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ABSTRACT

Oriented PCA (OPCA) is a (second order) extension of stan-
dard Principal Component Analysis aiming at maximizing the power
ratio of a pair of signals. It is shown that OPCA, preceded by
amost arbitrary temporal filtering, can be used for blindly sepa-
rating temporally colored signals from their linear instantaneous
mixtures. The advantage over other second order techniquesisthe
lack of the prewhitening (or sphereing) step. Although the design
of the general optimal temporal pre-filter is an open problem, we
show that the filters [1, £1] are the optimal ones for the special
two-tap case. Neural OPCA models proposed earlier are used in
simulations to separate a number of artificial sources demonstrat-
ing the vaidity of the method.

1. INTRODUCTION

The estimation of a set of source signals, given a set of linear mix-
tures has been receiving great attention in the last decade, due to
its usefulness in a large number of applications. As no a priori
information about the source signals and the mixture structure is
needed, the task is referred as blind source separation (BSS). We
are particularly interested in separating memoryless mixtures ie.
for a specia case referred to as instantaneous BSS. Methods for
this problem can be divided into methods using second-order [1]
or higher-order statistics [2], maximum-likelihood principle [3],
Kullback-Liebler distance[4, 5, 6] PCA methods[7, 8], non-linear
PCA [9], ICA methods [10]. Further information on these meth-
ods and a coherent treatment of BSS, in general, can be found in
[11].

In[12] Diamantaras demonstrated that when the observed data
are temporally prefiltered, standard PCA can be used for the solu-
tion of instantaneous mixture BSS. The method needed a step of
spatial prewhitening (sphereing) over the observation data. In this
paper, we show that without pre-whitening the problem isatypical
Qriented PCA problem. The problem can be solved using standard
neural networks models poposed in earlier works. Moreover, we
are ableto derive the optimal length-2 prefilter, although the design
of the optimal prefilter, in general, is an open issue.

2. THE BLIND SIGNAL SEPARATION PROBLEM

In the instantaneous BSS problem the n observed signals 1, ...,
T, result from the linear combination of the sources sy, ..., S5, SO
defining x(k) = [w1(k), -~ 2. (K))" and s(k) = [s1(k), - ,
s5n(k)]T we have:

x(k) = As(k) @
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We assume that the linear mixing operator A isasquare, invertible
matrix although, in general, the number of observations may be
greater than the number of sources, in which case A is a “tall”
matrix with full column rank.

Both the mixing operator A as well as the source sequence
s(k) are assumed to be unknown. As a result, the order and the
scale of the individual sources are unobservable. Additionally we
adopt certain assumptions regarding the second order statistics of
the sources as stated below (see aso [1, 13]):

A1l. Sourcesare pairwise uncorrelated, at least wide sense station-
ary with zero mean and unit variance:

R:(0)=1I. 2
A2. Thereexist positivetimelags!, ..., [ar such that:
R:(ln) 2 diagonal # 0 . 3

Definely = 0.

A3. Distinct source colors:
Vl 75 0: r”(l) # Tjj(l), If’L 75] .
3. SOLVING BSSUSING ORIENTED PCA (OPCA)

The term Oriented PCA (OPCA) [14] describes an extension of
PCA involving two signals u(k), and v(k). Theaim isto identify
the so-called oriented principal directions e, ..., e, that maxi-
mize the signal-to-signal power ratio E(efu)?/E(efv)? under
the orthogonality constraint: e R,e; = el R,e; = 0,i # j.
OPCA is a second-order statistics method, which reduces to stan-
dard PCA if the second signa is spatialy white R, = I. The
solution of OPCA is shown to be the Generalized Eigenvalue De-
composition (GED) of the matrix pencil [R., R+].

Subsequently, we shall relate the instantaneous BSS problem
with the OPC Analysis of the observed signal x and almost any

filtered version of it. We shall use the following notation R... (1) =
E{z(k)z(k —1)T} to describe the covariance of any signal z with
time-lag I. Note that the O-lag covariance matrix of x(k) is

R.(0) = AR.(0)A" = AA" 4)
Now, consider ascalar, linear tempora filter h = [ho, - - - , hu]
operating on x(k):
M
y(k) = > hux(k —1n) )
m=0
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where the lags lo, ..., [ar, Satisfy assumptions [A2], [A3]. The
0-lag covariance matrix of y isexpressed as

R,(0) = E{y(k)y(k)"} = > hpheRa(l, — 1)  (6)

p,q=0
From Eq. (1) it follows that
R.(lm) = AR (l,,) AT )
SO
R,(0) = ADA" )
with
M
D= hpheRs(lp —1y) ©
p,q=0

Note that, by assumptions [A1], [A2], D is diagonal. Provided
that A is square and invertible we can write

R,(0A"" = AD
= AATA™D
R.(0)A™"D (10)

where AT 2 A—'" Eq. (10) expresses a Generalized Eigen-

val ue Decomposition problem for the matrix pencil [R, (0), R (0)].

This is equivalent to the OPCA problem for the pair of signals
[y(k), x(k)]. The generalized eigenvalues for this problem are
the diagonal elements of D. The columns of the matrix A~7 are
the generalized eigenvectors.

The eigenvectors are unigque upto a permutation and scale pro-
vided that the eignevalues are distinct (thisis true in general). In
this case, for any generalized eigenmatrix Q wehaveQ = A~ TP
with P being a scaled permutation matrix, ie. each row and each
column contains exactly one on-zero element. Then the sources
can be estimated as

(k) = QTx(k) (12)

8(k) =PTA'As(k) = PTs(k) (12)

It follows that the estimated sources are equal to the true ones ex-
cept for the (unobservable) arbitrary order and scale.

A similar approach using standard PCA and spatial prewhiten-
ing (sphering) has been proposed in [13]. The advantage of the
OPCA method isthat no particular preprocessing is needed and so
this approach is simpler and more neural-like.

3.1. Designing the optimal filter with a singletime lag

Let [A2] hold for just onetimelag , so we may use atwo-tap filter
h = [ho, h1] = [1, o], where hy = « isafree parameter. Then

D = (1+a)I+aRs()+aRs(-1)
= (1+4a”)I+2aRs(]) (13)

Denoting by d; and r;;(1) the diagonal elements of D and R (1)
respectively, we obtain

di=14a" +2arii(l), i=1,---,n (14)

Using (14) we can compute the correlation matrix of the input sig-
na R, (1):

di—1—a?

ri(l) = 5 (15)
Oncethe correlation is obtained we can useit in order to design the
optimal temporal filter h. The optimality criterion will be related
tothe eigenvalue spread. Itisdesirableto spread the eigenvalues as
much as possible for two reasons: (a) the convergence of any batch
or neural generalized eigenvalue algorithm istypically faster when
the eigenvalues are well separated, and (b) the perturbation of the
eigenvalues due to noise can be better tolerated. Thus we need
to define a suitable metric taking into account the relative size of
the eigenvalues. We propose to use the following maximization
criterion

o (di = dy)?
J(a) —miln[I]n;IZ) max; &2 ]. (16)

Using (14) this metric can be formulated in terms of the input cor-
relation function R (1)

. . 402 (rii (1) — 735 ()2
J(a) - rniln [rjn;i? man(l +a? + QZTkk(l))2] ' (17)

Let4a?Ar? = min; [min;; 40 (ris(l)—rj; (l))z] andlet rix (1)
T'maz bethemaximizer of the denominator (14 o” + 2arss (1)),
Then we can write

4a? Ar?
(1402 4+ 20rmaz)?

J(a) =

The most robust filter is the one that maximizes .J(«). Note that
J(a) > 0 and lima—+0c J(a) = 0. Furthermore, J is bounded
since maxy, di > 0 and |d;| < oo for dl 4. It follows that J ()
has at least one maximum, which is attained at a gradient zero-
crossing:

aJ
Ja

2
1+ a?+2armaez)?
_2a2 (2a + 2Tman — 2r’a)]
1+ a? + 2armaz)?
s a(l —a® —2r'a)
(14 a? +2armaez)?

= 4Ay? [

= 8Ar

=0 (18)

where ' = 0rmaz/Oc. Since J(0) = 0, the solution o = 0 to
Eq. (18) does not correspond to a maximum. Furthermore, ry,qz
takes values in the discrete set {r11(1), - - - , rnn (1)} therefore, it
is not a continuous function of a and ¥ = 0 except for those
points where a discontinuity appears. Assuming that .J(«) is not
maximized at such adiscontinuity point, its maximum value must
be attained for (1 — o?) = 0, ie. for & = +1 or —1.

4. OPCA NEURAL NETWORKSFOR BSS

Three neural models for OPCA have been proposed by Diaman-
taras and Kung [14]. Here we shall use the third model originally
proposed in [15]. For a pair of signas u(k), v(k) alinear neu-
ron model can extract the principal oriented eigenvector (i.e. the
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one associated with the largest eigenvalue). The learning rule is
described by the following equations:

Aw(k) = pluk)a(k) —E(k)v(k)b(k)] (19)
Ag(k) B (Iw(k)|I” = &(k)) (20)

where 3 isasmall positivelearning rate parameter and 3 issmaller
than 8 (eg. B = (/3). The values a(k) and b(k) denote the
neuron output activations when the inputs are u(k) and v(k), re-
spectively:
a(k) =
b(k) =

w(k) u(k)
w(k) v (k)

Once the model has successfully extracted a vector w parallel
to e; the remaining components are obtained by employing suc-
cessive deflation tranformations (see [ 14][chapter 7] for details).

5. RESULTS

In the experiments described below, we chose thefilter h = [1, —1]
with asinglelag ! = 1. The estimation convergence for a set of 4
signals are shown in Figure 1.

Every sub-figure corresponds to a row of the estimated abso-
lute matrix WA.. Once theiterations stop, all the row elementsare
normalized by dividing with the maximum row element. Therefore
their value variesfrom 0 to 1. Moreover, the same technique is ap-
pliedin every estimated W; during theiterations, using awaysthe
element corresponding to the final maximum, as denominator.

The same experiment was conducted using thefilter A = [1, —3]
with asingle lag. Results are shown in 2.

It can be witnessed that in the case that the filter h = [1, —1]
was used, the estimation isof higher quality, while the convergence
is slow. On the other hand the convergence using the filter h =
[1, —3], isfaster, while the estimation accuracy is poor.

6. CONCLUSIONS

The instantaneous BSS problem is known to be related to second-
order statisticsmethods. However, all earlier approaches have con-
sistently used two steps. one preprocessing (sphering) step fol-
lowed by a second-order analysis method such as SVD [1] or PCA
[13]. The OPCA approach proposed in this paper has the advan-
tage that no preprocessing step is required as sphering isimplicitly
incorporated in the signal-to-signal ratio criterion which is opti-
mized by OPCA. Furthermore, the method can be implemented
using asimple neural approach, making it more intuitively appeal-
ing compared to other neural approaches.
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Fig. 1. Dynamic behavior of the four neurons in the sequential
OPCA model. The plot depicts the normalized inner product of
each neuron with the desired solution for 50 sweeps, using the
filter h = [1, —1]. Each sweep contains N = 2000 data points.
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Fig. 2. Dynamic behavior of the four neurons in the sequential
OPCA model. The plot depicts the normalized inner product of
each neuron with the desired solution for 50 sweeps, using the

filter h = [1, —3]. Each sweep contains N = 2000 data points.
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