
DIFFERENTIAL LEARNING AND RANDOM WALK MODEL

Seungjin Choi

Department of Computer Science and Engineering, POSTECH, Korea

seungjin@postech.ac.kr

ABSTRACT

This paper presents a learning algorithm for differential decorre-
lation, the goal of which is to find a linear transform that mini-
mizes the concurrent change of associated output nodes. First the
algorithm is derived from the minimization of the objective func-
tion which measures the differential correlation. Then we show
that the differential decorrelation learning algorithm can also be
derived in the framework of maximum likelihood estimation of a
linear generative model with assuming a random walk model for
latent variables. Algorithm derivation and local stability analysis
are given with a simple numerical example.

1. INTRODUCTION

The Hebbian rule has been widely used in the domain of unsuper-
vised learning where no target value is available. It is a correlation
learning that is based on the hypothesis of Hebb [7] which states
that the concurrent activation of neurons increases the strength of
connection between them. The Hebbian rule was shown to be
an output variance maximizer. In contrast to the Hebbian rule,
the anti-Hebbian rule updates the synaptic weights in such a way
that cross-correlations between associated nodes are minimized.
Hence, it is an output variance minimizer and decorrelates associ-
ated output variables.

As an alternative to the Hebbian rule, the differential Hebbian
rule was studied in [8]. The motivation of the differential Hebbian
rule is that concurrent change, rather than just concurrent activa-
tion, more accurately captures the concomitant variation that is
central to inductively inferred functional relationships [8]. Under
the assumption of Martingale processes, the differential Hebbian
rule was shown to be a covariance learning rather than a correla-
tion learning. The differential anti-Hebbian rule is a direct modi-
fication of the anti-Hebbian and updates the synaptic weights in a
linear feedback network in such a way that the concurrent change
of neurons is minimized. In this sense one can argue that the dif-
ferential Hebbian rule is an output differential variance minimizer.
It was first proposed in [4] and its generalization with adopting
a nonlinear function was applied to the problem of independent
component analysis [4].

A natural gradient algorithm for differential decorrelation was
recently developed in a fully connected linear feedback network
[5]. It was derived from the minimization of the objective func-
tion which measures the differential correlation. In this paper we
first consider a linear feedforward network and derive a natural
gradient differential decorrelation algorithm using the same objec-
tive function in [5]. Then we provide more general framework
for differential learning. We show that the differential decorrela-
tion learning algorithm can also be derived in the framework of
maximum likelihood estimation of a linear generative model with

assuming a random walk model for latent variables. This gives
you more theoretical insight to the method of differential learning.
Algorithm derivation and local stability analysis are presented.

2. DIFFERENTIAL LEARNING

2.1. Differential Anti-Hebbian Rule

Let us consider a linear feedback network (without self-feedback
connections) whose ith output node yi(t) is described by

yi(t) = xi(t) +
∑
j �=i

wijyj(t). (1)

The concurrent change of two output neurons yi(t) and yj(t) is
measured by the differential correlation defined by E{y′

i(t)y
′
j(t)}

where

y′
i(t) =

dyi(t)

dt
, (2)

or its discrete-time counterpart is y′
i(t) = yi(t)−yi(t−1) which is

its first-order approximation. The differential variance is also de-
fined by E{y′2

i (t)} which is the variance of differentiated variable
(yi is assumed to be a zero-mean random variable).

The differential anti-Hebbian rule is a direct modification of
the anti-Hebbian rule. As a differential variance minimizer, the
differential anti-Hebbian rule [4] has the updating equation that
has the form

wij(t + 1) = wij(t) − ηty
′
i(t)y

′
j(t), for i �= j, (3)

where ηt > 0 is the learning rate.

2.2. Adaptive Differential Decorrelation: A Natural Gradient
Algorithm

Let us consider a linear feedforward network whose output vector
y(t) ∈ IRn is described by

y(t) = W x(t), (4)

where x(t) ∈ IRn is the input vector to the network and W ∈
IRn×n is the synaptic weight matrix.

In order to derive an adaptive decorrelation algorithm which
minimizes the differential correlation between output nodes, we
consider the following objective function:

J1 (W ) =
1

2

{
n∑

i=1

log E{y′2
i (t)}

− log det
(
E

{
y′(t)y′T (t)

})}
. (5)
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The objective function (5) is a non-negative function which takes
minima if and only if E{y′

i(t)y
′
j(t)} = 0, for i, j = 1, . . . , n, i �=

j. The objective function (5) a direct consequence of the Hadamard’s
inequality. In fact the objective function (5) is a slight modification
of the one that was used in [9]. Output values are simply replaced
by their differentiated values.

In order to find a minimum for the objective function (5), we
employ the natural gradient learning method that was shown to be
useful in [1, 6].

We calculate the total differential dJ1(W ) due to the change
dW

dJ1(W ) = J1(W + dW ) − J1(W )

=
1

2
d

{
n∑

i=1

log E{y′2
i (t)}

}

−1

2
d

{
log det

(
E{y′(t)y′T (t)}

)}
,

=
n∑

i=1

E{y′
i(t)dy′

i(t)}
E{y′2

i (t)} − tr{(W −1dW }

−1

2
d {log det Cx′x′(t)} , (6)

where Cx′x′(t) is the differential correlation matrix of x(t) de-
fined by

Cx′x′(t) = E
{

x′(t)x′T (t)
}

. (7)

Define a modified differential matrix dV as

dV = dW W −1. (8)

We also define a differential variance matrix Λ(t) which is a diag-
onal matrix whose ith diagonal element λi(t) is estimated by

λi(t) = (1 − δ)λi(t − 1) + δy′2
i (t), (9)

for some small δ (say, δ = 0.01).
With these defined matrices, the total differential dJ1(W ) can

be written as

dJ1(W ) = E{y′T (t)Λ−1(t)dV y′(t)} + tr{dV }
+d {log det Cx(t)} . (10)

Hence, the gradient of the objective function (5) with respect to
the modified differential matrix dV is given by

dJ1(W )

dV
= E

{
Λ−1(t)y′(t)y′T (t)

}
− I (11)

The stochastic gradient descent method leads to the updating rule
for V that has the form

V (t + 1) = V (t) + ηt

{
I − Λ−1(t)y′(t)y′T (t)

}
, (12)

where ηt > 0 is the learning rate. It follows from the definition (8)
that the learning algorithm for W is given by

W (t + 1) = W (t) + ηt

{
I − Λ−1(t)y′(t)y′T (t)

}
W (t), (13)

which is a natural gradient algorithm for adaptive differential decor-
relation. The algorithm (13) is a differential version of the equiv-
ariant nonstationary source separation algorithm in [6].

We can also consider a fully connected feedback network where
the input-output relation is given by

y(t) = (I − W )−1 x(t). (14)

In a similar manner, the natural gradient algorithm which finds a
minimum solution to the objective function (5), can be derived [5].
It has the form

∆W (t) = W (t + 1) − W (t)

= ηt {I − W (t)}
{

I − Λ−1(t)y′(t)y′T (t)
}

.(15)

Remark
The learning algorithm (13) can also be written as

∆W (t) = ηtΛ
−1(t)

{
Λ(t) − y′(t)y′T (t)

}
W (t). (16)

Thus this differential decorrelation algorithm has properties inher-
ited from the nonholonomic ICA algorithms [2].

3. RANDOM WALK MODEL

Let’s consider a linear generative model where the observation
vector x(t) ∈ IRn is modelled as a linear transform of latent vari-
ables, i.e.,

x(t) = As(t), (17)

where s(t) is an n-dimensional vector, each element of which is
latent variable. Latent variables are assumed to be spatially inde-
pendent. In source separation or independent component analysis
(ICA), latent variables are called sources.

Now we introduce a random walk model for latent variables
which is a simple Markov chain, i.e.,

si(t) = si(t − 1) + εi(t), (18)

where the innovation εi(t) is assumed to have Gaussian distribu-
tion with zero mean and variance σ2

i , i.e., εi ∼ N (0, σ2
i ).. In

addition, innovations {εi} are assumed to be mutually indepen-
dent.

Let us consider the latent variables si(t) over N -point time
block. Define the vector si as

si = [si(0), . . . , si(N − 1)]T . (19)

Then the joint probability density function of si can be written as

pi(si) = pi (si(0), . . . , si(N − 1))

=

N−1∏
t=0

pi(si(t)|si(t − 1)), (20)

where si(t) = 0 for t < 0.
The conditional probability density of si(t) given its past sam-

ples can be written as

pi(si(t)|si(t − 1)) = qi(εi(t)), (21)

where

qi(εi) =
1√
2πσ2

i

exp

{
− ε2i

2σ2
i

}
. (22)
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Combining (20) and (21) leads to

pi(si) =

N−1∏
t=0

qi(εi(t))

=

N−1∏
t=0

qi

(
s′i(t))

)
, (23)

where s′i(t) = si(t) − si(t − 1) which is the first-order approxi-
mation of differentiation.

Take the statistical independence of latent variables and (23)
into account, then we can write the joint density p(s1, . . . , sn) as

p(s1, . . . , sn) =

n∏
i=1

pi(si)

=

N−1∏
t=0

n∏
i=1

qi

(
s′i(t)

)
. (24)

The factorial model given in (24) will be used as a optimization
criterion to derive the proposed algorithm.

4. MAXIMUM LIKELIHOOD ESTIMATION

4.1. Algorithm Derivation

Here we show that the differential decorrelation algorithm (13) can
be derived using the factorial model (24) in the framework of max-
imum likelihood estimation.

Denote a set of observation data by X = {x1, . . . , xn} where
xi = {xi(0), . . . , xi(N−1)}. Then the normalized log-likelihood
is given by

1

N
log p(X|A)

= − log |det A| + 1

N
log p(s1, . . . , sn)

= − log |det A| + 1

N

N−1∑
t=0

n∑
i=1

log qi(s
′
i(t)). (25)

Let us denote the inverse of A by W = A−1. The estimate of
latent variables is denoted by y(t) = W x(t). With these defined
variables, the objective function (that is the negative normalized
log-likelihood) is given by

J2 = − log |det W | − 1

N

N−1∑
t=0

n∑
i=1

log qi(y
′
i(t))

= − log |det W | + 1

N

N−1∑
t=0

n∑
i=1

[
[y′

i(t)]
2

2σ2
i

+
1

2
log 2πσ2

i

]
,

where si is replaced by its estimate yi. Neglecting the terms irrel-
evant to W leads to

J3 = − log |det W | + 1

N

N−1∑
t=0

n∑
i=1

[y′
i(t)]

2

2σ2
i

. (26)

If we assume that we have sufficient number of samples (i.e.,
N is sufficiently large), then the ensemble average can be approxi-
mated by the sample average. In addition, for on-line learning, we

replace the ensemble average by its instantaneous value. Under
this, the objective function (26) is simplified as

J3 = − log |det W | +
n∑

i=1

[y′
i(t)]

2

2σ2
i

. (27)

We employ a natural gradient learning method to derive an
updating rule to find a minimum of the objective function (27).
The derivation is carried out in a similar manner that was used in
Section 2.2.

We calculate the total differential dJ3(W ) due to the change
dW

dJ3(W ) = d

{
n∑

i=1

[y′
i(t)]

2

2σ2
i

}
− d {log |det W |}

=

n∑
i=1

y′
i(t)dy′

i(t)

σ2
i

− tr
{
dW W −1}

= y′T (t)Λ−1dV y′(t) − tr {dV } , (28)

where Λ is the differential variance matrix that is diagonal and its
ith diagonal element is estimated by (9). The nonholonomic basis
dV is defined in (8).

A interesting point here is that the differential dJ3(W ) is
identical to the differential dJ1(W ) even though objective func-
tions J1(W ) and J3(W ) are slightly different. Thus a natural
gradient learning algorithm which finds a minimum solution to the
objective function (27) has the form

∆W (t) = ηt

{
I − Λ−1(t)y′(t)y′T (t)

}
W (t). (29)

4.2. Differential ICA Algorithm

In general, the objective function (27) has the form

J4 = − log |det W | −
n∑

i=1

log qi(y
′
i(t)), (30)

where qi(·) is the probability density function for εi(t). The dif-
ferential decorrelation algorithm (29) is derived from assuming
qi(·) being Gaussian. Allowing qi(·) to have a general distribu-
tion, leads to the differential version of ICA algorithm that has the
form

∆W (t) = ηt

{
I − ϕ(y′(t))y′T (t)

}
W (t), (31)

where

ϕ(y′(t)) =
[
ϕ1(y

′
1(t)), . . . , ϕn(y′

n(t))
]

(32)

and

ϕi(y
′
i) = −d log qi(y

′
i)

dy′
i

. (33)

Remarks

• The algorithm (31) was derived in an ad hoc manner in [4].
Here we show that the algorithm (31) can be derived in the
framework of maximum likelihood estimation with a ran-
dom walk model.

• The algorithm (31) can be viewed as a special case of tem-
poral ICA algorithm [3] where the spatiotemporal genera-
tive model was employed.

II - 723

➡ ➡



5. LOCAL STABILITY ANALYSIS

In this section, we show that the stationary points of (29) are lo-
cally stable. To this end we calculate the Hessian d2J3 in terms of
the modified differential matrix dV and show that it is positive.

For shorthand notation, we omit the time index t in the follow-
ing analysis. The Hessian d2J3 is computed as

d2J3 = E
{

y′T dV T Λ−1dV y′ + y′T Λ−1dV dV y′
}

= E
{

y′T dV T Λ−1dy′
}

+ E
{

y′T Λ−1dV dy′
}

=
∑
i,j

λi

λj
(dvji)

2 +
∑
i,j

dvijdvji, (34)

where the statistical expectation is taken at the solution which sat-
isfies the condition E{y′

iy
′
j} = 0 for i �= j.

For a pair (i, j), i �= j, the summand in the first term in (34)
can be rewritten as

λi

λj
(dvji)

2 +
λj

λi
(dvij)

2 + 2dvijdvji

=
[

dvij dvji

] [
λj

λi
1

1 λi
λj

] [
dvij

dvji

]
, (35)

which is always non-negative. Hence d2J3 is always positive.
Therefore the algorithm (29) is locally stable around the solutions.

6. A NUMERICAL EXAMPLE

A simple numerical example is given to evaluate the validity of
the differential decorrelation algorithm (29). Three independent
colored Gaussian random variables is linearly mixed to generate
the observation vector x(t) with a differential correlation matrix

Cx′x′ =


 8.367 3.274 2.448

3.274 1.349 0.943
2.448 0.943 0.790


 . (36)

We applied the algorithm (29) with the differential variance matrix
being fixed as Σ = I and with a constant learning rate, η = .001.
Fig. 1 shows the evolution of E{y′

1(t)y
′
2(t)} as an example. Other

differential correlations were also suppressed in a similar fashion.

7. DISCUSSION

In this paper we have presented a natural gradient learning algo-
rithm for differential decorrelation, the goal of which is to mini-
mize the correlation between differentiated random variables. We
showed that the differential decorrelation algorithm could be de-
rived from learning a linear generative model by the maximum
likelihood estimation under a random walk model. We also dis-
cussed a differential version of the natural gradient ICA algorithm
and showed that it could also be derived under the random walk
model. The differential correlation algorithm (29) or the differen-
tial ICA algorithm (31) could be generalized by adopting higher-
order differentiation. This generalization is currently under inves-
tigation.
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Fig. 1. Differential correlation between y1 and y2.
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