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ABSTRACT 

 
We developed a real-time wideband speech codec adopting a 
wavelet packet based methodology.  The transform domain 
coefficients were first quantized by using a psycho-acoustic 
model and then encoded with an arithmetic coding.  The 
arithmetic coding was carried out by adapting the probability 
model of the quantized coefficients frame by frame by means of 
a competitive neural network, which was trained to detect 
regularities in the distribution of the wavelet packet coefficients. 
The weight matrix of the neural network is periodically updated 
during the compression in order to model better the speech 
characteristics of the current speakers. The coding/decoding 
algorithm was first written in C and then optimized on the 
TMS320C6000 DSP platform in a QoS-compliant fashion.  

 

1. INTRODUCTION 
 
Several applications such as teleconferencing, multimedia 
services and high-quality wideband telephony require advanced 
coding algorithms for wideband speech. In contrast to the 
standard telephony band of 200 to 3400 Hz, wideband speech is 
assigned the band 50 to 7000 Hz and is sampled at a rate of 
16000 Hz for subsequent digital processing. The added low 
frequencies increase the voice naturalness whereas the added 
high frequencies make the speech sound more intelligible.  

The uneven and time varying distribution of the wideband 
speech energy provides motivation for using adaptive subband 
coding. We developed a real-time wideband speech 
coder/decoder adopting a wavelet packet transform based 
methodology [20].  

The transform domain coefficients were first quantized by 
means of a uniform quantizer on the basis of the psycho-acoustic 
masking phenomenon and then encoded with an arithmetic 
coding. If we can provide an accurate model for probability of 
occurrence of each possible symbol at every point in a frame, the 
encoding is very nearly optimal. An accurate probability model 
for the arithmetic coding can be build by using an adaptive 
model, i.e. by observing during the compression the probability 
of occurrence of each symbol. Since the receiver needs to know 
the probability model used for the arithmetic coding  in order to 
decode the coefficients, each symbol must be encoded using the 

distribution of  the part of the file already coded [4]. In this way 
no side information must be sent, because the receiver can 
reconstruct the probability table used by the transmitter. The 
poor error resistance of arithmetic coding does not make this 
approach very efficient for voice packet transmission, which is 
often characterized by packet losses and transmission errors.  
Better results can be achieved by using a fixed probability 
estimated on a robust and effective database of speech data.  If  
the transformed speech were a statistically independent sequence 
of symbols the probability for each symbol could be set equal to 
its relative frequency in the database. Unfortunately this is not a 
realistic assumption for the speech wavelet transform, first of all 
because the frequency spectrum  of each phoneme has peculiar 
characteristics which repeat themselves each time the phoneme 
is pronounced.  

In our approach a competitive neural network was trained 
on the TIMIT corpus to detect regularities in the distribution of 
the wavelet packet coefficients. At the end of the training we 
obtained a codebook of probability tables. The probability table 
used for the arithmetic coding is updated frame by frame (i.e. 
packet by packet) by selecting it in the codebook. The trained 
network is also used to select frame by frame the best table in the 
codebook for the coding of the current speech frame. Only the 
code of the used probability table must be sent as side 
information so that the receiver decodes each packet correctly.   

TMS320 DSPs have proven effective for real-time 
compression of audio signals [3][14][16]. The codec algorithm 
was first written in C and then optimized on the TMS320C6000 
DSP platform. 
 

2. THE SUBBAND DECOMPOSITION 
 
In our coder the audio signal is transformed into a time-scale 
representation through a non-uniform wavelet packet 
decomposition.  

The coding process first entails obtaining a frame of 128 
speech samples, which are transformed into subband signals by 
means of a fast wavelet packet transform algorithm. The 
structure of the analysis tree is chosen so that the resulting 21 
subbands [12] mimic the critical bands of the human auditory 
system for the 0-8 kHz bandwidth, which allows to make use of 
the spectral masking properties of the human ear to decrease the 
bit-rate of the encoder while perceptually hiding the quantization 
error.  

The choice of the prototype filter of the transform, as well as 
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its length, influences the separation of the subband signals and 
the compression performance. The filters proposed by 
Daubechies are the ones that best preserve frequency selectivity 
as the number of stages of the DWPT increases. This is due to  
their regularity property [2]. We have obtained excellent 
performances with biorthogonal filters, specifically with the 
Filters 3 of the best biorthogonal filter banks of Villasenor [19]. 

 
3. PERCEPTUAL NOISE MASKING 

 
The samples of the time-scale representation were quantized to 
reduce the amount of data sent to the transmission channel. The 
allocation of the bits to the subbands considered the perceptual 
noise masking characteristics of the human ear. The noise 
threshold, i.e. the maximum noise that can be inaudibly inserted 
into the signal was used as quantization error. 

The calculus of the noise threshold involved several steps 
[7]. First we calculated the energy in each critical band. To 
estimate the effects of masking across critical bands the 
spreading function given in [1][15] was used. After this step the 
signal to masking ratio was calculated for each subband by 
evaluating the tonality of the signal. In order to determine the 
noiselike or tonelike nature of the signal, the spectral flatness 
measure [6], computed by means of the wavelet packet 
transform, was used. Finally the maximum between the masking 
threshold and the threshold in quiet was taken.  

The frame length was set equal to 128 samples (8 ms). 
Since we used symmetric extension of frames and a biorthogonal 
filter bank, which has impulse responses perfectly symmetric (or 
antisymmetric),  the analysis and synthesis window lengths were 
equal to 128 samples too and no overlap was used between 
frames, leading to an  algorithm delay of only 8 ms. The use of 
symmetric extensions of the frames caused the incorrect 
calculation of the masking threshold, but the use of the psycho-
acoustic model still proved advantageous. 

The transform domain coefficients were quantized by 
means of a mid-tread quantizer [11] and encoded with the 
arithmetic coding.  
 

4. THE COMPETITIVE NEURAL NETWORK 
 
The neurons of competitive networks learn to recognize groups 
of similar input vectors.  

The topology of the network we used is showed in Fig. 1. In 
our competitive network the distance between the N inputs pi, 
representing the probability table of the quantized wavelet 
coefficient of a speech frame, and vectors formed from the 
columns of the input weight matrix Wij, was calculated by means 
of the following equation, 
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The quantity Dj in the equation (1) represents the difference 
between the following two quantities:  
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bits we would code the quantized wavelet coefficients of 
that frame by using an optimal arithmetic coding with the 
probability  table [W1j, W2j, …, WNj]; 

 
  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The neural network topology with N=17 input 
symbols and M=4 output neurons. 
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probability distribution [p1,p2,…,pN]. 

Finding the distances Dj and subtracting the biases bj, we 
compute the ∆j elements 

jjj bD −=∆    (2) 

The competitive transfer function returns neuron outputs of 
0 for all neurons except for the winner, the neuron associated 
with the minimum element ∆j. The winner’s output is 1. The 
condition 

1W
1
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=

N

i

 ∀ j   (3) 

is imposed on the weight matrix and on the inputs. We used the 
Kohonen learning rule [8]  to adapt the weights of the winning 
neuron j, 

))1()(()1()( −−•+−= tWtptWtW ijiijij λ  (4) 

This rule preserves the condition (3).   
The biases bi are updated during the training to force each 

neuron to classify roughly the same percentage of input 
vectors[18]. If M is the number of the output neurons, the 
probability table is encoded with only log2M bits. 

The neural network is also trained during the compression 
in order to learn the speech characteristics of the current 
speakers. If the performances of the new codebook look 
meaningfully different from the currently used codebook 
performances, we can change the codebook sending the new 
codebook to the receiver.  
 

5. REAL TIME IMPLEMENTATION 
 
Real-Time voice transport introduces tight constraints on QoS 
with respect to delay, jitter, loss and/or error, due to the limited 
tolerance of the human listener to both the average delay and the 
fluctuation of delay. The overall delay should not exceed 200-
250 ms, but a delay of 200 ms to 800 ms is conditionally 
acceptable for a short portion of the conversation, when such 
delays are rare and far apart [10]. Due to fluctuations of the 
network delay, buffering is needed at the receiver.  

We implemented our tool on the TMS320C6701 Evaluation 
Module. The TMS320C6701 Evaluation Module is equipped  
with a Peripheral Component Interconnect (PCI) interface, 

p1 p2 p3 p4 p5 p6 p7 p8 

Competitive layer 
∆1 ∆3 

p9 p10 p11 p12 p13 p14 p15 p16

∆2 ∆4 

p17
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which  supports high-speed modes of data transfers.  
The input voice was sampled at 16 kHz and digitalized by  

means of the 16-bit A/D-D/A converter, which is on the DSP 
board. In order to transfer continuously the digitalized voice 
from the A/D serial port to the CPU memory without loading the 
CPU, we performed this operation by programming the Direct 
Memory Access controller (DMA). Although the CPU and the 
DMA controller function independently of one another, when 
both are performing simultaneous data accesses it is necessary to 
properly schedule and configure them in order to minimize 
conflict and waiting while meeting real-time requirements. To 
allow the CPU activity to be distanced from the DMA activity 
we implemented a ping-pong buffering  technique [17].  In ping-
pong buffering  there are two sets of data buffers for all 
incoming and outgoing data streams. While the DMA is 
transferring data to the ping buffers, the CPU is compressing the 
data in the pong buffers. When both CPU and DMA activity 
completes, they switch. The  compressed signal is sent in real-
time to an host computer through the onboard DSP Host Port 
Interface. The HPI is a parallel 16-bit port through which a host 
processor can directly access the internal and external memory 
space of the DSP CPU. The host computer packets the 
compressed voice and sends it to the Internet. In order to test the 
application an UDP/IP socket was used on 10 Mbps LAN. On 
the host computer a server application is present too, which 
receives speech packets from the Internet, unpacks them and 
sends the compressed speech to the DSP CPU in real-time 
through the HPI, where it is decompressed by the CPU and sent 
by the DMA to the serial port connected to D/A converter.  

In order to meet the QoS constraints the receiving 
procedure was implemented by programming the DMA on a 
circular N-dimensional buffer array. Each element of the buffer 
array contains the data of a packet, so that the total buffer delay 
is N*8 ms and values of N up to 25 can be used. In this way we 
can send the voice to the speakers continuously, without silence 
gaps caused by the network jitter. Furthermore the buffer permits 
of reordering out of sequence packets. Packet desequencing was 
eliminated by using a sequence number inserted in each packet 
during the compression step.  

The arithmetic coding was implemented by using integer 
arithmetic to partition the cumulative frequency distribution 
table used at each stage. Not only this is more efficient than 
using floating point arithmetic, but avoids that different round-
off errors can make different machines encode differently [13]. 
 

6. MAIN RESULTS 
 
A reconstructed signal with a segmental SNR greater than 16.5 
dB was achieved at 32 kbit/s. It is possible to reduce the bit rate 
by using a quantization step greater than the masking noise. In 
this way the coding is not any more perceptually transparent, but 
the quantization noise is tolerable up to 8-10 kbit/s.  

The table 1 shows the results obtained for 5 different kind 
of filter banks. As showed in the second column of table 1, 
Vaidynathan and Battle-Lemarie filters have a long impulse 
response and are very frequency selective [9]. Anyway their 
performance are similar to Symmlet 6, Villasenor 3 and 
Daubechies 5 filters, which are shorter and then computationally 
more appreciable.  The Villasenor 3 filter bank is biorthogonal, 
so it can be advantageously used  in symmetric windowing.  

Filter bank Length 
SNRSEG at 
32 kbit/s 

(dB) 

SNRSEG at 
24 kbit/s 

(dB) 

SNRSEG at 
16 kbit/s 

(dB) 
Vaidynathan 24 16.52 14.65 12.62 

Daubechies 5 10 16.32 14.30 12.31 

Symmlet 6 12 16.49 14.43 12.58 

Battle-Lemarie 41 16.57 14.77 12.37 

Villasenor 3 6/10 16.53 14.67 12.39 

 
Tab. 1. Segmental signal to noise ratio for different filter 

banks at different bit rates. 
 

The ITU-T recommendation for 7 kHz bandwidth audio 
signals working at 24 or 32 kbit/s (for use in hands-free 
applications such as conferencing)�is the G.722.1, a digital coder 
based on transform coding as well, using a Modulated Lapped 
Transform [5]. Because the transform window (basis function 
length) is 640 samples and a 50 per cent (320 samples) overlap 
is used between frames, the total algorithmic delay of G.722.1 is 
40 ms. The overlapping avoids the blocking artifacts that can be 
listened in most DCT-based compression system, but introduces 
an algorithmic delay that could be unacceptable in real-time 
applications, such as video-conferencing, in which the 
telecommunication system can create echo problems.  

Three neural networks were trained for the following 
subbands: 0-2kHz, 2kHz-4kHz and 4kHz-8kHz. Codebooks of 
different sizes were obtained by using M=2,4,8,16 output 
neurons and N=9,17,33 input symbols pi. We used as training set 
the TIMIT corpus sentences spoken by 64 different speakers 
from 8 major dialect regions of the United States. A separate set 
of sentences spoken by 8 different speakers was used as test set. 
The best trade-off between bit rate, computation complexity and 
quality of the reconstructed speech was M=4 neurons and N=17 
or N=33 symbols. For this configuration the overhead for the 
transmission of a probability table code is only 250 bit/s.  

The performance of the neural network were evaluated on 
the test set for this configuration by comparing the bit rate 
obtained using the learned probability tables with the bit rate of 
2 alternative approaches: 
- the bit rate obtained using a fixed probability table calculated 
on the same data used for the network training. 
 - the bit rate obtained using an adaptive model . 

In both alternative approaches the probability of each 
symbol was set equal to its relative frequency. Two different 
implementation of the adaptive model were made. In the first 
one the model was restarted every 100 frames (800 ms) and in 
the second one the model was restarted every 10 frames (80 ms) 
in order to reduce the effect of errors in the decoding caused by 
packet losses. The results, showed in table 2, demonstrate that 
the performances of the neural network approach are better then 
the other approaches (the Villasenor 3 filter bank was used).  

The test set was also used in order to measure the suitability 
of the wavelet transform to concentrate speech information. We 
found that nearly the 90% of the Villasenor  3 normalized 
wavelet coefficients are below 0.05 in module. This result was 
essential for a low bit rate representation of the coefficients 
using the arithmetic coding. 
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Neural 
network  
(kbit/s) 

Fixed 
probability 

table (kbit/s) 

Adaptive model 
restarted every 

100 frames 
(kbit/s) 

Adaptive model 
restarted every 

10 frames 
(kbit/s) 

16.0 17.0 17.7 18.8  

24.0  25,3 26.2 27.4 

32.0  33.6  34.6 35.7 
 

 Tab. 2. Bit rates obtained with different arithmetic coding 
approaches. 

 
The processing delay of the coding algorithm with the 

TMS320C6701 CPU, which has 8 independent functional units, 
a 5 ns cycle time and is designed to perform up to eight 32 bit 
instruction per cycle,  was less than 2 ms. 
 

7. CONCLUSIONS AND FUTURE WORK 
 
A wavelet based real-time speech coder has been proposed and a 
real-time implementation on the TMS320C6000 platform has 
been tested. Since the coder does not rely on any source model 
of the signal, it can be used for all audio signals if a new training 
of the neural network is made.  

The low algorithmic delay (8 ms) makes the coder suitable 
for real-time applications in which the telecommunication 
system can create echo problems.  

The use of a neural network approach for the arithmetic 
coding of the quantized coefficients led to coding performances 
better than alternative approaches, as adaptive models or the use 
of a fixed probability table, in which the probability of each 
symbol is set equal to its relative frequency. 

Future work includes the incorporation of a temporal 
masking model, the analysis of the coder performance with 
music signals sampled at 44.1 kHz, a mean opinion score  
(MOS) evaluation procedure and the use of a real-time network 
protocol able to minimize the audible artifacts which are caused 
by packet losses and jitter in the IP network. 
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