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ABSTRACT the verification performance generally degrades with coders’

bit rate. To improve the verification performance of G.729
coded speech, techniques that require knowledge of the coder

tracted h it d and th it parameters and coder internal structure were proposed in [1]
racted Irom Inese utierances are averaged and the resutting,, [2]. However, the performance of these improved tech-
mean score is compared with a decision threshold. Rather

th Dl tina th ¢ nigues is still poorer than the one that uses features extracted
an simply computing the mean score, we propose to com-OIireCtIy from resynthesized speech.

pute the optimal weights for fusing the scores based on the In this work, we investigate the fusion of scores from

score distribution of the independent utterances and our priormulti le utterances to improve the performance of speaker
knowledge about the score statistics. More specifically, we P P P P

use enrollment data to compute the mean scores of cIientver'f'C"’ltlon from GSM-trgnscoded speech. Insteac_j of aver-
. . . _aging the scores of multiple utterances from a claimant, as
speakers and impostors and consider them to be the priot

scores. During verification, we set the fusion weights for In [3], we compute the optimal fusion weights based on the

S . . ._score distribution of the utterances and on the prior score
individual speech patterns to be a function of the dispersion™ .~ . . e

. statistics determined from enrollment data. As the variation
between the scores of these speech patterns and the prior

scores. Experimental results based on the GSM—transcode(gff hamjsgt characteristics gnd t.he epcodmg/decodmg pro
cess will introduce substantial distortion to the speech sig-

speech of 150 speakers from the HTIMIT corpus demon- . .
: . . nals [4], we also apply stochastic feature transformation [5]
strate that the proposed fusion algorithm can increase the
: ) to the feature vectors extracted from the GSM-transcoded
dispersion between the mean speaker scores and the mean .
. . . speech before presenting them to the speaker models.
impostor scores. Compared with a baseline approach wheré
equal weights are assigned to all scores, the proposed ap-

proach provides a relative error reduction of 19%. 2. DECISION FUSION

In speaker verification, a claimant may produce two or more
utterances. Typically, the scores of the speech patterns ex

1. INTRODUCTION Decision fusion can be divided into two levels: abstract
level and score level. In the abstract level, the binary de-
Speaker verification is to verify a speaker’s claimed iden- cisions made by multiple classifiers are combined, whereas
tity based on his/her voice. A speaker claiming an identity in the score level, the scores of modality-specific classifiers
is called aclaimant and an unregistered speaker posing as are combined through a set of fusion weights [6]. These
a registered speaker is anpostor An ideal speaker veri-  weights can be non-adaptive and adaptive. Non-adaptive
fication system should not reject registered speakatse(  weights are learned from training data and kept fix during
rejection) or accept impostors as registered speakiatseg recognition [7]. Adaptive weights, on the other hand, are
acceptancg estimated from the observed data during recognition, e.g.
Recently, there has been increasing interest in recogniz-according to the signal-to-noise ratio [8] and degree of voic-
ing speakers using resynthesized coded speech. For exaning [9]. This paper focuses on score-level decision fusion.
ple, speaker verification based on GSM, G.729, and G.723.1  Although decision fusion is mainly applied to combine
resynthesized speech was studied in [1]. It was shown thatthe outputs of modality-dependent classifiers, it can also be
applied to fuse the decisions or scores of a single modality.
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sample fusion [3]. In [3], the scores from multiple sam- Then, the overall mean score
ples were averaged, which means that the fusion weights - -
: - Kepe + Ky
are equal for all scores. Although encouraging results have fip = ———— 4)
been obtained, further improvement may be obtained by de- Ke+ Ko

termining the optimal fusion weights based on the score wheref, and s, are respectively the numbers of speaker’s
statistics. In this paper, we refer to this type of fusion as ytterances and background speakers’ utterances, will be used

data-dependent decision fusion. as a prior score for that client. A prior variance
3. DATA-DEPENDENT DECISION FUSION P U = TP
p—m Z [5(0 s A) — fip (5)
Assume that' streams of features vectors (e.g. MFCCs) k=1
can be extracted fronf independent utterancéS = |l also be computed, wher&O(*); A) denotes the mean
{U1,..., Uk} Letus denote the observation sequence Cor- score of thek-th utterance. Then, during verification, the
responding to utterandé, by claimant is asked to utteK utterances, and the fusion

weights are computed according to
0 ={o™ e RPit=1,....T%} k=1,....,K (1) g P g

(k) _ ~ \2/9=x2
. . _— exp{(s;"" — fip)*/20,}
whereD andTj, are respectively the dmensmnahty@ffk) Oégk) ==K : 0 - U . — =1...K
and the number of observations@*). We further define >y exp{(s;” — fip)?/267}
a normalized score function (6)

where for notation convenient, we have definéﬁ) =
s(o"); A) =logp(of”|Au,) —logp(of”|Au,) (@) s(ol;A).
Fig. 1(a) illustrates the fusion weigmél) as a function

whereA = {A,,., A, } contains the Gaussian mixture mod- of sgl) and ng) wheresgk) € L1212, K = 2, jiy =

els (GMMs) that characterize the client speake)) @nd the 2 ands, — 3.5. A closer look at Fig. 1(a) reveals that

(k) ;
background speakersy), andlog p(o,™'|[A.) is the output .0 falling on the upper right hand region of the dashed

. . k
of GMM A, w € {w.,ws}, given observation;" . line L will be increased by the fusion function (3). This
In this work, the expert-in-class architecture [10] was is because in that region fmﬁl) > @ M+ 1 and
[ t t ~

used to combine the normalized score functions probabilis- (2) ~ 0 moreover fOB§1) < sgz) agn ~0 anda§2) ~1

ically. ifically, frame-level f o i
ggio)r/ diigic)l ically, frame-level fused scores are computed Both of these conditions favor the larger score. On the other

hand, the fusion algorithm will put more emphasis on the
K small scores if they fall on the lower left hand region of the
stofV,...0f ) A) =3 aMs(0f”;A)  (3)  dashed line. The effect of the fusion weights on the scores
k=1 is depicted in Fig. 1(b). Evidently, the fusion weights will
favor large scores if they fall on the upper right hand region,
whereaik) € [0,1] represents the confidence (reliability) whereas the fused scores will be close to the small scores if
of the observatior!”) and ™, o!") = 1. Note that for  they fall on the lower-left hand region.
notational convenience, we have assumed thafdheter- The rationale behind this fusion approach is the obser-
ances contain the same number of feature vectors. If it isvation that most of the client-speaker scores are larger than
not the case, we may repeat the vectors of the shorter utterthe prior score while most of the impostor scores are smaller
ances to make the number of feature vectors equal. Alter-than the prior score. As a result, if the claimant is a client
natively, we can fuse the fir§t patterns of the utterances speaker, the fusion algorithm will favor large scores; on
whereT = min; T;. Note also that in (3), a larger (resp. the other hand, the algorithm will favor small scores if the
smaller) fusion weight means a greater (resp. lesser) in-Claimant is an impostor. This has the effect of reducing
fluence on the final decision. The fusion weights can be the overlapping area of the score distribution of the client
estimated using training data; alternatively, they can be de-speakers and the impostors, thus reducing the error rate. To
termined purely from the observation data during recogni- demonstrate this phenomenon, we arbitrarily select a client
tion. Rather than using either training data or recognition speaker (mdac0) from HTIMIT and plot the distributions
data exclusively, we propose a new approach in which theof the fused speaker scores and fused impostor scores in
fusion weights depend on both training data (prior informa- Fig. 2, using equal weight fusio(mil) = a,EQ) = 0.5 Vt)
tion) and recognition data. and data-dependent fusion (6). Evidently, the upper part
During enroliment, the mean score of each client speakerof Fig. 2 shows that the number of large client-speaker
(i) and of the background speakefg ) are determined.  scores is larger in data-dependent fusion, and the lower part
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Fig. 1. (a) Fusion weights.!" as a function of scorest” ands!®. (b) Contour plot of fused scores based on the fusion
formula (3) and the fusion weights in (a).

4. STOCHASTIC FEATURE TRANSFORMATION

1 In feature transformation [5], a telephone channel can be

1 represented by a stochastic cepstral bias [b1, ..., bp|7,
| and the recovered vectors are given by
v 6, = fu(o) =0, +b (7)

0.08 T T T

—— Equal Weight Fusion
- - Data—-dependent Fusion

0.06

\ whereo,’s are D-dimensional distorted vectors arfd de-
N notes the transformation function. Intuitively, the bias
l compensates the convolutive distortion caused by the chan-

nel. Given a clean GMM speech modek= {7, u;, ¥;} 7L,

score mean = -3.16

L X wherey; = diag{o7,,...,07}, derived from the clean
0 = P mpostrscore i 10 speech of several speakers (ten speakers in this work) and
distorted speechy;, t = 1,...,T, the maximum likelihood

estimates ob can be obtained by the EM algorithm. Specif-

Fig. 2. Distribution of pattern-by-pattern speaker scores ically, in each M-step, we compute the new estimatb bf

(upper figure) and impostor scores (lower figure) based on
equal weight fusion (score averaging) and data-dependent Zthl Zj”il hi(fo(01))(0ji) % (uji — o¢) @)
fusion. The means of speaker scores and impostor scores " — T M N2

obtained by both fusion approaches are also shown. L= 2= il (00)(050)

wherei =1,...,D, f,(o;) = o, +bandh;(f,(o;)) is the

posterior probability of using thg-th mixture, which has

been computed in the E-step (see [5] for details).
of Fig. 2 shows that there are more small impostor scores  In this work, the feature transformation was combined
in data-dependent fusion than in equal weight fusion. As awith a handset selector [11] for robust speaker verification.
result, the dispersion between the mean client score and thé&pecifically, before verification takes place, we compute one
mean impostor score was increased fra68 (= —0.53 — set of transformation parameters for each type of handsets
(—3.16)) t0 4.04 (= 0.25 — (—3.79)). As verification de-  that claimants are likely to use. Then, during a verification
cision is based on the mean scores, the wider the dispersession, we identify the most likely handset that is used by
sion between the mean client scores and the mean impostothe claimant and select the best set of transformation param-
scores, the lower the error rate. eters accordingly.
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5. EXPERIMENTS AND RESULTS

We applied the proposed fusion algorithm to fuse two in- ‘,
dependent streams of scores. 12th-order MFCCs were ex-
tracted from independent utterances at a frame rate of 14
ms. We used a GSM speech coder to transcode the HTIMIT 20 |
corpus [12] and applied the resulting transcoded speech in
a speaker verification experiment similar to [5] and [4]. For
each speaker, we used the SA and SX utterances from hand-
set “senh” of the uncoded HTIMIT to create a 32-center
speaker model. A 64-center universal background model
was also created based on the speech of 100 client speak-
ers. The background model will be shared among all client ! feature
speakers in subsequent verification sessions. For verifica- | transformation "7
tion, we used the GSM-transcoded speech from handset “cb1”. -
As a result, there were handset and coder mismatches be- N
tween the speaker models and the verification utterances. False Alarm p?gbability (inng))

We assume that a claimant will be asked to utter two rjg 3 Speaker detection performance of equal weight fu-
sentences during a verification session. Therefore, for eachsion (score averaging) and data-dependent fusion.
client speaker and each impostor, we applied the proposed

fusion algorithm to fuse two independent streams of scores

obtained using his/her S| sentences. Since different utter-combining stochastic transformation with the proposed fu-
ances contain different numbers of feature vectors, we needsion algorithm can reduce error rate significantly. We are
to make the two utterances to have an identical number ofcurrently extending the algorithm to multi-modality fusion

Speaker Detection Performance
40 ~ T

— Equal Weight Fusion
- - Data-dependent Fusion

w/o feature
transformation

10

Miss probability (in %)

i
1 2 40

feature vectors (length) before fusion takes place. This isWith multi-feature transformation.

achieved by computing the average length of the two utter-
ances and then appending the extra patterns in the longer
utterance to the end of the shorter utterance. To compare [1]
with the score averaging approach proposed in [3], we also
fused the speech segments using equal fusion weights, i.e.,[2]
agl) = aEQ) = 0.5.

Fig. 3 depicts the speaker detection performance of 100 (3
speakers and 50 impostors for the equal weight fusion (score
averaging) approach and the proposed fusion approach. Fig.

3 clearly shows that with feature transformation, data- 4l
dependent fusion is able to reduce the error rates signifi-
cantly. In particular, with feature transformation, the equal [!
error rate (EER) achieved by data-dependent fusion is 4.14%.
When compared to equal weight fusion (which achieves an [6]
EER of 5.11%), a relative error reduction of 19% was ob-
tained. However, without feature transformation, the per- [7]
formance of data-dependent fusion is not significantly bet-
ter than that of the equal weight fusion. This is caused by 8]

the mismatch between the prior scofgss in (6) and the
scores of the distorted features. This result demonstrates
that it is very important to use feature transformation in
data-dependent fusion.
[10]
6. CONCLUSIONS

We have presented a decision fusion algorithm that makeg11]
use of prior score statistics and the distribution of the recog-
nition data. The fusion algorithm was also combined with [12]
feature transformation for speaker verification using GSM-
transcoded speech. Results based on 150 speakers show that
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