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ABSTRACT

Classifier performance is often enhanced through combin-
ing multiple streams of information. In the context of multi-
stream HMM/ANN systems in ASR, a confidence measure
widely used in classifier combination is the entropy of the
posteriors distribution output from each ANN, which gen-
erally increases as classification becomes less reliable. The
rule most commonly used isto select the ANN with themin-
imum entropy. However, thisis not necessarily the best way
to use entropy in classifier combination. In this article, we
test three new entropy based combination rules in a full-
combination multi-stream HMM/ANN system for noise ro-
bust speech recognition. Best results were obtained by com-
bining all the classifiers having entropy bel ow average using
aweighting proportional to their inverse entropy.

1. INTRODUCTION

Many variations of the multi-stream Hidden Markov Model
(HMM)/Artificial Neural Network (ANN) based hybrid AS-
R system [1] have been proposed, whereby complementary
data streams are combined to improve recognition perfor-
mance. Multiple data streams may be from different sen-
sory modalities, e.g. video and audio [2], or from differ-
ent representations of the same input stream, such as anal-
ysis on different time scales [3], or static and time differ-
ence features as used in this paper. We are working with
the full-combination multi-stream (FCMS) HMM/ANN ap-
proach for noise robust ASR, whose superiority was shown
in [3]. A central issue in multi-stream combination is ex-
pert weighting. A widely used measure of classifier confi-
denceisthe entropy [4] of the output posteriorsdistribution.
The combination rule most commonly used is to select the
ANN with the minimum entropy. In this article, we com-
pare the performance of this rule with several new entropy
based combination rules. In the next section, we introduce
the FCMS HMM/ANN model used in our experiments. In
Section 3, we present the three new entropy based weight-
ing rules tested in this paper. Sections 4 and 5 present the
experimental details and discuss the results obtained. This
isfollowed by aconclusion in Section 6.
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2. FULL-COMBINATION MULTI-STREAM

In an HMM/ANN based hybrid ASR system, the output of
the ANN are estimates of posterior probabilities, P(gy|xy, §),
where ¢, isthe k" output class, z,, is the acoustic feature
vector for the nt" frame, and @ is the set of parameters of
the ANN model.

In FCMS, one ANN expert is trained for each stream
combination. In Fig. 1, we have 3 feature representations
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Fig. 1. Multi-stream full-combination approach using Raw
features (r,,), Delta features (d,,) and Delta-delta features
(ddy), and all their possible combinations, as separate
streams in the frame work of an HMM/ANN hybrid system.

giving 22 = 8 possible stream combinations. However, the
8" combination is empty and isthe a-priori probabilitiesin
case none of the 7 expertswere reliable [3].

The combined output posterior probability for the k"
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class and nt* frame is then computed according to:

I
P(qr X, ©) = ) wi, Plaxle;,, 6:) (1)

i=1

where I isthe number of expertsor streams (7 in the present
case), X,, = {x}, - ,zL}, the set of all possible stream
combinations built up from z,,, © = {6y,---,6,}, the
set of parameters for each expert trained for each possible
stream combination, and w?, is the weight assigned to the
output of the i expert.

3. ENTROPY BASED COMBINATION

Theentropy of theit" expert for n* frame, h,, is computed
by the equation,

K

hi, == P(gele),,0:) - loga Pgxlzh, 0:) (2
k=1

where K is the number of output classes or phonemes (27
phonemesin our case), =}, isthe input acoustic feature vec-
tor for the i” expert for the nt” frame, and 6; is the param-
eter set of the it ANN expert.

In our study, we observed that if an ANN has been tr-
ained on clean speech, the average entropy (averaged over
all the frames) at the output of the ANN increasesin case of
noisy speech (Tables 1 and 2). The tables show that average
entropy is high for low signal-to-noise-ratio (SNR) speech
signals. In other words, for noisy speech, the discriminatory
power of the ANN decreases and the posterior probabilities
tend to become more uniform. This mismatch between the
training and testing conditions is reflected through the en-
tropy at the output of the ANN. We have used this infor-
mation in our FCM S approach for weighting the outputs of
different experts.

At the time of testing, the experts associated with the
streams that are more corrupted by noise will face more
mismatched conditions. Consequently, their output entropy
will increase indicating the fact that the posterior probabil-
ities are approaching towards equal probabilities for all the
classes. The experts having high entropy have less discrimi-
nation, therefore output of such experts should be weighted
less. Similarly, the experts having low entropy will have
higher discrimination among classes and their output should
be weighted more.

To achievetheabove, theideaof inverseentropy weight-
ing is investigated in this paper. The weight, w! (1), as-
signed to the output of the i** expert is given by,

: 1/hi
wi =l 3
Zi:l l/hg’t

The scaled likelihoods are obtained by dividing the com-
bined posterior probabilities (1) by a-priori probabilities of
their respective phones, and sent through an HMM decoder
to get the decoded output [1].

In the following, we discuss some variations of thisin-
verse entropy method. The results of these methods are also
presented in this paper.

3.1. Inverseentropy weighting with static threshold

In this variation, a fixed maximum threshold is chosen for
the entropy (empirically optimized for clean speech and is
1.0inour studies). If the entropy of a particular expert for a
frameis more than the threshold, the output of that expertis
penalized by a static weight of - (other values of static
weight gave similar performance). For the same frame, the
output of the experts with entropy lower than the thresh-
old are still weighted inversely proportional to their respec-
tive entropies. The modified equations for Inverse entropy
weighting with static threshold (IEWST) are:

hi > 1.0

=i [ 10000

fn = { B B <10 @)
7i

wi — 1/hn (5)

3.2. Inverse entropy weighting with average entropy at
each framelevel asthreshold

In this weighting scheme, the average entropy of all the
streams for aframeis calculated by the equation,

1 i
o = =t ©

This average entropy is used as a dynamic threshold for the
frame and output of all the experts having entropy greater
than the threshold are weighted very less (555;5), Whereas
output of the experts having entropy lower than the thresh-
old are weighted inversely proportiona to their respective
entropies. The equationsin case of Inverse entropy weight-
ing with average threshold (IEWAT) are:

hi > hy,

-, [ 10000
fin = { B B <y @)
. 1/ht
w, = % )
Zi:l ]'/h%,

3.3. Minimum Entropy Criterion

In this approach, for every frame the output from the expert
that has the minimum entropy is chosen and used for decod-
ing while the output of rest of the experts areignored. The
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modified equationsin this case are:
P(g| X0, ©) = P(qr|z},07) )
with

j= arglmin {h;} (20

4. EXPERIMENTAL SETUP

In the experiments reported in this paper, Numberso5 data-
base of US English connected digits telephone speech [5]
isused. There are 30 words in the database represented by
27 phonemes. Training is performed on clean speech ut-
terances and testing data, which is different from the train-
ing data, is corrupted by different kinds of noises. To sim-
ulate noisy conditions Noisex92 database [6] is used and
the car and factory noises are added at different SNRs to
Numbers95 database. We ran the experiments using Rasta-
PLP[7] features.

The ANNSs used were a single layer multi-layer percep-
tron (MLP) and the number of unitsin the hidden layer of an
ANN expert were proportional to the dimension of theinput
feature vector stream fed to that ANN. The feature vectors
used in our FCM S system (Fig. 1) were: 12 dimensional raw
cepstral coefficients (0" coefficient is not used) represented
by r,, 13 dimensional delta cepstral coefficients (d,,), and
13 dimensional delta-delta cepstral coefficients (dd ;). The
input layer was fed by 9 consecutive data frames.

The HMM used for decoding had fixed state transition
probabilities of 0.5. Each phoneme had a 1 state model for
which emission likelihoods were supplied as scaled posteri-
ors [1]. The minimum duration for each phoneme is mod-
eled by forcing 1 to 3 repetitions of the same state for each
phoneme. Phone deletion penalty parameter was empiri-
cally optimized for clean speech test database and then it
was kept constant for all the experiments.

5. RESULTS AND DISCUSSION

WERSs and average entropy values of the above experimen-
tal setup are presented in Tables 1 and 2 for car and fac-
tory noises, respectively. The performance of the proposed
schemesis either better or comparable to standard full-band
system under different noise conditions. In general, the per-
formance in the presence of factory noise is poor as com-
pared to car noise and in most of the cases inverse entropy

weighting with averagethreshold (IEWAT) performsthe best.

Therelative average improvement in performance by differ-
ent methods over the baseline full-band system are: 1.7%
by Inverse entropy weighting, 8.5% by IEWST, 10.5% by
IEWAT and 6.7% by Minimum entropy criterion. Similar
results, though not reported in this paper, are obtained for

PLP[8] featureswhererelative averageimprovementin per-
formanceis more significant as compared to Rasta-PL P fea-
tures, but the absolute performanceis relatively poorer.

Apart from WERs, the average entropy values also re-
veal afew important things. Average entropy at the output
of each MLP expert (results not shown in the table), as well
as for each combination, is high for low SNR input speech
and low for high SNR input.

5.1. Relation between WER and Entropy

In the general framework of developing new speech recog-
nition approaches targeting at consistently minimizing con-
ditional entropy while introducing new knowledge sources,
someinteresting relationship is observed between WER per-
formance of different combination methods and their re-
spective entropies.

Entropy for any linear combinationisalways higher than
the lowest entropy among all the combined experts and the
same is observed from the entropy results of inverse en-
tropy weighting. In this weighting, the entropies for the
combination are high and at the same time improvement
in WER performance is less significant. As expected, the
minimum entropy criterion gives the least average entropy
values. Thisis a situation where only the stream having the
lowest entropy is chosen at every frame level and the other
streamsdon’t contributeto the decision. But theresultsindi-
cate that even this highly constrained situation gives an im-
provement in the WER performance as well as a decrease
in average entropy. Out of the other two non-linear com-
binations, average entropies and WERs for IEWST are al-
ways higher as compared to IEWAT. WER performances of
IEWAT is best in most of the cases and also the entropy of
the combination is aways the lowest.

6. CONCLUSION

As with any multi-stream combination technique, the en-
tropy based weighting schemes tested here with noise ro-
bust RASTA-PL P features giveamuch less dramatic perfor-
mance improvement than they do with PLP features. How-
ever, the IEWAT (inverse entropy with average entropy th-
reshold) weighting scheme, in which all experts with be-
low average entropy are dynamically selected at each frame,
outperforms all of the other schemes under almost all noise
conditions. IEWAT gives arelative WER improvement, av-
eraged over both the noise cases and all their SNRs, of
10.5% compared to the full-band baseline and 4.3% com-
pared to minimum entropy selection. We observe that al-
though the WER tends to decrease as the combined posteri-
orsentropy decreases, selecting only the ML P with the min-
imum entropy does not usually give the best performance.
The value of combining the posteriors from several experts
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Stream Car Noise (in db) Clean
0 | 6 | 12 | 18 Speech
| r-d-dd (Basdline) | 13.3(0.94) | 11.4(0.87) | 10.8(0.82) | 10.4(0.78) [[10.2(0.74) |

Equal Weights 13.9(1.50) | 12.1(1.14) | 12.2(1.36) |12.4(1.31) || 12.0(1.249)
Minimum Entropy 11.7 (0.60) | 10.8(0.55) | 9.5(0.52) | 9.1(0.49) 9.1(0.47)
Inverse Entropy 12.0(1.22) | 10.8(1.14) |11.0(2.07) |11.0(1.03) || 10.6(0.97)
Inv. Entr. Static Threshold || 11.2 (0.94) | 10.0(0.86) | 9.1(0.82) | 9.1(0.78) || 10.1(0.75)
Inv. Entr. Avg. Threshold || 11.0(0.89) | 9.2(0.83) | 9.2(0.78) | 9.1(0.75) || 10.2(0.71)

Table 1. Word-Error-Rates (and Average Entropy Values) for Car Noise. The baseline full-band
systemisr-d-dd. r - cepstral, d - delta cepstral and dd - delta-delta cepstral features.

Stream Factory Noise (in db)
0 | 6 | 12 | 18
| r-d-dd (Baseline) || 56.2 (1.42) | 33.1(1.33) | 18.9(1.09) |12.7(O.90) |
Equal Weight 55.8(1.88) | 32.6(1.82) | 18.7(1.59) |14.2(1.41)
Minimum Entropy 55.7(0.96) | 32.1(0.89) | 17.7(0.72) |12.5(0.60)
Inverse Entropy 54.5(1.67) | 31.9(1.60) | 18.5(1.35) |13.0(1.16)
Inv. Entr. Static Threshold || 55.2 (1.45) | 31.8(1.36) | 18.1(1.11) |12.5(0.92)
Inv. Entr. Avg. Threshold || 54.7 (1.30) | 31.5(1.23) | 17.2(1.02) |12.2(0.86)

Table 2. Word-Error-Rates (and Average Entropy Values) for Factory Noise.

appears to outweigh the advantage of pure entropy mini-
mization. It remains to be seen whether IEWAT weight-
ing will aso improve the performance of audio-visua and
other multi-stream combination applications which have up
to now used minimum entropy selection.
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