer on the basis of the psycho-acoustic
masking phenomenon and then encoded with an arithmetic
coding. If we can provide an accurate model for probability of
occurrence of each possible symbol at every point in aframe, the
encoding is very nearly optimal. An accurate probability model
for the arithmetic coding can be build by using an adaptive
model, i.e. by observing during the compression the probability
of occurrence of each symbol. Since the receiver needs to know
the probability model used for the arithmetic coding in order to
decode the coefficients, each symbol must be encoded using the
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distribution of the part of the file aready coded [4]. In this way
no side information must be sent, because the receiver can
reconstruct the probability table used by the transmitter. The
poor error resistance of arithmetic coding does not make this
approach very efficient for voice packet transmission, which is
often characterized by packet losses and transmission errors.
Better results can be achieved by using a fixed probability
estimated on a robust and effective database of speech data. If
the transformed speech were a statistically independent sequence
of symbols the probability for each symbol could be set equa to
its relative frequency in the database. Unfortunately thisis not a
realistic assumption for the speech wavelet transform, first of all
because the frequency spectrum of each phoneme has peculiar
characteristics which repeat themselves each time the phoneme
is pronounced.

In our approach a competitive neural network was trained
on the TIMIT corpus to detect regularities in the distribution of
the wavelet packet coefficients. At the end of the training we
obtained a codebook of probability tables. The probability table
used for the arithmetic coding is updated frame by frame (i.e.
packet by packet) by selecting it in the codebook. The trained
network is also used to select frame by frame the best table in the
codebook for the coding of the current speech frame. Only the
code of the used probability table must be sent as side
information so that the receiver decodes each packet correctly.

TMS320 DSPs have proven effective for rea-time
compression of audio signals [3][14][16]. The codec agorithm
was first written in C and then optimized on the TM S320C6000
DSP platform.

2. THE SUBBAND DECOMPOSITION

In our coder the audio signal is transformed into a time-scale
representation  through a non-uniform  wavelet packet
decomposition.

The coding process first entails obtaining a frame of 128
speech samples, which are transformed into subband signals by
means of a fast wavelet packet transform agorithm. The
structure of the analysis tree is chosen so that the resulting 21
subbands [12] mimic the critical bands of the human auditory
system for the 0-8 kHz bandwidth, which allows to make use of
the spectral masking properties of the human ear to decrease the
bit-rate of the encoder while perceptually hiding the quantization
error.

The choice of the prototype filter of the transform, as well as
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its length, influences the separation of the subband signals and
the compression performance. The filters proposed by
Daubechies are the ones that best preserve frequency selectivity
as the number of stages of the DWPT increases. This is due to
their regularity property [2]. We have obtained excellent
performances with biorthogonal filters, specifically with the
Filters 3 of the best biorthogonal filter banks of Villasenor [19].

3. PERCEPTUAL NOISE MASKING

The samples of the time-scale representation were quantized to
reduce the amount of data sent to the transmission channel. The
dlocation of the bits to the subbands considered the perceptual
noise masking characteristics of the human ear. The noise
threshold, i.e. the maximum noise that can be inaudibly inserted
into the signal was used as quantization error.

The calculus of the noise threshold involved several steps
[7]. First we calculated the energy in each critical band. To
estimate the effects of masking across critica bands the
spreading function given in [1][15] was used. After this step the
signal to masking ratio was calculated for each subband by
evaluating the tonality of the signal. In order to determine the
noiselike or tonelike nature of the signal, the spectra flatness
measure [6], computed by means of the wavelet packet
transform, was used. Finally the maximum between the masking
threshold and the threshold in quiet was taken.

The frame length was set equal to 128 samples (8 ms).
Since we used symmetric extension of frames and a biorthogonal
filter bank, which has impulse responses perfectly symmetric (or
antisymmetric), the analysis and synthesis window lengths were
equal to 128 samples too and no overlap was used between
frames, leading to an agorithm delay of only 8 ms. The use of
symmetric extensions of the frames caused the incorrect
calculation of the masking threshold, but the use of the psycho-
acoustic model still proved advantageous.

The transform domain coefficients were quantized by
means of a mid-tread quantizer [11] and encoded with the
arithmetic coding.

4. THE COMPETITIVE NEURAL NETWORK

The neurons of competitive networks learn to recognize groups
of similar input vectors.

The topology of the network we used is showed in Fig. 1. In
our competitive network the distance between the N inputs p;,
representing the probability table of the quantized wavelet
coefficient of a speech frame, and vectors formed from the
columns of the input weight matrix W, was calculated by means
of the following eguation,

N N H
Dj=-g) Pi*logaW - Z pelogzpip (1)
i= = a
The quantity D; in the equation (1) represents the difference
between the following two quantities:
N
s - Z p; * logy Wi , which represents the mean number of
f=

bits we would code the quantized wavelet coefficients of
that frame by using an optimal arithmetic coding with the
probability table [Wyj, Wy, ..., Wy];

! ! ! !

| Competitive layer |

Fig. 1. The neura network topology with N=17 input
symbols and M=4 output neurons.

N
. - Z p; ¢ log, p;, which represents the entropy of the
1=

probability distribution [p1,p.,...,pn]-

Finding the distances D; and subtracting the biases by, we
compute the 4, elements

The competitive transfer function returns neuron outputs of
0 for al neurons except for the winner, the neuron associated
with the minimum element 4. The winner’s output is 1. The

condition
N
Z W;j =1 O ©)
| =

is imposed on the weight matrix and on the inputs. We used the
Kohonen learning rule [8] to adapt the weights of the winning
neuron j,

W (t) =W (t = 1) + A« (i (t) — W (t - 1)) 4
Thisrule preserves the condition (3).

The biases b; are updated during the training to force each
neuron to classify roughly the same percentage of input
vectorg[18]. If M is the number of the output neurons, the
probability table is encoded with only log,M bits.

The neura network is also trained during the compression
in order to learn the speech characteristics of the current
speakers. If the performances of the new codebook look
meaningfully different from the currently used codebook
performances, we can change the codebook sending the new
codebook to the receiver.

5.REAL TIME IMPLEMENTATION

Real-Time voice transport introduces tight constraints on QoS
with respect to delay, jitter, loss and/or error, due to the limited
tolerance of the human listener to both the average delay and the
fluctuation of delay. The overall delay should not exceed 200-
250 ms, but a delay of 200 ms to 800 ms is conditionally
acceptable for a short portion of the conversation, when such
delays are rare and far apart [10]. Due to fluctuations of the
network delay, buffering is needed at the receiver.

We implemented our tool on the TMS320C6701 Evaluation
Module. The TMS320C6701 Evaluation Module is equipped
with a Peripheral Component Interconnect (PCl) interface,
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which supports high-speed modes of data transfers.

The input voice was sampled at 16 kHz and digitalized by
means of the 16-bit A/D-D/A converter, which is on the DSP
board. In order to transfer continuously the digitalized voice
from the A/D serial port to the CPU memory without loading the
CPU, we performed this operation by programming the Direct
Memory Access controller (DMA). Although the CPU and the
DMA controller function independently of one another, when
both are performing simultaneous data accesses it is necessary to
properly schedule and configure them in order to minimize
conflict and waiting while meeting real-time requirements. To
alow the CPU activity to be distanced from the DMA activity
we implemented a ping-pong buffering technique [17]. In ping-
pong buffering there are two sets of data buffers for all
incoming and outgoing data streams. While the DMA is
transferring data to the ping buffers, the CPU is compressing the
data in the pong buffers. When both CPU and DMA activity
completes, they switch. The compressed signal is sent in real-
time to an host computer through the onboard DSP Host Port
Interface. The HPI is a parallel 16-bit port through which a host
processor can directly access the internal and external memory
space of the DSP CPU. The host computer packets the
compressed voice and sends it to the Internet. In order to test the
application an UDP/IP socket was used on 10 Mbps LAN. On
the host computer a server application is present too, which
receives speech packets from the Internet, unpacks them and
sends the compressed speech to the DSP CPU in rea-time
through the HPI, where it is decompressed by the CPU and sent
by the DMA to the seria port connected to D/A converter.

In order to meet the QoS constraints the receiving
procedure was implemented by programming the DMA on a
circular N-dimensiona buffer array. Each element of the buffer
array contains the data of a packet, so that the total buffer delay
is N*8 ms and values of N up to 25 can be used. In this way we
can send the voice to the speakers continuously, without silence
gaps caused by the network jitter. Furthermore the buffer permits
of reordering out of sequence packets. Packet desequencing was
diminated by using a sequence number inserted in each packet
during the compression step.

The arithmetic coding was implemented by using integer
arithmetic to partition the cumulative frequency distribution
table used at each stage. Not only this is more efficient than
using floating point arithmetic, but avoids that different round-
off errors can make different machines encode differently [13].

6. MAIN RESULTS

A reconstructed signal with a segmental SNR greater than 16.5
dB was achieved at 32 kbit/s. It is possible to reduce the bit rate
by using a quantization step greater than the masking noise. In
this way the coding is not any more perceptually transparent, but
the quantization noise is tolerable up to 8-10 kbit/s.

The table 1 shows the results obtained for 5 different kind
of filter banks. As showed in the second column of table 1,
Vadynathan and Battle-Lemarie filters have a long impulse
response and are very frequency selective [9]. Anyway their
performance are similar to Symmlet 6, Villasenor 3 and
Daubechies 5 filters, which are shorter and then computationally
more appreciable. The Villasenor 3 filter bank is biorthogonal,
S0 it can be advantageoudly used in symmetric windowing.

SNRgeg @ | SNRgeg @ | SNRgeg at

Filter bank |Length| 32kbit/s | 24 kbit/s | 16 kbit/s
(dB) (dB) (dB)
Vaidynathan 24 16.52 14.65 12.62
Daubechies 5 10 16.32 14.30 12.31
Symmlet 6 12 16.49 14.43 12.58
Battle-Lemarie| 41 16.57 14.77 12.37
Villasenor 3 | 6/10 16.53 14.67 12.39

Tab. 1. Segmental signal to noise ratio for different filter
banks at different bit rates.

The ITU-T recommendation for 7 kHz bandwidth audio
signals working at 24 or 32kbit/s (for use in hands-free
applications such as conferencing) isthe G.722.1, adigital coder
based on transform coding as well, using a Modulated Lapped
Transform [5]. Because the transform window (basis function
length) is 640 samples and a 50 per cent (320 samples) overlap
is used between frames, the total agorithmic delay of G.722.1 is
40 ms. The overlapping avoids the blocking artifacts that can be
listened in most DCT-based compression system, but introduces
an agorithmic delay that could be unacceptable in rea-time
applications, such as video-conferencing, in which the
telecommunication system can create echo problems.

Three neural networks were trained for the following
subbands: 0-2kHz, 2kHz-4kHz and 4kHz-8kHz. Codebooks of
different sizes were obtained by using M=2,4,8,16 output
neurons and N=9,17,33 input symbols p,. We used as training set
the TIMIT corpus sentences spoken by 64 different speakers
from 8 major diaect regions of the United States. A separate set
of sentences spoken by 8 different speakers was used as test set.
The best trade-off between bit rate, computation complexity and
quality of the reconstructed speech was M=4 neurons and N=17
or N=33 symbols. For this configuration the overhead for the
transmission of a probability table code is only 250 bit/s.

The performance of the neural network were evaluated on
the test set for this configuration by comparing the bit rate
obtained using the learned probability tables with the bit rate of
2 dternative approaches:

- the hit rate obtained using a fixed probability table calculated
on the same data used for the network training.
- the bit rate obtained using an adaptive mode! .

In both alternative approaches the probability of each
symbol was set equal to its relative frequency. Two different
implementation of the adaptive model were made. In the first
one the model was restarted every 100 frames (800 ms) and in
the second one the model was restarted every 10 frames (80 ms)
in order to reduce the effect of errors in the decoding caused by
packet losses. The results, showed in table 2, demonstrate that
the performances of the neura network approach are better then
the other approaches (the Villasenor 3 filter bank was used).

The test set was a so used in order to measure the suitability
of the wavelet transform to concentrate speech information. We
found that nearly the 90% of the Villasenor 3 normalized
wavelet coefficients are below 0.05 in module. This result was
essentia for a low bit rate representation of the coefficients
using the arithmetic coding.
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i Adaptive model | Adaptive model
Neural A xe_d_ restarted every | restarted every
network | probability
. - 100 frames 10 frames
(kbit/s)  |table (kbit/s) (Kbit/s) (Kbit/s)
16.0 17.0 17.7 18.8
24.0 25,3 26.2 27.4
32.0 33.6 34.6 35.7

Tab. 2. Bit rates obtained with different arithmetic coding
approaches.

The processing delay of the coding agorithm with the
TMS320C6701 CPU, which has 8 independent functional units,
a5 ns cycle time and is designed to perform up to eight 32 bit
instruction per cycle, waslessthan 2 ms.

7. CONCLUSIONS AND FUTURE WORK

A wavelet based real-time speech coder has been proposed and a
real-time implementation on the TMS320C6000 platform has
been tested. Since the coder does not rely on any source model
of thesignal, it can be used for al audio signalsif anew training
of the neura network is made.

The low algorithmic delay (8 ms) makes the coder suitable
for rea-time applications in which the telecommunication
system can create echo problems.

The use of a neura network approach for the arithmetic
coding of the quantized coefficients led to coding performances
better than alternative approaches, as adaptive models or the use
of a fixed probability table, in which the probability of each
symbol is set equal to its relative frequency.

Future work includes the incorporation of a tempora
masking model, the analysis of the coder performance with
music signals sampled a 44.1 kHz, a mean opinion score
(MQOS) evaluation procedure and the use of a rea-time network
protocol able to minimize the audible artifacts which are caused
by packet losses and jitter in the IP network.
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