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ABSTRACT

In this paper, we present an adaptive algorithm
that blindly separates mixtures of finite-alphabet
sources given knowledge of the source alphabet
and distribution. The algorithm is a nonlinear
recursive least-squares procedure that employs a
simple and numerically-robust square root House-
holder update. Simulations verify that the algo-
rithm can separate large-scale noisy mixtures of fi-
nite-alphabet sources without any knowledge of the
number of sources in the mixture.

1. INTRODUCTION

Blind source separation (BSS) is a signal processing task in
which one or more desired signal components are extracted
from linear mixtures of the signals. The problem can be
stated as follows: Given a sequence of p-dimensional real-
valued measured vectors x(n) = [z1(n) --- z,(n)]7 as

x(n) = As(n)+n(n), (1)

where A is an unknown (p x m) matrix, s(n) =
[s1(n) --- $m(n)]" contains m independent source signals
si(n), and n(n) contains p jointly-Gaussian noise signals
ni(n), find an (m X p) linear transformation B such that

y(n) = Bx(n) 2)

contains estimates of the sources in s(n), possibly with an
arbitrary shuffling of their order and with arbitrary non-
zero scaling factors. When 7(n) = 0, this solution becomes

BA = &D (3)

where @ is an (mxm) permutation matrix and D is a diago-
nal nonsingular scaling matrix. Blind source separation has
received much recent research attention, and several practi-
cal applications have been identified in diverse fields includ-
ing medicine, communications, data mining, and acoustics.

All block-based and on-line BSS procedures assume that
the signals to be separated have particular statistical or
structural properties. The accuracy of these source signal
assumptions determines how well a given separation method
will work for a given source mixture. In this paper, we shall
focus on methods which assume that the samples of each
source signal are independently-drawn from a finite alpha-
bet § = {S1,Ss,. .., S, }, such that the probability density
function (p.d.f.) of any s;(n) is pi(s) = >, pid(s — Si),
where p; > 0 and El pi = 1. Such signals appear frequently
in digital communication tasks.

Source separation algorithms that exploit the finite-
alphabet properties of the sources are described in [1, 2].

0-7803-7663-3/03/$17.00 ©2003 IEEE

I-729

These procedures attempt to model the measured sequence
x(n) as

x(n) = AS(n), 4)

where A and S(n) are estimates of A and s(n), respec-

tively. The procedures alternate between the estimates A
and {s(n)}, where the entries of s(n) are constrained to
values within the alphabet. Both block-based and sequen-
tial (snapshot by snapshot) methods are described. These
methods have the following drawbacks:

e The complexity of the source enumeration step within
the iterative least squares with enumeration (ILSE) al-
gorithm is exponential in the number of source values
being estimated. Even in the on-line version of this
algorithm [1] where a single snapshot s(n) is being es-
timated, one has to enumerate all ™ possibilities, a
prohibitive task even if ¥ and m are only somewhat
large.

e The methods in [1] do not prevent identical sources
from being extracted several times within the proce-

dure. Special tricks are required to guarantee that A
remains full-rank.

e The block methods in [1, 2] incur a significant compu-

tational burden in updating the matrix A, despite the
fact that its value is ultimately discarded.

In this paper, we develop an adaptive BSS procedure
that extracts multiple spatially-uncorrelated uncorrelated
finite-alphabet sources from noisy mixtures of these sources.
The algorithm is closely related to recently-derived recur-
sive maximum likelihood procedures for estimating finite-
alphabet sources [3]. The procedure consists of m parallel
nonlinear recursive least-squares estimators, in which the
uniqueness of the m source estimates are ensured through
a coeflicient orthogonality condition. Simulations indicate
the robust and accurate separation capabilities of the pro-
cedure on a large-scale (20 source) noisy mixture without
any knowledge of the number of sources in the mixture.

2. BLOCK-BASED SEPARATION OF
FINITE-ALPHABET SOURCES

The adaptive method to be derived is closely related to the
block-based BSS techniques described in [3]. As such, we
review the relevant ideas in this section. Suppose p = m,
and let

S [s(1) - s(N)] = [s - sp]" (5)
X [x(1 x(N)] (6)
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denote the (m x N)-dimensional source and mixed signal
matrices, respectively, where

s; = [si(1) - si(N)]. (7)

In later sections, we shall assume that each source signal
vector s; contains spatially-independent signals, such that
E{si(n)sj(n)} = 0, although such an assumption is not
required for the remainder of this section.

Given the mixture model in (1) assuming no noise
(n(n) = 0), we can write

X = AS. (8)

The separation method in [3] uses the following recur-
sive procedure for estimating a single row of S from X:
For an initial guess 5, whose elements satisfy so(n) €

{51,83,...,58.},
S = 8EX'XXN)T'X), 1=0,1,2,... (9)

where the vector nonlinearity g(-) independently maps each
argument to the nearest value in the set {S1,S2,...,5,}.

It can be easily shown that

xT(xx")"'x s”(ss™)"'s (10)

such that the algorithm in (9) can be written as
/§\l+1 = E(EIST(SST)_IS)a l= 07172)"' (11)

This update does not depend on the mixing matrix A. The
convergence behavior of the algorithm depends only on the
initial source sequence estimate 50 and the source matrix
S. This property is analogous to the equivariant property
shared by several recently-developed BSS procedures that
rely on statistical independence of the sources [4, 5].

Kung et al have proven that the iterative procedure in (9)
converges to a solution satisfying the fixed-point condition

s = g(s) (12)

Moreover, this solution corresponds to s = d§j for some
1 < j < m and a value of d satisfying |d| = 1. In other
words, the resulting fixed point is a valid BSS solution. For
more details on these results, see [3].

3. BSS USING NONLINEAR
LEAST-SQUARES ESTIMATION

The technique in (9) calculates an entire block of source
signal samples in §, using a block of N received signal mea-
surements in X. In this section, we consider a slightly dif-
ferent formulation to this task. In this new formulation, the
following variations are made:

a) The input signal block size is allowed to grow, such
that the (rm x n) data matrix X(n) is defined as

X(n) = [X(n—-1) x(n)]. (13)

The source signal estimate vector therefore also grows
with the size of the data matrix X(n).

b) Only a single iteration of the fixed-point update is al-
lowed for each signal sample. Thus, once a source sig-
nal sample is estimated, its estimate is not changed via
additional updates. The (1 xn) estimated source signal
vector is therefore defined as

s(n) = [s(n—1) s(n)]. (14)

c) The vector quantizer nonlinearity g(-) is allowed to be
different for each element of s(n) so that its accuracy
can be tuned for each extracted source signal sample
estimate.

With these variations, the goal of the iterative algorithm
can be stated as follows: Given X(n) and s(n—1), calculate
the estimate s(n).

To derive the proposed algorithm, consider the algorithm
in (9) where N = n — 1, and define the weight vector

b(n—1)=X(n-1)X"(n—-1))"'X(n—-1)8" (n—1). (15)

If b(n—1) is accurate enough, then (12) holds for n—1 = Nj;
i.e.

sn—-1) = gb'(n-1)X(n-1) (16)
= b 'n-1)X(n-1). (17)

Therefore, we can use b(n — 1) to produce an accurate es-
timate of the current source sample as

5(n) = gnl(y(n)) (18)
y(n) = bT(n-1)x(n). (19)

Here, gn(y) is a quantizer nonlinearity whose input gain is
specifically tuned for the value of y(n). The new weight
vector is then computed in accordance to (15) as

b(n) = (X()X'(n)) X (n)s(n), (20)

where X (n) and s(n) are as defined in (13)—(14). Equs.
(18)—(20) define the iterative single-source estimation pro-
cedure.

The structure of the fixed-point recursive estimation pro-
cedure in (18)—(20) is classic in algorithmic form. It is a
nonlinear recursive least-squares procedure that minimizes

Ta(b(m) = Y [5(k) = b" (m)x(k)[’ (21)
k=1

where 5(k) = gx(b” (k — 1)x(k)). Thus, it can be efficiently
implemented in a sample-by-sample update procedure us-
ing standard recursive least-squares methods. The connec-
tion with existing least-squares methods also allows a sim-
ple modification that improves the convergence behavior of
the iterative procedure. Since the procedure is intended to
produce more-accurate source signal estimates s(n) as n is
increased, it is desirable to discount less-recent errors in fa-
vor of more-recent ones. For this reason, we introduce the
exponentially-weighted cost function

n

Ju(b(n)) = Y A"F[(k) - b (m)x(R)P, (22)

k=1

where 0 < A < 1. With this change, the iterative algo-
rithm can be implemented using any number of recursive
least-squares methods. The most well-known is the O(m?)
procedure that iteratively updates the Kalman gain vector

k(n) = Rux(n)x(n) (23)

where 9 > 0 and

Rox(n) = roN'T+ > X" *x(k)x"(k).  (24)
k=1
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The corresponding equations are

y(n) = b’ (n—1)x(n) (25)
e(n) = gn(y(n)) —y(n) (26)

_ R (n — 1)x(n)
kn) = A+ xT(n)Rak(n — D)x(n) 27
b(n) = b(n—1)+e(n)k(n) (28)
RL(n) = %(R;i(n— 1) — k(n)x" (MR (n — 1)}29)

In this update, the design of the scalar quantizer g, (y) is
critical to the algorithm’s success. In particular, the scal-
ing of the input to the quantizer has to be accurate for the
system’s separation performance to improve with increasing
data memory. For these reasons, we suggest the following
design. Specify a fixed quantizer g(y) for unit-variance in-
put, so that if E{s?(k)} = 1,

9(si(k)) = si(k). (30)
Then, estimate the power of the output signal as
1n) = M -1)+(1-Ny’(n) (31)
Finally, set
G(um) = g < v ) . (32)
v(n)

4. BSS FOR PARALLEL EXTRACTION OF
FINITE ALPHABET SOURCES

We now shall consider m BSS systems that blindly extract
m sources in parallel. The simplest such implementation
would run m identical systems to that above, each with a
different weight vector b;(n), 1 < ¢ < m. Define the matrix

B(n) = [bi(n) - bu(n)]". (33)

Then, the coefficient updates for the simplest form of this
parallel update is

y(n) = B(n—1)x(n) (34)
e(n) = guly(n))—y(n) (35)
B(n) = B(n—1)+e(n)k’(n), (36)
where g, (y(n)) = [g1.n(y1(n)) -+ gmn(ym(n))]",
Gini() = g (M> (37)
7i(n)
vi(n) = Mi(n—1)+ (1= Ayi(n), (38)

and k(n) is computed as before. The primary drawback of
this procedure is that B(n) is not guaranteed to be non-
singular; in other words, two or more rows of B(n) could
converge to be co-linear and extract the same source s;(n)
at multiple outputs.

We now present an algorithm modification to avoid such
difficulties. The algorithm employs the Householder RLS
algorithm described in [6] (see also [7]). This algorithm
calculates two (m X m) matrices P(n) and W (n) such that

P(n)Rxx(n)P'(n) = 1 (39)
W(n)P(n) = B(n). (40)

The coefficient updates for P(n) and W(n) can be deter-
mined directly from the results in [6] and are listed below.

v(n) = P(n—1)x(n) (41)

y(n) = W(n—1)v(n) (42)

u(n) = PH(n—1)v(n) (43)

1

n) = 44

«m) A+ [v(n)[]? + A+ [[v(n)]]?) (0

P = = (P(w) ~ )y (mu” (n) (45)
W(n) = VAW(n—1)

— B VM) (y(n)) — VX (n)y(n)| v¥(n)46

AT C(n)y(n)| v'(n)46)

The algorithm in (41)—(46) is mathematically-equivalent
to that in (34)—(36). Thus, this new algorithm form pro-
vides no advantages as given other than the robust numeri-
cal behavior that it provides, because it is a square-root RLS
algorithm. The key idea is to use the structure of W(n) to
define a new vector nonlinearity g,(y(n)) that guarantees
the uniqueness of the source signal estimates s(n) over time.
The new nonlinearity uses the following facts. Because of
the whitening properties provided by P(n) as exemplified
n (39) and the uncorrelatedness of the elements of s(n), it
can be shown when 7n(n) = 0 that W(n) will extract unique
sources in y(n) if and only if the rows of W(n) are orthog-
onal. If this is the case, B(n) will be full-rank. Therefore,
we propose to define an orthogonalized output signal vector

y(n) as
Y(n) = W(n—1)v(n), (47)

where W (n — 1) is created by orthogonalizing the rows of
W(n — 1) using a Gram-Schmidt procedure. In this proce-
dure,

W1 = W1 (48)

W = ZN W) Wi (49)

llwill?

where we have suppressed the (n— 1) time indices for nota-
tional simplicity. Then, g, (y(n)) is replaced by g.(y(n)),

where
Gon(in) = g(M) (50)
vi(n)
5 = Niln-1)+(1-NiEw)  (61)

All other aspects of the algorithm remain the same.

In this modified algorithm, the orthogonality conditions
on W(n) is used to specify nonlinear source estimates that
are orthogonal within the least-squares cost function, al-
though the orthogonality conditions are not imposed on
W (n) directly at each iteration. This choice is motivated by
the fact that, in practice, the measured mixtures x(n) will
be noisy, and hence the rows of W (n) will not be exactly or-
thogonal. The vector quantizer nonlinearity g, (y(n)), how-
ever, will be accurate enough to adapt the value of W(n)
towards an accurate source separation solution with unique
source estimates at each output. Simulations in the next
section illustrate this claim.
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Fig. 1: Normalized inter-channel interferences (ICIs) for the

first twenty outputs of the separation system in the simula-
tion example. (For each subplot, the z-axis is the number
of iterations, and the y-axis is the normalized ICI in dB.)

5. SIMULATIONS

We now explore the behavior of the proposed algorithm
via simulations. In these simulations, each s;(k) of
s(k) is generated as an independent sequence of unit-
variance 4—PAM finite-alphabet symbols, where & =
{-3/5,-1//5,1//5,3//5}. Twenty sources are mixed
using a (30 x 20)-dimensional mixing matrix with ran-
dom left and right orthonormal singular vector matri-
ces and with logarithmically-spaced singular values given
by {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, ..., 500, 1000, 2000}.
Uncorrelated Gaussian noise with standard deviation o, =
0.001 was added to each mixture to obtain the measured
signals in x(n). These signals were then processed by the
proposed algorithm with A = 0.995 and P(0) = W(0) =1,
where the unit-variance quantizer for 4-PAM signals is

oy) = %sgnm{usgn (|y|—%>}, (52)

and sgn(y) is the sign function. Note that a 30-by-30 sepa-
ration system was applied to the measurements; no knowl-
edge of the number of sources in the mixture was assumed.

Fifty simulations were run to verify the performance of
the proposed algorithm in this scenario. Shown in Fig. 1
are the convergence trajectories of the measured normal-
ized inter-channel interferences (ICIs) for the first twenty
outputs of the system from a typical simulation run, de-
fined as

m

2
_ Z cij(n)
Jj=1 1<k<m

where ¢;;(n) is the (7, j)th element of the combined system
matrix C(n) = W(n)P(n)A. As can be seen, the normal-
ized ICI for each source is reduced to about -20 dB or less
after about 25000 iterations. Fig. 2 shows the squared el-
ements {cj;(n)/c’.;} of every row of the combined system
matrix at the end of the simulation run, where ¢,y = 1.
Several features of these plots are noteworthy, namely:

e Every source is represented at one and only one system
output.

{1,6,11,16,21,26}  {2,7,12,17,22,27}  {3,8,13,18,23,28}  {4,9,14,19,24,29}  {5,10,15,20,25,30}
0

0 0 0 0
© 20 -20 -20 -20 -20

=

" -40 -40 -40 -4}, A\ 40 A\

0 10 20 O 10 20 O 10 20 0 10 20 0 10 20

(] 10 20 0 10 20 0 10 20 0 10 20 0 10 20

R Q0 10 20 0 2 2 0 10 200 10 20 0 10 2
& 20 -20 -20 -20 -20

&

= -40 -40 -40 -40 A/\ -40 /\ M
0 10 20 0 10 20 0 10 2 0 10 20 10 2

o
&
&
o 40 -40 -40 -40 -40

(] 10 20 0 10 20 0 10 20 0 10 20 0 10 20

é—AoW—Ao/\\M -40 ’40/\IJ\/\/W/’4°/\M

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Fig. 2: The thirty rows of the squared elements of the com-
bined system matrix at the end of the simulation example.
(For each subplot, the z-axis is the column number j, and

the y-axis is c}j(n)/ci.; in dB.)

e The power of each output source is unity.

e The first twenty outputs contain the twenty sources in
random permuted order.

e The last ten outputs are nearly zero—the residual com-
ponents are at a -20dB level.

e The residual interference from any unwanted source is
at most -20 dB.

In short, the algorithm achieves a practical solution, with
m pertectly-scaled sources in the first m outputs and zero
outputs otherwise. Out of the 50 runs, 49 attained this
result after 30000 iterations; the one remaining simulation
run had extracted 19 of the 20 sources after 30000 iterations.

6. CONCLUSIONS

A nonlinear recursive least-squares algorithm for blindly-
separating mixtures of spatially-uncorrelated finite-alpha-
bet source signals has been described. The algorithm is sim-
ple, numerically-robust, and works without any knowledge
of the number of sources in noisy mixtures. Simulations
verify its capabilities in a large-scale separation task.
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