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ABSTRACT

In speaker verification, a claimant may produce two or more
utterances. Typically, the scores of the speech patterns ex-
tracted from these utterances are averaged and the resulting
mean score is compared with a decision threshold. Rather
than simply computing the mean score, we propose to com-
pute the optimal weights for fusing the scores based on the
score distribution of the independent utterances and our prior
knowledge about the score statistics. More specifically, we
use enrollment data to compute the mean scores of client
speakers and impostors and consider them to be the prior
scores. During verification, we set the fusion weights for
individual speech patterns to be a function of the dispersion
between the scores of these speech patterns and the prior
scores. Experimental results based on the GSM-transcoded
speech of 150 speakers from the HTIMIT corpus demon-
strate that the proposed fusion algorithm can increase the
dispersion between the mean speaker scores and the mean
impostor scores. Compared with a baseline approach where
equal weights are assigned to all scores, the proposed ap-
proach provides a relative error reduction of 19%.

1. INTRODUCTION

Speaker verification is to verify a speaker’s claimed iden-
tity based on his/her voice. A speaker claiming an identity
is called aclaimant, and an unregistered speaker posing as
a registered speaker is animpostor. An ideal speaker veri-
fication system should not reject registered speakers (false
rejection) or accept impostors as registered speakers (false
acceptance).

Recently, there has been increasing interest in recogniz-
ing speakers using resynthesized coded speech. For exam-
ple, speaker verification based on GSM, G.729, and G.723.1
resynthesized speech was studied in [1]. It was shown that
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the verification performance generally degrades with coders’
bit rate. To improve the verification performance of G.729
coded speech, techniques that require knowledge of the coder
parameters and coder internal structure were proposed in [1]
and [2]. However, the performance of these improved tech-
niques is still poorer than the one that uses features extracted
directly from resynthesized speech.

In this work, we investigate the fusion of scores from
multiple utterances to improve the performance of speaker
verification from GSM-transcoded speech. Instead of aver-
aging the scores of multiple utterances from a claimant, as
in [3], we compute the optimal fusion weights based on the
score distribution of the utterances and on the prior score
statistics determined from enrollment data. As the variation
of handset characteristics and the encoding/decoding pro-
cess will introduce substantial distortion to the speech sig-
nals [4], we also apply stochastic feature transformation [5]
to the feature vectors extracted from the GSM-transcoded
speech before presenting them to the speaker models.

2. DECISION FUSION

Decision fusion can be divided into two levels: abstract
level and score level. In the abstract level, the binary de-
cisions made by multiple classifiers are combined, whereas
in the score level, the scores of modality-specific classifiers
are combined through a set of fusion weights [6]. These
weights can be non-adaptive and adaptive. Non-adaptive
weights are learned from training data and kept fix during
recognition [7]. Adaptive weights, on the other hand, are
estimated from the observed data during recognition, e.g.
according to the signal-to-noise ratio [8] and degree of voic-
ing [9]. This paper focuses on score-level decision fusion.

Although decision fusion is mainly applied to combine
the outputs of modality-dependent classifiers, it can also be
applied to fuse the decisions or scores of a single modality.
The idea is to consider the multiple samples extracted from
a single modality as independent but coming from the same
claimant. The approach is commonly referred to as multi-
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sample fusion [3]. In [3], the scores from multiple sam-
ples were averaged, which means that the fusion weights
are equal for all scores. Although encouraging results have
been obtained, further improvement may be obtained by de-
termining the optimal fusion weights based on the score
statistics. In this paper, we refer to this type of fusion as
data-dependent decision fusion.

3. DATA-DEPENDENT DECISION FUSION

Assume thatK streams of features vectors (e.g. MFCCs)
can be extracted fromK independent utterancesU =
{U1, . . . , UK}. Let us denote the observation sequence cor-
responding to utteranceUk by

O(k) = {o(k)
t ∈ <D; t = 1, . . . , Tk} k = 1, . . . , K (1)

whereD andTk are respectively the dimensionality ofo(k)
t

and the number of observations inO(k). We further define
a normalized score function

s(o(k)
t ; Λ) = log p(o(k)

t |Λωc)− log p(o(k)
t |Λωb

) (2)

whereΛ = {Λωc ,Λωb
} contains the Gaussian mixture mod-

els (GMMs) that characterize the client speaker (ωc) and the
background speakers (ωb), andlog p(o(k)

t |Λω) is the output
of GMM Λω, ω ∈ {ωc, ωb}, given observationo(k)

t .
In this work, the expert-in-class architecture [10] was

used to combine the normalized score functions probabilis-
tically. Specifically, frame-level fused scores are computed
according to

s(o(1)
t , . . . ,o(K)

t ; Λ) =
K∑

k=1

α
(k)
t s(o(k)

t ; Λ) (3)

whereα
(k)
t ∈ [0, 1] represents the confidence (reliability)

of the observationo(k)
t and

∑
k α

(k)
t = 1. Note that for

notational convenience, we have assumed that theK utter-
ances contain the same number of feature vectors. If it is
not the case, we may repeat the vectors of the shorter utter-
ances to make the number of feature vectors equal. Alter-
natively, we can fuse the firstT patterns of the utterances
whereT = minj Tj . Note also that in (3), a larger (resp.
smaller) fusion weight means a greater (resp. lesser) in-
fluence on the final decision. The fusion weights can be
estimated using training data; alternatively, they can be de-
termined purely from the observation data during recogni-
tion. Rather than using either training data or recognition
data exclusively, we propose a new approach in which the
fusion weights depend on both training data (prior informa-
tion) and recognition data.

During enrollment, the mean score of each client speaker
(µ̃c) and of the background speakers (µ̃b) are determined.

Then, the overall mean score

µ̃p =
Kcµ̃c + Kbµ̃b

Kc + Kb
, (4)

whereKc andKb are respectively the numbers of speaker’s
utterances and background speakers’ utterances, will be used
as a prior score for that client. A prior variance

σ̃2
p =

1
Kc + Kb

Kc+Kb∑

k=1

[
s̃(O(k); Λ)− µ̃p

]2

(5)

will also be computed, wherẽs(O(k); Λ) denotes the mean
score of thek-th utterance. Then, during verification, the
claimant is asked to utterK utterances, and the fusion
weights are computed according to

α
(k)
t =

exp{(s(k)
t − µ̃p)2/2σ̃2

p}∑K
l=1 exp{(s(l)

t − µ̃p)2/2σ̃2
p}

k = 1, . . . , K

(6)
where for notation convenient, we have defineds

(k)
t ≡

s(o(k)
t ; Λ).
Fig. 1(a) illustrates the fusion weightsα

(1)
t as a function

of s
(1)
t and s

(2)
t wheres

(k)
t ∈ [−12, 12], K = 2, µ̃p =

−2 and σ̃p = 3.5. A closer look at Fig. 1(a) reveals that
scores falling on the upper right hand region of the dashed
line L will be increased by the fusion function (3). This
is because in that region, fors(1)

t > s
(2)
t , α

(1)
t ≈ 1 and

α
(2)
t ≈ 0; moreover, fors(1)

t < s
(2)
t , α(1)

t ≈ 0 andα
(2)
t ≈ 1.

Both of these conditions favor the larger score. On the other
hand, the fusion algorithm will put more emphasis on the
small scores if they fall on the lower left hand region of the
dashed line. The effect of the fusion weights on the scores
is depicted in Fig. 1(b). Evidently, the fusion weights will
favor large scores if they fall on the upper right hand region,
whereas the fused scores will be close to the small scores if
they fall on the lower-left hand region.

The rationale behind this fusion approach is the obser-
vation that most of the client-speaker scores are larger than
the prior score while most of the impostor scores are smaller
than the prior score. As a result, if the claimant is a client
speaker, the fusion algorithm will favor large scores; on
the other hand, the algorithm will favor small scores if the
claimant is an impostor. This has the effect of reducing
the overlapping area of the score distribution of the client
speakers and the impostors, thus reducing the error rate. To
demonstrate this phenomenon, we arbitrarily select a client
speaker (mdac0) from HTIMIT and plot the distributions
of the fused speaker scores and fused impostor scores in
Fig. 2, using equal weight fusion(α(1)

t = α
(2)
t = 0.5 ∀t)

and data-dependent fusion (6). Evidently, the upper part
of Fig. 2 shows that the number of large client-speaker
scores is larger in data-dependent fusion, and the lower part
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Fig. 1. (a) Fusion weightsα(1)
t as a function of scoress(1)

t ands
(2)
t . (b) Contour plot of fused scores based on the fusion

formula (3) and the fusion weights in (a).
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Fig. 2. Distribution of pattern-by-pattern speaker scores
(upper figure) and impostor scores (lower figure) based on
equal weight fusion (score averaging) and data-dependent
fusion. The means of speaker scores and impostor scores
obtained by both fusion approaches are also shown.

of Fig. 2 shows that there are more small impostor scores
in data-dependent fusion than in equal weight fusion. As a
result, the dispersion between the mean client score and the
mean impostor score was increased from2.63 (= −0.53−
(−3.16)) to 4.04 (= 0.25 − (−3.79)). As verification de-
cision is based on the mean scores, the wider the disper-
sion between the mean client scores and the mean impostor
scores, the lower the error rate.

4. STOCHASTIC FEATURE TRANSFORMATION

In feature transformation [5], a telephone channel can be
represented by a stochastic cepstral biasb = [b1, . . . , bD]T ,
and the recovered vectors are given by

ôt = fν(ot) = ot + b (7)

whereot’s areD-dimensional distorted vectors andfν de-
notes the transformation function. Intuitively, the biasb
compensates the convolutive distortion caused by the chan-
nel. Given a clean GMM speech modelΛ = {πj , µj , Σj}M

j=1,
whereΣj = diag{σ2

j1, . . . , σ
2
jD}, derived from the clean

speech of several speakers (ten speakers in this work) and
distorted speechot, t = 1, . . . , T , the maximum likelihood
estimates ofb can be obtained by the EM algorithm. Specif-
ically, in each M-step, we compute the new estimate ofb by

b′i =

∑T
t=1

∑M
j=1 hj(fν(ot))(σji)−2(µji − ot)∑T

t=1

∑M
j=1 hj(fν(ot))(σji)−2

(8)

wherei = 1, . . . , D, fν(ot) = ot +b andhj(fν(ot)) is the
posterior probability of using thej-th mixture, which has
been computed in the E-step (see [5] for details).

In this work, the feature transformation was combined
with a handset selector [11] for robust speaker verification.
Specifically, before verification takes place, we compute one
set of transformation parameters for each type of handsets
that claimants are likely to use. Then, during a verification
session, we identify the most likely handset that is used by
the claimant and select the best set of transformation param-
eters accordingly.

II - 747

➡ ➡



5. EXPERIMENTS AND RESULTS

We applied the proposed fusion algorithm to fuse two in-
dependent streams of scores. 12th-order MFCCs were ex-
tracted from independent utterances at a frame rate of 14
ms. We used a GSM speech coder to transcode the HTIMIT
corpus [12] and applied the resulting transcoded speech in
a speaker verification experiment similar to [5] and [4]. For
each speaker, we used the SA and SX utterances from hand-
set “senh” of the uncoded HTIMIT to create a 32-center
speaker model. A 64-center universal background model
was also created based on the speech of 100 client speak-
ers. The background model will be shared among all client
speakers in subsequent verification sessions. For verifica-
tion, we used the GSM-transcoded speech from handset “cb1”.
As a result, there were handset and coder mismatches be-
tween the speaker models and the verification utterances.

We assume that a claimant will be asked to utter two
sentences during a verification session. Therefore, for each
client speaker and each impostor, we applied the proposed
fusion algorithm to fuse two independent streams of scores
obtained using his/her SI sentences. Since different utter-
ances contain different numbers of feature vectors, we need
to make the two utterances to have an identical number of
feature vectors (length) before fusion takes place. This is
achieved by computing the average length of the two utter-
ances and then appending the extra patterns in the longer
utterance to the end of the shorter utterance. To compare
with the score averaging approach proposed in [3], we also
fused the speech segments using equal fusion weights, i.e.,
α

(1)
t = α

(2)
t = 0.5.

Fig. 3 depicts the speaker detection performance of 100
speakers and 50 impostors for the equal weight fusion (score
averaging) approach and the proposed fusion approach. Fig.
3 clearly shows that with feature transformation, data-
dependent fusion is able to reduce the error rates signifi-
cantly. In particular, with feature transformation, the equal
error rate (EER) achieved by data-dependent fusion is 4.14%.
When compared to equal weight fusion (which achieves an
EER of 5.11%), a relative error reduction of 19% was ob-
tained. However, without feature transformation, the per-
formance of data-dependent fusion is not significantly bet-
ter than that of the equal weight fusion. This is caused by
the mismatch between the prior scoresµ̃p’s in (6) and the
scores of the distorted features. This result demonstrates
that it is very important to use feature transformation in
data-dependent fusion.

6. CONCLUSIONS

We have presented a decision fusion algorithm that makes
use of prior score statistics and the distribution of the recog-
nition data. The fusion algorithm was also combined with
feature transformation for speaker verification using GSM-
transcoded speech. Results based on 150 speakers show that
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Fig. 3. Speaker detection performance of equal weight fu-
sion (score averaging) and data-dependent fusion.

combining stochastic transformation with the proposed fu-
sion algorithm can reduce error rate significantly. We are
currently extending the algorithm to multi-modality fusion
with multi-feature transformation.
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