A NEURAL NETWORK FOR BLIND IDENTIFICATION OF
SPEECH TRANSMISSION INDEX

FrancisF. Li

Department of Computing and Mathematics
Manchester Metropolitan Universty
Manchester, M1 5GD, UK
f.li@mmu.ac.uk

ABSTRACT

A hybrid neural network model is proposed to determine
the Speech Transmission Index of a transmission channel
from transmitted speech signals without resort to prior
knowledge of original speech. It comprises a Hilbert
transform pre-processor, a PCA network for speech
feature extraction and a multi-layer back-propagation
network for non-linear mapping and case generalization.
The developed method utilizes naturally occurring speech
signals as probe stimuli, reduces measurement channels
from two to one and hence facilitates speech transmission
channel assessments under in-use conditions.

1. INTRODUCTION

Intelligibility is the most important concern of speech
transmission channels, including acoustic ones such as
rooms and el ectronic ones such as telephone lines, public
address systems, codecs, etc.. The degradation of speech
intelligibility is caused by the envel ope shaping effect and
additive noises of transmission channds. Such effects can
be described by the Modulation Transfer Function (MTF)
[1]. Derived from the MTF, Speech Transmission Index
(STI1), a single index defined to have good correlation
with subjective perception of intdligibility, has been
incorporated into international standards to quantify
speech inteligibility of transmission channels [2,3]. In
the standard STI method, the MTF is first identified
using artificial test signals (sihe-wave modulated white
noises) and the ST1 is subsequently obtained by a series of
linear and non-linear processing of the MTF data
Measurement of the STI is indeed a system identification
and non-linear mapping problem.

It iswell appreciated in acoustic research community
that the use of artificial test signals in the STI method
hinders in-use measurements. Endeavors have been made
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to accurately determine the STIs and other acoustic
parameters from naturally occurring speech [4,5]. These
methods rely on knowledge of speech signals at both
input and output ends of a transmission channel and
therefore are bi-channel measurements in nature. They
cannot be used when the input signal is unknown. This
paper presents a neural network model to extract the STI
from transmitted speech signals without monitoring the
original ones- asingle channel blind system identification
approach.

MTFs and STls can be coarsdy estimated by
comparing envelopes of speech signals at transmitting
and receiving ends [6], and better accuracy is achievable
using a neural network compensation mechanism [7].
The challenge of the one channel approach is to estimate
the speech envelopes at the input end of a channd from
signals received at the output end. Principal components
of received speech envelope signals are found robust to
characteristics of transmission channels, giving useful
profiles of envelopes of origina speech signals.
Unsupervised Principal Components Analysis (PCA)
networks are adopted to identify envelope profiles of
input speech from the outputs of transmission channels.
Combining an Hilbert transform envelope detector, a
spectrum estimator, a PCA network and a supervised
back-propagation network, a hybrid model for blind ST
identification is formed. The modd is trained on and
validated by a large number of examples of acoustic
channels. Hypothetically, it should be applicable to
various different channels.

2. NATURE OF STI IDENTIFICATION

STl is a single index derived from the MTF of a speech
transmission channel [4]. A noise carrier n(t) is
multiplied by a modulation function

m(t) = \/1+ mcos(27Ft) 1)

to generate an excitation signal
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i(t) = n(t) 4/1+ mcos(2rit) 2

where F is the modulation frequency and m is the
modulation index. The intensity of excitation and
response can thus be written as

[ (t) = li[1+ mcos(27t)] 3
and

O(t) = lo[1+ mocos2riF (t — ¢)] 4
where mo is the modulation index of the output intensity
function and ¢ istime delay due to transmission. I, li and

lo are amplitudes of corresponding sinusoidal function
(mean intensities). The MFT of a channel is defined as
the ratio of mo to m as a function of modulation
frequencies.

Mo
MTE(F)=— (5)
m
Figure 1. Anillustration of MTF measurement
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(for convenience, m=1)

For a good speech intdligibility, the envelope of
speech signals should be wel-preserved and noise
interference minimized. The MTF describes the envelope
shaping effect and takes noises into account, since input
and output signal intensities are considered. Therefore it
is closdly corrdated with inteligibility of transmitted
speech. STI is a single index calculated from 98 MTF
values at 14 1/3-octave band modulation frequencies
(0.63, 0.80, ..., 10.0, 12.5Hz) in seven octave bands (125,
250, ..., 4k, 8kHz) in line with the following procedure
[3]:

1. Converting MTF(F) into apparent SN ratio
_ MFT(F)
(S/ N)app,F = 10|Og(m) (6)
2. Limiting dynamic range to 30 dB
if (S'N)app > 15dB >> (S/N)app=15dB
if (SYN)app<-15dB  >> (SN)app=-15d (7
dse (S/N)app=S/Napp
3.Calculation of mean apparent SN ratio:

125

- 1
app = — app, 8
(S/N) m Z(S/ N )app, F (8)

F=0.63
4. Calculation of overall mean apparent S/N by weighting
the (SN)app,F of 7 octave bands
(S/ N)app = ZWk(S/ N)app, F (9)
where wk=0.13, 0.14, 0.11, 0.12, 0.19, 0.17 and 0.14

respectively for the 7 octave bands .
5. Converting to an index ranging from 0to 1

| (STN)a +15
30

ST (20)

It is apparent that ST is a purpose defined parameter
from the MTF and STI estimation is in fact a system
identification problem. When extracting STls from the
transmitted signals, the problem becomes blind system
identification.

3. THE HYBRID NEURAL NETWORK

3.1. Rationale

The MTF can be estimated from the envelope spectra of
original and transmitted speech by [6]

MTF(F) :% (12)
Ex(F)
where Ex (F) and E(F) are the envel ope spectra of input
and output speech signals of a channel. When this is
compared with the definition of the MTF, it becomes
apparent the estimation errors stem from the difference
between the actual speech signal and the sinusoidal
modulated white noises. Estimation accuracy can be
improved by introducing certain compensation
mechanisms; in particular a neural network approach can
be adopted [7]. To blind-identify MTFs from output
signals solely, information about Ex becomes an
additional challenge.

3.2. The hybrid model

The design consideration of the hybrid neural network is
to use a good spectrum estimator to obtain speech
envelope spectra, an unsupervised network to acquire
input envel opes profiles from output signals and finally a
supervised network to map the MTF onto STI,
compensate spectral  difference and perform case
generalization. Figure 2 illustrates the framework of the
proposed hybrid neural network system.
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Figure 2. Hybrid neural network model
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3.2.1. Hilbert transform envel ope detector
The envelope ev(t) of a 60 second running speech excerpt
S(t) isfirst determined by

ev(t) =ys"(t) +s,"(t) (12)

where Sh(t) isthe Hilbert transform of (t)
1 = g(t-t") ..,
5,0 = Hisw] == [ X 0ae
The envelope spectra are further estimated by
Welch's average periodogram with a Hanning window.
Empirical comparisons revealed a higher resolution and
more data points than defined in the standard STI method
benefit the accuracy of the blind identification. Envelope
spectra from immediately above DC to 25Hz at 0.5 Hz
intervals are used.

(13)

3.2.2. Input speech profiling

Profiles of input signal envelopesis obtained using a PCA
neural network. An m-tap delay-line and a rectangular
observation window is first applied to accomplish the
necessary conversion from received speech envelope
signals to a multi-dimensional data space for PCA as
depicted in Figure 3. The speech envelope, low-pass
filtered and decimated to 40 sampleg/s, is passed through
the delay-line and then windowed to obtain m-
dimensional observations. A 125-500ms window is
empirically found to be appropriate. Each column in the
data space (reconstruction space) forms one observation
of the envelope signal. The reconstruction spaceis used to
train a PCA neura network shown in Figure 4.

Delay-line
m-taps
Running xfie2), x(w-1), xfiy —
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Figure 3. Reconstruction space envelop signal
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Figure 4. PCA network

The network has m inputs and | outputs (I<m). The
trainable parameters are synaptic weights w; which
connects the i"™ input to j™ neuron, where i=1,2,..m and
j=1,2,..I. The dynamic equation of such a network is

) = 3 W) (14)

and the generalized Hebbian algorithm [9]

2w (n) =7 () () - Y W) YD (15)
] =1 0

is applied to perform unsupervised learning. The weight
w; of neuron j converges to i component of the
eigenvector related to the | eigenvalue of the correlation
matrix. The outputs are the first I™ maximum
eigenvalues. It isinformative to observe the first principal
component of speech envelopes through different acoustic
transmission channels-see Figure 5.
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In this experiment, three different speech signals
transmitted through 50 different acoustic channels with
different reverberation times from 0.1 to 5s are observed.
Three graphs show the over-plots of eigenvectors of the
first principal components for 50 different reverberation
times, where the y-axis is the value of entries of
eigenvectors and x-axis indicates entry number of the
eigenvectors. The results show that different input speech
signals have didtinctive  eigenvectors,  while
characteristics of transmission channels only affect them
dightly. Eigenvectors of principal components give
robust profiles of speech envel opes!

Eigenvectors of the first two principal components
are fed into the supervised final stage to give information
about the envelopes of input speech signals, while the
eigenvalues are discarded. The final stage is a typica
back-propagation network, with two non-linear hidden
layers and only one linear neuron on the output layer.
Linear basisand sigmoid activation functions are used for
hidden layers, and training follows standard back-
propagation algorithm [9]. Thus a hybrid neural network
model isformed.

4. TRAINING AND VALIDATION

The neural network model has a supervised final stage,
therefore training examples are needed. A large number
of impulse responses of acoustic transmission channels
are used and convolved with 18 different anechoic
running speech excerpts to generate training examples.
Since STI method takes background noises into account,
white noises are assumed in training and validation
phases. Teacher values are obtained from impulse
responses of transmission channels and noise levels via
the standard routine as outlined in Section 2.
Eigenvectors of first and second principal components
obtained by the PCA sub-network and the envelope
spectra described before are fed into supervised neura
network. So in both training and retrieve phases of the
hybrid model, the unsupervised learning to obtain the
PCA values is performed. The trained hybrid network is
tested with acoustic and speech cases not seen in the
training phase. The maximum prediction errors found in
the full range (0<STI<1) test is 0.087. The results
indicate that the proposed method can usefully blind-
identify STIs from transmitted speech signals, but not as
accurately as when the standard method is used.

5. CONCLUSION AND DISCUSSIONS
A hybrid neural network modd to perform blind

identification of STI for speech transmission channels is
developed and validated via simulations. Acoustic

transmission channels are considered in the presented
paradigm, but the method should also be applicable to
dectronic transmission channels showing envelope
shaping effect on gpeech sdignals. In  €dectronic
transmission channels, however, system non-linearities
are common. Nevertheless, this hybrid mode should
inherently be able to deal with this effect, provided there
are suitable examples for training. Moreover, It is worth
noting that the prediction accuracy may be further
improved by optimized design of each of the building
blocksin the hybrid model.

From an application standing point, the proposed
method should facilitate in-use measurements of STI and
resolve many dilemmas in site measurements. Moreover,
identifying characteristics of gspeech transmission
channels is often the first step of implementing inverse
filters for channel equalization. Blind identification with
naturally occurring signals are particularly useful when
time variance is non-trivial, since it enables monitoring
the channel when in-use and so adapting the inverse filter
in real-time.
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