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ABSTRACT 
 

To extract speech from acoustic interference is a challenging 
problem. Previous systems based on auditory scene analysis 
principles deal with voiced speech, but cannot separate unvoiced 
speech. We propose a novel method to separate stop consonants, 
which contain significant unvoiced signals, based on their 
acoustic properties. The method employs onset as the major 
grouping cue; it first detects stops through onset detection and 
feature-based Bayesian classification, then groups detected 
onsets based on onset coincidence. This method is tested with 
utterances mixed with various types of interference.  

I. INTRODUCTION 
 

Speech is often corrupted by acoustic interference. Many 
applications require a system to extract speech from a mixture in 
order to improve speech recognition, among other tasks. 
Currently, no method performs this task well in realistic 
environments. Previous speech separation efforts utilize 
harmonicity as the major grouping cue, hence limited to voiced 
speech [3] [4]. To separate unvoiced speech, other grouping cues 
must be explored. 

In this paper, we address the problem of separating stop 
consonants from interference. Stops, composed of /t/, /d/, /p/, /b/, 
/k/, and /g/, constitute a main type of consonants, and they occur 
frequently in natural speech. A stop generally contains a weak 
closure and a burst [8]. A closure can be voiced or unvoiced, 
while a burst is mainly unvoiced and cannot be separated based 
on harmonicity. The waveform of /g/ and its spectrogram are 
shown in Fig. 1(a) and 1(b). Our objective is to find the time-
frequency regions where stop sounds are dominant, i.e., they are 
stronger than interference, and group these regions into a target 
utterance. Because the closure contains little information and is 
vulnerable to interference, our main strategy for separating stops 
is to identify dominant stop bursts. Since acoustic properties of 
dominant bursts are resistant to interference, we first detect stop 
bursts and then group them accordingly.  

At the onset of a stop burst, a significant intensity increase 
happens across a wide frequency range (see Fig. 1(b)). 
Therefore, we identify stop bursts by detecting their onsets. Note 

that onset is an important cue for auditory scene analysis [2]. To 
detect the onset of a stop burst, an acoustic mixture is first 
analyzed by an auditory filterbank. Then an onset detector 
identifies stop candidates by detecting local onsets in a filter 
channel and integrating across all the channels. Because signals 
other than stop consonants may also contain portions that are 
burst-like, these stop candidates are further classified based on 
three distinctive features: auditory spectrum, relative intensity, 
and intensity decay time. A Bayesian decision rule is applied for 
the classification task. Prior probabilities for Bayesian 
classification are obtained from a training dataset, which 
contains 100 clean utterances from the TIMIT database for stops, 
and 18 other natural sounds for interference. Finally, a detected 
stop burst is recovered by grouping signals starting at its onset. 
The above method is incorporated into a previous speech 
segregation system [4], and the resulting system can separate 
both voiced speech and stop consonants.  

This paper is organized as follows. Onset detection and stop 
classification are described in Sect. II and Sect. III. The results 
of classification and grouping are given in Sect. IV. Sect. V 
gives a brief discussion. 
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Figure 1. Waveform (a) and spectrogram (b) of /g/ from the 
word “good”; the corresponding neural firing rate (c), 
average firing rate (d) and its first-derivative (e) in a 
channel centered at 1 kHz. 
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II. ONSET DETECTION 

 
The input signal is sampled at 16 kHz and normalized around 
80 dB sound pressure level. It is analyzed by an auditory 
filterbank, which contains 150 gammatone filters [7] from 80 Hz 
to 7kHz, and subsequent neural transduction [5]. The output, in 
the form of auditory nerve firing rate, is decomposed into 20 ms 
frames with 10 ms frame shift. 

For each channel, possible stop bursts are detected from 
auditory nerve activity. The activity increases rapidly to a 
significant level and then decreases slowly to a steady state when 
the input has a fast intensity increase. Fig. 1(c) shows the 
auditory nerve firing rate for the input in Fig. 1(a) from the 
channel centered at 1 kHz. A sudden and significant increase 
happens at the onset of the burst. We detect onsets by taking the 
first-derivative of average firing rate, which gives prominent 
peaks at onset points. This is illustrated in Fig. 1(e). The 
corresponding average firing rate is shown in Fig. 1(d), which is 
obtained by lowpassing the auditoy nerve firing rate with a filter 
(transition band [30 Hz, 80 Hz], passband ripple 0.1, and 
stopband ripple 0.02). The derivative at time t in channel c, 
d(t, c), is approximated as follows: 

),(),(),( ctrctrctd τ−−= .           (1) 

Here, r(t,c) is the average firing rate at time t in channel c, and τ 
= 14.375 ms, the average of the firing rate rise time of the stops 
in the training data. The firing rate rise time of a stop is the 
duration from the corresponding local maximum of the average 
firing rate to the preceding local minimum (T0 in Fig. 1(d)). 
Since the derivative corresponding to onsets is generally greater 
than the difference between the average steady-state firing rate 
and the spontaneous firing rate (see [5] for more details), peaks 
above this difference are marked as channel onsets. 

At each frame, our onset detector counts the number of 
channels containing channel onsets. For stops in the training 
data, except for a few weak stops, they trigger onsets in at least 
10 channels. Therefore, at those frames where 10 or more 
channels have onsets, the detector identifies a stop candidate, 
positioned at the local maximum of input signal within the 
corresponding frame.  
 

III.  STOP CLASSIFICATION 
 

Since detected onset candidates may correspond to sources other 
than stop consonants, we perform stop burst classification based 
on auditory-acoustic features. Let H0 denote a hypothesis that a 
candidate is a stop burst, and H1 otherwise. Let k be the feature 
vector for a stop candidate. The likelihood ratio is:  

)|(/)|()( 10 kkk HpHpL =           (2) 

Here p(Hj | k) is the posterior probability of Hj given k, for j = 0, 
1. According to the Bayesian decision rule, the candidate is 
classified as a stop if and only if L(k) is greater than 1. To obtain 
good classification, one needs to choose appropriate features. 
Previous research suggests that the following features are 
important for stop identification: formant transitions, burst 
spectrum, burst amplitude, durations, and voicing (see [1] for 
example). Since our main goal is to separate onsets from 
interference, we choose distinctive features that are robust to 
acoustic interference. 

Each stop has a certain articulatory gesture, which gives 
unique spectral characteristics [8]. Therefore, we use an auditory 
spectrum, SA, as one feature. SA is obtained as follows: 
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Here tm is the location of a stop candidate. We call SA auditory 
spectrum since it comes from the output of the auditory 
filterbank. For each stop phoneme, the average auditory 
spectrum, obtained from the training data, is shown in Fig. 2. 
Note that phonemes with the same place of articulation have 
similar average auditory spectra. We use these averages as 
templates for stop phonemes. For a stop candidate, the cross-
correlation between its auditory spectrum and each template 
measures the similarity. Among the six cross-correlations, the 
largest one, denoted by kS, provides one feature for 
classification. 

The intensity of a stop burst is related to the intensity of 
neighboring voiced speech [8], while the intensity of interference 
is generally independent with speech. Therefore, relative 
intensity of a candidate compared with neighboring voiced 
speech, denoted by kI, provides another feature. kI is obtained as 
follows: 

)](/[log10 10 mVI tIIk = ,      (4) 

TstMtI
T

Ts
2/)()( 2

∑ −=
+=       (5) 

Here, M(t) is the input signal, IV is the average intensity of the 
input signal in the nearest voiced portion, and T = 1.25 ms.  

The intensity of a stop burst drops quickly [8], while a 
candidate representing interference generally does not. Our third 
features measures the intensity decay time of a candidate, kD, 
which is obtained as follows. Consider the following sequence: 
{…, I-2, I-1, I0, I1, I2, …}, where In = I(tm+ n∆t) and 
∆t = 0.3125 ms, corresponding to 5 samples. Let In1 be the first 
element after I0 that is smaller than 0.9I0, and In2 the last one 
before I0 that is smaller than 0.9I0. Then kD is set to n1− n2. 

We use these three features for classification, i.e., k = (kS, kI, 
kD).  For simplicity, we assume that kS, kI, and kD are 
independent given Hj, for j = 0, 1. This assumption is generally 
true for interference and a good approximation for stop bursts. 
Applying Bayesian formula, we have 
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The transition between a stop burst and the following voiced 
phoneme provides useful information and could be used as 
another feature. However, it is closely correlated with burst 
spectrum, hence violating the independence assumption. Also, 
accurate transition is difficult to obtain from a mixture. 
Therefore, it is not included. 
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Figure 2. The average auditory spectrum of stop consonants. (a)
Circle: /t/; line: /d/. (b) Circle: /p/; line: /b/. (c) Circle: /k/; line:
/g/. 

II - 750

➡ ➡



Prior distributions in (6) are obtained from the training data. 
p(H0) and p(H1) are obtained by comparing the average number 
of candidates from interference and that of stops within the same 
period of time. From the training date, we have p(H0)/p(H1) =  
0.1183. The histograms of kC, kR, and kT for stop bursts, and 
those of kC and kT for interference in the training data are shown 
in Fig. 3. Since kT is discretely distributed, the probabilities from 
the histograms are directly used in (6). We approximate p(kS|H0), 
p(kS|H1), and p(kI|H0) each with a Chi-square distribution: 

)18,8080()|( 00 cgaHkp S −= χ      (7) 
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Here, a0, a1, b0 are constants for normalizing overall probability. 
These distributions are shown in Fig. 3. For p(kI |H1), we simply 
use a uniform distribution from –20 dB to 60 dB according to the 
following considerations. First, the onset detector is generally 
will not sensitive to signals that are more than 60 dB below 
voiced speech. Second, signals that are more than 20 dB above 
voiced speech are unlikely to be stop.  
 

IV. RESULTS 
 

A detected stop burst is separated from acoustic interference as 
follows. Because signal starting at the onset of a stop burst is 
likely to be part of the burst, the channels with onsets less than 
5 ms away from the stop candidate are selected. Since stop bursts 
are short, in each selected channel, a burst-dominant region is 
chosen from the corresponding local maximum to the next local 
minimum of the average firing rate (T1 in Fig. 1(d)); a local 
minimum of the average firing rate usually corresponds to an 
offset of a sound. This region generally contains the major part 
of the burst. Time-frequency (T-F) units that are mostly 
occupied by this region are marked as speech dominant. A T-F 
unit corresponds to input signal in a certain channel and at a 
certain frame. A binary mask is constructed by assigning 1 to a 
marked T-F unit and 0 otherwise. The binary mask is used to 
resynthesize a target utterance. It retains the acoustic energy 
from the mixture corresponding to 1’s and rejects that 
corresponding to 0’s (see [3] for more details). 

This method is tested with 10 utterances from the TIMIT 
database mixed with the following 10 interference: white noise, 

pink noise, airplane noise, car noise, factory noise, noise burst, 
clicks, bar noise, a firework show, and rain. None of the 
utterances are used in the training. To evaluate the performance 
of stop detection, let EM be the percentage of stops that are 
missing, and EF be the percentage of interfering signals wrongly 
detected as stops. Note that the overall error rate is p(H0)EM+ 
p(H1)EF. EM and EF at different overall SNR levels are shown in 
Table 1. EM increases significantly as SNR decreases since more 
stops are corrupted by stronger interference, while EF only 
increases slightly. Note that the Bayesian classifier is designed to 
distinguish stops from interference. Therefore, we do not count 
detected bursts that are actually onsets of other phonemes in 
target speech when calculating EF; this type of error is not 
harmful for speech separation since it in essence includes speech 
signals other than stop consonants. Note that the goal of speech 
separation is to remove interference.  

        Table 1. EM and EF 

Overall SNR (dB) EM(%) EF(%) 
30  8.6 0.6 
20  24.8 1.4 
10 62.6 2.8 
0 84.0 6.8 

The overall SNR shows the energy ratio between voiced 
speech and interference. To get more insight into the 
performance related to the energy relationship between a stop 
and local interference, we calculate the local SNR, which 
includes a whole burst part and 30 ms of the closure. The EM 
within a local SNR ranges is shown in Fig. 4. The last data point 
is the EM for stops whose local SNRs are larger than 25 dB. 
Other points correspond to local SNRs with 5 dB increments 
from 0 dB to 25 dB. EM is smaller than 10% when the local SNR 
is higher than 10 dB. It drops to 40% as local SNR decreases to 0 
dB. 

To evaluate the performance of grouping, the speech 
resynthesized from an ideal binary mask is used as the ground 
truth for target speech. (see [4]). The ideal binary mask is 
constructed by assigning 1 to a T-F unit where speech before 
mixing is stronger than interference and 0 to otherwise. The use 
of ideal masks is supported by the auditory masking 
phenomenon: within a critical band, a weaker signal is masked 
by a stronger one [6]. In addition, an ideal mask yields excellent 
recognition performance. Let O1(t) denote the stop signal 
resynthesized from the ideal binary mask, and O2(t) the 
separated stop signal. Let e1(t) be the signal present in O1(t) but 
missing from O2(t), and e2(t) the signal present in O2(t) but 
missing from the speech resynthesized from the ideal binary 
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Figure 3. (a) White bar: the histogram of kS for stops; black bar: 
the histogram of kS for interference candidates; solid line: 
estimated p(kS |H0), dash line: estimated p(kS |H1). (b) White bar: 
the histogram of kI for stops; solid line: estimated p(kI |H0). (c) 
White bar: the histogram of kD for stops; black bar: the 
histogram of kD for interference candidates. 
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Figure 4. The percentage of missing stops with respect to 
local SNR 
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mask. The percentage of energy loss, PEL, and that of noise 
residue, PNR, are calculated as follows [4]: 

∑∑=
ttEL tOteP )()( 2

1
2
1 ,    (11) 

∑∑=
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2
2
2      (12) 

Average PEL and PNR at different overall SNR levels are 
shown in Table 2. The system performs well when SNR is 
high. As SNR decreases, PEL increases significantly to 85% 
while PNR increases to around 10%. The average PEL for stops 
with respect to local SNRs is shown in Fig. 5. PEL is below 30% 
when the local SNR is higher than 10 dB. It increases to 55% as 
the local SNR decreases to 0 dB. 

Table 2. Average PEL and PNR 

Overall SNR (dB) PEL (%) PNR (%) 
30  28.01 0.04 
20  41.56 0.81 
10 70.68 2.81 
0 84.79 9.62 

To further illustrate the performance of our method, we 
incorporate it in a previous voiced speech separation system [4] 
in order to separate utterances containing both voiced speech and 
stop consonants. More specifically, the previous system marks 
speech dominant T-F units in the voiced part, and the proposed 
method marks those units in the stop bursts. These marked units 
are combined to generate a binary mask for resynthesis. Fig. 6 
illustrates the separated speech from a mixture containing a male 
utterance, “A good morrow to you, my boy”, and rain at 10 dB. 
Among four stops, two are separated. For this mixture, PEL is 
53.37%, and PNR is 12.76%. 

 
V. DISCUSSION 

 
Through onset detection and feature-based Bayesian 
classification, we are able to detect stops and separate most of 
them from interfering signals. As a major ASA cue, onset 
provides important information for separating unvoiced speech 
and dealing with reverberation. The onset cue has been studied 
in some previous systems, e.g. [3], its utility has not been 
demonstrated. Our method for stop separation, i.e., onset 
detection, feature-based classification, and subsequent grouping, 
provides a general approach to utilize onset information for 
speech separation. In fact, the onset detector can detect onsets of 
other phonemes as well as stops. To deal with general speech, 

more comprehensive training would be needed to build a 
classifier that is capable of removing onsets from interference 
and classifying onsets caused by different phonemes. We plan to 
explore these issues in future research.  
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Figure 5. The percentage of energy loss with respect to local 
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Figure 6. (a) The spectrogram of a male utterance. Stops are 
marked by arrows. (b) The spectrogram of this utterance 
mixed with rain sound at 10 dB SNR. (c) The separated 
speech from the system of [4]. (d) The separated speech from 
the extended system. The recovered stops are marked by 
arrows. 
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