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ABSTRACT

Oriented PCA (OPCA) is a (second order) extension of stan-
dard Principal Component Analysis aiming at maximizing the power
ratio of a pair of signals. It is shown that OPCA, preceded by
almost arbitrary temporal filtering, can be used for blindly sepa-
rating temporally colored signals from their linear instantaneous
mixtures. The advantage over other second order techniques is the
lack of the prewhitening (or sphereing) step. Although the design
of the general optimal temporal pre-filter is an open problem, we
show that the filters ������ are the optimal ones for the special
two-tap case. Neural OPCA models proposed earlier are used in
simulations to separate a number of artificial sources demonstrat-
ing the validity of the method.

1. INTRODUCTION

The estimation of a set of source signals, given a set of linear mix-
tures has been receiving great attention in the last decade, due to
its usefulness in a large number of applications. As no a priori
information about the source signals and the mixture structure is
needed, the task is referred as blind source separation (BSS). We
are particularly interested in separating memoryless mixtures ie.
for a special case referred to as instantaneous BSS. Methods for
this problem can be divided into methods using second-order [1]
or higher-order statistics [2], maximum-likelihood principle [3],
Kullback-Liebler distance [4, 5, 6] PCA methods [7, 8], non-linear
PCA [9], ICA methods [10]. Further information on these meth-
ods and a coherent treatment of BSS, in general, can be found in
[11].

In [12] Diamantaras demonstrated that when the observed data
are temporally prefiltered, standard PCA can be used for the solu-
tion of instantaneous mixture BSS. The method needed a step of
spatial prewhitening (sphereing) over the observation data. In this
paper, we show that without pre-whitening the problem is a typical
Oriented PCA problem. The problem can be solved using standard
neural networks models poposed in earlier works. Moreover, we
are able to derive the optimal length-2 prefilter, although the design
of the optimal prefilter, in general, is an open issue.

2. THE BLIND SIGNAL SEPARATION PROBLEM

In the instantaneous BSS problem the n observed signals x�, ...,
xn, result from the linear combination of the sources s�, ..., sn, so
defining x�k� � �x��k�� � � � � xn�k��

T and s�k� � �s��k�� � � � �
sn�k��

T we have:

x�k� � As�k� (1)

We assume that the linear mixing operatorA is a square, invertible
matrix although, in general, the number of observations may be
greater than the number of sources, in which case A is a “tall”
matrix with full column rank.

Both the mixing operator A as well as the source sequence
s�k� are assumed to be unknown. As a result, the order and the
scale of the individual sources are unobservable. Additionally we
adopt certain assumptions regarding the second order statistics of
the sources as stated below (see also [1, 13]):

A1. Sources are pairwise uncorrelated, at least wide sense station-
ary with zero mean and unit variance:

Rs��� � I � (2)

A2. There exist positive time lags l�, ..., lM such that:

Rs�lm�
�
� diagonal �� � � (3)

Define l� � �.

A3. Distinct source colors:

�l �� � � rii�l� �� rjj�l�� if i �� j �

3. SOLVING BSS USING ORIENTED PCA (OPCA)

The term Oriented PCA (OPCA) [14] describes an extension of
PCA involving two signals u�k�, and v�k�. The aim is to identify
the so-called oriented principal directions e�, ..., en, that maxi-
mize the signal-to-signal power ratio E�eTi u�

��E�eTi v�
� under

the orthogonality constraint: eTi Ruej � eTi Ruej � �, i �� j.
OPCA is a second-order statistics method, which reduces to stan-
dard PCA if the second signal is spatially white Rv � I. The
solution of OPCA is shown to be the Generalized Eigenvalue De-
composition (GED) of the matrix pencil �Ru�Rv�.

Subsequently, we shall relate the instantaneous BSS problem
with the OPC Analysis of the observed signal x and almost any

filtered version of it. We shall use the following notation Rz�l�
�
�

Efz�k�z�k� l�T g to describe the covariance of any signal z with
time-lag l. Note that the 0-lag covariance matrix of x�k� is

Rx��� � ARs���A
T � AA

T (4)

Now, consider a scalar, linear temporal filterh � �h�� � � � � hM �
operating on x�k�:

y�k� �
MX
m��

hmx�k � lm� (5)
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where the lags l�, ..., lM , satisfy assumptions [A2], [A3]. The
0-lag covariance matrix of y is expressed as

Ry��� � Efy�k�y�k�T g �

MX
p�q��

hphqRx�lp � lq� (6)

From Eq. (1) it follows that

Rx�lm� � ARs�lm�AT (7)

so

Ry��� � ADA
T (8)

with

D �
MX

p�q��

hphqRs�lp � lq� (9)

Note that, by assumptions [A1], [A2], D is diagonal. Provided
that A is square and invertible we can write

Ry���A
�T � AD

� AA
T
A
�T
D

� Rx���A
�T
D (10)

where A�T
�
� A��

T
. Eq. (10) expresses a Generalized Eigen-

value Decomposition problem for the matrix pencil �Ry���� Rx����.
This is equivalent to the OPCA problem for the pair of signals
�y�k�� x�k��. The generalized eigenvalues for this problem are
the diagonal elements of D. The columns of the matrix A�T are
the generalized eigenvectors.

The eigenvectors are unique upto a permutation and scale pro-
vided that the eignevalues are distinct (this is true in general). In
this case, for any generalized eigenmatrixQwe haveQ � A�TP

with P being a scaled permutation matrix, ie. each row and each
column contains exactly one on-zero element. Then the sources
can be estimated as

�s�k� � Q
T
x�k� (11)

�s�k� � P
T
A
��
As�k� � P

T
s�k� (12)

It follows that the estimated sources are equal to the true ones ex-
cept for the (unobservable) arbitrary order and scale.

A similar approach using standard PCA and spatial prewhiten-
ing (sphering) has been proposed in [13]. The advantage of the
OPCA method is that no particular preprocessing is needed and so
this approach is simpler and more neural-like.

3.1. Designing the optimal filter with a single time lag

Let [A2] hold for just one time lag l, so we may use a two-tap filter
h � �h�� h�� � ��� ��, where h� � � is a free parameter. Then

D � �� 	 ���I	 �Rs�l� 	 �Rs��l�

� �� 	 ���I	 
�Rs�l� (13)

Denoting by di and rii�l� the diagonal elements of D and Rs�l�
respectively, we obtain

di � � 	 �� 	 
�rii�l�� i � �� � � � � n (14)

Using (14) we can compute the correlation matrix of the input sig-
nal Rs�l�:

rii�l� �
di � �� ��


�
(15)

Once the correlation is obtained we can use it in order to design the
optimal temporal filter h. The optimality criterion will be related
to the eigenvalue spread. It is desirable to spread the eigenvalues as
much as possible for two reasons: (a) the convergence of any batch
or neural generalized eigenvalue algorithm is typically faster when
the eigenvalues are well separated, and (b) the perturbation of the
eigenvalues due to noise can be better tolerated. Thus we need
to define a suitable metric taking into account the relative size of
the eigenvalues. We propose to use the following maximization
criterion

J��� � min
i

�
min
j ��i

�di � dj�
�

maxk d�k

�
� (16)

Using (14) this metric can be formulated in terms of the input cor-
relation function Rs�l�

J��� � min
i

�
min
j ��i

����rii�l�� rjj�l��
�

maxk�� 	 �� 	 
�rkk�l���
�
� (17)

Let ����r� � mini�minj ��i ��
��rii�l��rjj�l��

�� and let rkk�l� �
rmax be the maximizer of the denominator ��	��	
�rkk�l��

�.
Then we can write

J��� �
����r�

�� 	 �� 	 
�rmax��
�

The most robust filter is the one that maximizes J���. Note that
J��� � � and lim���� J��� � �. Furthermore, J is bounded
since maxk d

�

k � � and jdij � � for all i. It follows that J���
has at least one maximum, which is attained at a gradient zero-
crossing:

�J

��
� ��r�

h 
�

�� 	 �� 	 
�rmax��

�

���
�	 
rmax � 
r���

�� 	 �� 	 
�rmax��

i

� 
�r�
���� �� � 
r���

�� 	 �� 	 
�rmax��
� � (18)

where r� � �rmax���. Since J��� � �, the solution � � � to
Eq. (18) does not correspond to a maximum. Furthermore, rmax

takes values in the discrete set fr���l�� � � � � rnn�l�g therefore, it
is not a continuous function of � and r� � � except for those
points where a discontinuity appears. Assuming that J��� is not
maximized at such a discontinuity point, its maximum value must
be attained for ��� ��� � �, ie. for � � 	� or ��.

4. OPCA NEURAL NETWORKS FOR BSS

Three neural models for OPCA have been proposed by Diaman-
taras and Kung [14]. Here we shall use the third model originally
proposed in [15]. For a pair of signals u�k�, v�k� a linear neu-
ron model can extract the principal oriented eigenvector (i.e. the
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one associated with the largest eigenvalue). The learning rule is
described by the following equations:

�w�k� � ��u�k�a�k�� 	�k�v�k�b�k�� (19)

�	�k� � ���kw�k�k� � 	�k�� (20)

where � is a small positive learning rate parameter and �� is smaller
than � (e.g. �� � ���). The values a�k� and b�k� denote the
neuron output activations when the inputs are u�k� and v�k�, re-
spectively:

a�k� � w�k�Tu�k�

b�k� � w�k�Tv�k�

Once the model has successfully extracted a vector w parallel
to e� the remaining components are obtained by employing suc-
cessive deflation tranformations (see [14][chapter 7] for details).

5. RESULTS

In the experiments described below, we chose the filterh � ������
with a single lag l � �. The estimation convergence for a set of 4
signals are shown in Figure 1.

Every sub-figure corresponds to a row of the estimated abso-
lute matrixWA. Once the iterations stop, all the row elements are
normalized by dividing with the maximum row element. Therefore
their value varies from 0 to 1. Moreover, the same technique is ap-
plied in every estimatedWi during the iterations, using always the
element corresponding to the final maximum, as denominator.

The same experiment was conducted using the filter h � ������
with a single lag. Results are shown in 2.

It can be witnessed that in the case that the filter h � ������
was used, the estimation is of higher quality, while the convergence
is slow. On the other hand the convergence using the filter h �
������, is faster, while the estimation accuracy is poor.

6. CONCLUSIONS

The instantaneous BSS problem is known to be related to second-
order statistics methods. However, all earlier approaches have con-
sistently used two steps: one preprocessing (sphering) step fol-
lowed by a second-order analysis method such as SVD [1] or PCA
[13]. The OPCA approach proposed in this paper has the advan-
tage that no preprocessing step is required as sphering is implicitly
incorporated in the signal-to-signal ratio criterion which is opti-
mized by OPCA. Furthermore, the method can be implemented
using a simple neural approach, making it more intuitively appeal-
ing compared to other neural approaches.
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Fig. 1. Dynamic behavior of the four neurons in the sequential
OPCA model. The plot depicts the normalized inner product of
each neuron with the desired solution for 50 sweeps, using the
filter h � ������. Each sweep contains N � 
��� data points.
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Fig. 2. Dynamic behavior of the four neurons in the sequential
OPCA model. The plot depicts the normalized inner product of
each neuron with the desired solution for 50 sweeps, using the
filter h � ������. Each sweep contains N � 
��� data points.
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