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ABSTRACT that onset is an important cue for auditory scene analysis [2]. To
detect the onset of a stop burst, an acoustic mixture is first
To extract speech from acoustic interference is a challenging@nalyzed by an auditory filterbank. Then an onset detector
problem. Previous systems based on auditory scene analysi§lentifies stop candidates by detecting local onsets in a filter
principles deal with voiced speech, but cannot separate unvoice¢hannel and integrating across all the channels. Because signals
speech. We propose a novel method to separate stop consonanf$her than stop consonants may also contain portions that are
which contain Signiﬁcant unvoiced Signa|s' based on their burst-like, these stop candidates are further classified based on
acoustic properties. The method employs onset as the majoﬁhreg distinctive feat_ures: auditory spectru_m, relat[ve int(_ensity,
grouping cue; it first detects stops through onset detection anc®nd intensity decay time. A Bayesian decision rule is applied for
feature-based Bayesian classification, then groups detectedhe classification task. Prior probabilities for Bayesian
onsets based on onset coincidence. This method is tested witflassification are obtained from a training dataset, which
utterances mixed with various types of interference. contains 100 clean utterances from the TIMIT database for stops,
and 18 other natural sounds for interference. Finally, a detected
stop burst is recovered by grouping signals starting at its onset.
The above method is incorporated into a previous speech
segregation system [4], and the resulting system can separate
both voiced speech and stop consonants.

This paper is organized as follows. Onset detection and stop
assification are described in Sect. 1l and Sect. lll. The results
"bf classification and grouping are given in Sect. IV. Sect. V
‘gives a brief discussion.

I. INTRODUCTION

Speech is often corrupted by acoustic interference. Many
applications require a system to extract speech from a mixture i
order to improve speech recognition, among other tasks
Currently, no method performs this task well in realistic
environments. Previous speech separation efforts utilize

harmonicity as the major grouping cue, hence limited to voiced

speech [3] [4]. To separate unvoiced speech, other grouping cues
must be explored.

In this paper, we address the problem of separating stop
consonants from interference. Stops, composed of /t/, /d/, /p/, /bl,
/k/, and /g/, constitute a main type of consonants, and they occur
frequently in natural speech. A stop generally contains a weak
closure and a burst [8]. A closure can be voiced or unvoiced,
while a burst is mainly unvoiced and cannot be separated basec
on harmonicity. The waveform of /g/ and its spectrogram are
shown in Fig. 1(a) and 1(b). Our objective is to find the time-
frequency regions where stop sounds are dominant, i.e., they are
stronger than interference, and group these regions into a targe
utterance. Because the closure contains little information and is
vulnerable to interference, our main strategy for separating stops
is to identify dominant stop bursts. Since acoustic properties of
dominant bursts are resistant to interference, we first detect stop
bursts and then group them accordingly.
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Figure 1. Waveform (a) and spectrogram (b) of /g/ from the

At the onset of a stop burst, a significant intensity increase
happens across a wide frequency range (see Fig. 1(b)).
Therefore, we identify stop bursts by detecting their onsets. Note
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word “good”; the corresponding neural firing rate (c),
average firing rate (d) and its first-derivative (e) in a
channel centered atkHz.
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Each stop has a certain articulatory gesture, which gives

II. ONSET DETECTION unique spectral characteristics [8]. Therefore, we use an auditory
spectrums,, as one featur&, is obtained as follows:
The input signal is sampled at kBlz and normalized around _ oo,
80dB sound pressure level. It is analyzed by an auditory Sa = (r(tn ). (tn,2), - 1 (1,,150))/ Zc:lr (tn.c) - ()

filterbank, which contains 150 gammatone filters [7] from 80 Hz Heret,, is the location of a stop candidate. We &llauditory
to 7kHz, and subsequent neural transduction [5]. The output, inspectrum since it comes from the output of the auditory
the form of auditory nerve firing rate, is decomposed into 20 ms fiiterbank. For each stop phoneme, the average auditory
frames with 10 ms frame shift. spectrum, obtained from the training data, is shown in Fig. 2.
For each channel, possible stop bursts are detected fronNote that phonemes with the same place of articulation have
auditory nerve activity. The activity increases rapidly to a similar average auditory spectra. We use these averages as
S|gn|f|cant level and then decreases Slole toa Steady state Whe{bmp|ates for Stop phonemesl For a Stop Candidate' the cross-
the input has a fast intensity increase. Fig. 1(c) shows thecorrelation between its auditory spectrum and each template

auditory nerve firing rate for the input in Fig. 1(a) from the measures the similarity. Among the six cross-correlations, the
channel centered at KHz. A sudden and significant increase |argest one, denoted byks provides one feature for

happens at the onset of the burst. We detect onsets by taking thgassification.

first-derivative of average firing rate, which gives prominent  The intensity of a stop burst is related to the intensity of
peaks at onset points. This is illustrated in Fig. 1(e). The neighboring voiced speech [8], while the intensity of interference
corresponding average firing rate is shown in Fig. 1(d), which isijs generally independent with speech. Therefore, relative
obtained by lowpassing the auditoy nerve firing rate with a filter intensity of a candidate compared with neighboring voiced

(transition band [30 Hz, 80 Hz], passband ripple 0.1, and speech, denoted iy, provides another featurk.is obtained as
stopband ripple 0.02). The derivative at titnén channelc, follows:

d(t, ), is approximated as follows: « 10001, /1] “
d(t,c) =r(t,c)-r(t-7,c). @ . wl Iy /1 (8]

-\ 2

Here,r(t, c) is the average firing rate at timhén channek, andr 0= Zsz-T MA(t+s)/2T ©®)
= 14.375 ms, the average of the firing rate rise time of the stopsHere, M(t) is the input signally is the average intensity of the
in the training data. The firing rate rise time of a stop is the input signal in the nearest voiced portion, arw1.25 ms.
duration from the corresponding local maximum of the average The intensity of a stop burst drops quickly [8], while a
firing rate to the preceding local minimumo(in Fig. 1(d)). candidate representing interference generally does not. Our third
Since the derivative corresponding to onsets is generally greatefeatures measures the intensity decay time of a candidste,
than the difference between the average steady-state firing rat@hich is obtained as follows. Consider the following sequence:
and the spontaneous firing rate (see [5] for more details), peakg..., 15 |1, lo, 11, Iz ...}, where I,=I(t,+nAt) and
above this difference are marked as channel onsets. At=0.3125ms, corresponding to 5 samples. IL.gbe the first

At each frame, our onset detector counts the number ofelement afted, that is smaller than 0§ andl,, the last one
channels containing channel onsets. For stops in the trainingheforel, that is smaller than 0.9 Thenkp is set tonl-n2.
data, except for a few weak stops, they trigger onsets in at least We use these three features for classification, k.2 (ks k,
10 channels. Therefore, at those frames where 10 or more). For simplicity, we assume thats, k, and kp are
channels have onsets, the detector identifies a stop candidatendependent giveht;, for j=0, 1. This assumption is generally
positioned at the local maximum of input signal within the true for interference and a good approximation for stop bursts.
corresponding frame. Applying Bayesian formula, we have

P(ks [H) p(k [ Hy)P(ko [ H;) p(Hy)

Since detected onset candidates may correspond to sources oth&he transition between a stop burst and the following voiced

than stop consonants, we perform stop burst classification base@honeme provides useful information and could be used as

on auditory-acoustic features. Lidy denote a hypothesis that a another feature. However, it is closely correlated with burst

candidate is a stop burst, aHd otherwise. Lek be the feature ~ spectrum, hence violating the independence assumption. Also,

vector for a stop candidate. The likelihood ratio is: accurate transition is difficult to obtain from a mixture.
L(k) = p(H, | k)/ p(H, | k) ) Therefore, it is not included.

[ll. STOP CLASSIFICATION L(k) = (6)

Herep(H; | k) is the posterior probability df; givenk, for j =0,
1. According to the Bayesian decision rule, the candidate is 0.15
classified as a stop if and onlylifk) is greater than 1. To obtain
good classification, one needs to choose appropriate features
Previous research suggests that the following features are
important for stop identification: formant transitions, burst
spectrum, burst amplitude, durations, and voicing (see [1] for o 0l 0
example). Since our main goal is to separate onsets from O B 10O o 0 O A e %O
interference, we choose distinctive features that are robust to

acoustic interference.
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Figure 2. The average auditory spectrum of stop consonants. (a)
Circle: /t/; line: /d/. (b) Circle: /p/; line: /bl. (c) Circle: /k/; line:
gl
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Figure 3. (a) White bar: the histogramkgffor stops; black bar:
the histogram ofks for interference candidates; solid line: °
estimatedp(ks|Ho), dash line: estimateaks |H,). (b) White bar: 5 ° 10 5 20
the histogram ok, for stops; solid line: estimatealk |Ho). (c) Local SNR (dB)
White bar: the histogram okp for stops; black bar: the Figure 4. The percentage of missing stops with respect to
histogram ok, for interference candidates. local SNR

Prior distributions in (6) are obtained from the training data. pink noise, airplane noise, car noise, factory noise, noise burst,
p(Hg) andp(H;) are obtained by comparing the average number clicks, bar noise, a firework show, and rain. None of the
of candidates from interference and that of stops within the sameutterances are used in the training. To evaluate the performance
period of time. From the training date, we ha¢elo)/p(H,) = of stop detection, leEy be the percentage of stops that are
0.1183. The histograms &&, kg, andkr for stop bursts, and  missing, andr be the percentage of interfering signals wrongly
those ofkc andks for interference in the training data are shown detected as stops. Note that the overall error rajgHgEy+
in Fig. 3. Sincek; is discretely distributed, the probabilities from  p(Hj)Er. Ey andEr at different overall SNR levels are shown in

the histograms are directly used in (6). We approximpgigH,), Table 1.Ey, increases significantly as SNR decreases since more
p(ks|H1), andp(k |Ho) each with a Chi-square distribution: stops are corrupted by stronger interference, whileonly
- _ increases slightly. Note that the Bayesian classifier is designed to
P(ks [ Ho) = 2,0, (80-80c,18) 0 distinguish stops from interference. Therefore, we do not count
p(ks | H,) = a9, (30-30c,24) (8) detected bursts that are actually onsets of other phonemes in
p(k | Hy) =b,g,(18+¢,32), Q) target speech when calculatiriy; this type of error is not
harmful for speech separation since it in essence includes speech
where signals other than stop consonants. Note that the goal of speech
g,(xn) = XM 22y () [[2" 2T (n/ 2)], separation is to remove interference.
r(a) - J'wxaflefxdx } (10) Table lEM andE,:
° Overall SNR (dB) En(%) Ex(%)
Here,ay, a;, by are constants for normalizing overall probability. 30 8.6 0.6
These distributions are shown in Fig. 3. p@& |H1), we simply 20 24.8 1.4
use a uniform distribution from —20 dB to 60 dB according to the 10 62.6 2.8
following considerations. First, the onset detector is generally 0 84.0 6.8

will not sensitive to signals that are more than 60 dB below ] )
voiced speech. Second, signals that are more than 20 dB above The overall SNR shows the energy ratio between voiced

voiced speech are unlikely to be stop. speech and interference. To get more insight into the
performance related to the energy relationship between a stop
IV. RESULTS and local interference, we calculate the local SNR, which

includes a whole burst part and 30 ms of the closure.Efhe

A detected stop burst is separated from acoustic interference awithin a local SNR ranges is shown in Fig. 4. The last data point
follows. Because signal starting at the onset of a stop burst igs the Ey for stops whose local SNRs are larger than 25 dB.
likely to be part of the burst, the channels with onsets less tharOther points correspond to local SNRs with 5 dB increments
5 ms away from the stop candidate are selected. Since stop bursfsom 0 dB to 25 dBEy is smaller than 10% when the local SNR
are short, in each selected channel, a burst-dominant region its higher than 10 dB. It drops to 40% as local SNR decreases to 0
chosen from the corresponding local maximum to the next localdB.
minimum of the average firing rate (Tnh Fig. 1(d)); a local To evaluate the performance of grouping, the speech
minimum of the average firing rate usually corresponds to anresynthesized from an ideal binary mask is used as the ground
offset of a sound. This region generally contains the major parttruth for target speech. (see [4]). The ideal binary mask is
of the burst. Time-frequency (T-F) units that are mostly constructed by assigning 1 to a T-F unit where speech before
occupied by this region are marked as speech dominant. A T-Amixing is stronger than interference and O to otherwise. The use
unit corresponds to input signal in a certain channel and at sof ideal masks is supported by the auditory masking
certain frame. A binary mask is constructed by assigning 1 to aphenomenon: within a critical band, a weaker signal is masked
marked T-F unit and O otherwise. The binary mask is used toby a stronger one [6]. In addition, an ideal mask yields excellent
resynthesize a target utterance. It retains the acoustic energgecognition performance. LeOy(t) denote the stop signal
from the mixture corresponding to 1's and rejects that resynthesized from the ideal binary mask, a@gt) the
corresponding to O’s (see [3] for more details). separated stop signal. Le(t) be the signal present @y(t) but

This method is tested with 10 utterances from the TIMIT missing from O,(t), and e(t) the signal present i®,(t) but
database mixed with the following 10 interference: white noise, missing from the speech resynthesized from the ideal binary
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mask. The percentage of energy loBg,, and that of noise
residue Py, are calculated as follows [4]:

P, =Y €t)/3,0H0),
Pe = 2 &1/, 02(1)

Average Pz and Pyr at different overall SNR levels are

(11

(12)

shown in Table 2. The system performs well when SNR is

high. As SNR decreasePg_ increases significantly to 85%
while Pyr increases to around 10%. The averBgefor stops
with respect to local SNRs is shown in FigPs, is below 30%
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Figure 6. (a) The spectrogram of a male utterance. Stops are
marked by arrows. (b) The spectrogram of this utterance

mixed with rain sound at 10dB SNR. (c) The separated

speech from the system of [4]. (d) The separated speech from
the extended system. The recovered stops are marked by
arrows.

more comprehensive training would be needed to build a
classifier that is capable of removing onsets from interference

when the local SNR is higher than 10 dB. It increases to 55% as,
the local SNR decreases to 0 dB.

Table 2. Averag®s andPyr

Overall SNR (dB) Pe. (%) Pur (%)
30 28.01 0.04
20 41.56 0.81
10 70.68 2.81
0 84.79 9.62

To further illustrate the performance of our method, we 1]
incorporate it in a previous voiced speech separation system [4
in order to separate utterances containing both voiced speech ar
stop consonants. More specifically, the previous system mark:
speech dominant T-F units in the voiced part, and the propose: 2]
method marks those units in the stop bursts. These marked uni
are combined to generate a binary mask for resynthesis. Fig. [3]
illustrates the separated speech from a mixture containing a mal
utterance, “A good morrow to you, my boy”, and rain at 10 dB.
Among four stops, two are separated. For this mixtBge,is [4]
53.37%, andPyris 12.76%.

V. DISCUSSION [5]
Through onset detection and feature-based Bayesiar
classification, we are able to detect stops and separate most ([6]
them from interfering signals. As a major ASA cue, onset
provides important information for separating unvoiced speech[7]
and dealing with reverberation. The onset cue has been studie
in some previous systems, e.g. [3], its utility has not been
demonstrated. Our method for stop separation, i.e., onse
detection, feature-based classification, and subsequent groupini[g]
provides a general approach to utilize onset information for
speech separation. In fact, the onset detector can detect onsets of
other phonemes as well as stops. To deal with general speech,
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nd classifying onsets caused by different phonemes. We plan to
explore these issues in future research.
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