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ABSTRACT

This paper presents a learning algorithm for differential decorre-
lation, the goa of which is to find a linear transform that mini-
mizes the concurrent change of associated output nodes. First the
agorithm is derived from the minimization of the objective func-
tion which measures the differential correlation. Then we show
that the differential decorrelation learning algorithm can also be
derived in the framework of maximum likelihood estimation of a
linear generative model with assuming a random walk model for
latent variables. Algorithm derivation and local stability analysis
are given with asimple numerical example.

1. INTRODUCTION

The Hebbian rule has been widely used in the domain of unsuper-
vised learning where no target value is available. It isacorrelation
learning that is based on the hypothesis of Hebb [7] which states
that the concurrent activation of neurons increases the strength of
connection between them. The Hebbian rule was shown to be
an output variance maximizer. In contrast to the Hebbian rule,
the anti-Hebbian rule updates the synaptic weights in such a way
that cross-correlations between associated nodes are minimized.
Hence, it is an output variance minimizer and decorrel ates associ-
ated output variables.

As an dternative to the Hebbian rule, the differential Hebbian
rulewas studied in [8]. The motivation of the differential Hebbian
rule is that concurrent change, rather than just concurrent activa-
tion, more accurately captures the concomitant variation that is
central to inductively inferred functional relationships [8]. Under
the assumption of Martingale processes, the differential Hebbian
rule was shown to be a covariance learning rather than a correla-
tion learning. The differential anti-Hebbian rule is a direct modi-
fication of the anti-Hebbian and updates the synaptic weightsin a
linear feedback network in such away that the concurrent change
of neuronsis minimized. In this sense one can argue that the dif-
ferential Hebbian ruleis an output differential variance minimizer.
It was first proposed in [4] and its generaization with adopting
a nonlinear function was applied to the problem of independent
component analysis[4].

A natural gradient algorithm for differential decorrelation was
recently developed in a fully connected linear feedback network
[5]. It was derived from the minimization of the objective func-
tion which measures the differential correlation. In this paper we
first consider a linear feedforward network and derive a natura
gradient differential decorrelation algorithm using the same objec-
tive function in [5]. Then we provide more general framework
for differential learning. We show that the differential decorrela-
tion learning algorithm can also be derived in the framework of
maximum likelihood estimation of alinear generative model with
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assuming a random walk model for latent variables. This gives
you more theoretical insight to the method of differential learning.
Algorithm derivation and local stability analysis are presented.

2. DIFFERENTIAL LEARNING

2.1. Differential Anti-Hebbian Rule

Let us consider a linear feedback network (without self-feedback
connections) whose ith output node y; (t) is described by

yi(t) = zi(t) + Y wijy; (8). ()
J#i
The concurrent change of two output neurons y; (¢) and y;(t) is

measured by the differential correlation defined by E{y; (¢)y;(¢)}
where

i) = 20, @

or itsdiscrete-time counterpart isy; (¢) = v;(t)—y; (t—1) whichis
its first-order approximation. The differential variance is also de-
fined by E{y.?(t)} whichisthe variance of differentiated variable
(y; is assumed to be a zero-mean random variable).

The differential anti-Hebbian rule is a direct modification of
the anti-Hebbian rule. As a differential variance minimizer, the
differential anti-Hebbian rule [4] has the updating equation that
has the form

wij(t +1) = wi;(t) — neyi()y; (), fori # j, ®3)
wheren, > 0 isthelearning rate.
2.2. Adaptive Differential Decorrelation: A Natural Gradient
Algorithm

Let us consider alinear feedforward network whose output vector
y(t) € R™ isdescribed by

yt) =

where x(t) € IR" is the input vector to the network and W €
IR™*™ isthe synaptic weight matrix.

In order to derive an adaptive decorrelation algorithm which
minimizes the differential correlation between output nodes, we
consider the following objective function:

% {i log E{y;* ()}
— log det (E {y'(t)y'T(t)}> } G

W (t), (4)

S (W) =
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The objective function (5) is a non-negative function which takes
minimaif and only if E{y;(t)y;(¢)} =0,fori,j =1,...,n, i #
4. Theobjectivefunction (5) adirect consequence of the Hadamard's
inequality. Infact the objective function (5) isadlight modification
of the one that was used in [9]. Output values are simply replaced
by their differentiated values.

In order to find a minimum for the objective function (5), we
employ the natural gradient learning method that was shown to be
useful in[1, 6].

We calculate the total differentia d.7: (W) due to the change
dw

dJ (W) TJ(W +dW) — J1 (W)

_ %d {Zzn; log E{y?(ﬂ}}
_%d {logdet (E{y' ()™ (0}) },

IO 1) S
= 2 EpEey VT
~ 5 {logdet Crur (1)} (6)

where C /. (t) is the differential correlation matrix of x(¢) de-
fined by

Corr () = B{a (2" ()} ™
Define amodified differential matrix dV as
v =dwWw . (8)

We also define adifferential variance matrix A (t) whichisadiag-
onal matrix whose ith diagonal element \;(t) is estimated by

Ai(t) = (1= &)\t — 1) + sy (1), 9)

for some small § (say, 6 = 0.01).
With these defined matrices, thetotal differential d.7: (W) can
be written as

d(W) = E{y" (AT (®)dVy' (1)} +tr{dV}

+d {logdet C,(t)}. (10)
Hence, the gradient of the objective function (5) with respect to
the modified differential matrix dV' is given by

O —p{aA oy w0} -1

The stochastic gradient descent method leads to the updating rule
for V' that hasthe form

Vit )=V +n {I-A" 0y 0y 0} 12

wheren; > 0isthelearning rate. It follows from the definition (8)
that the learning algorithm for W' is given by

W+ 1) =Wo) +n{I-A" Oy Oy O} W), 13
whichisanatural gradient algorithm for adaptive differential decor-

relation. The algorithm (13) is a differential version of the equiv-
ariant nonstationary source separation algorithm in [6].

We can also consider afully connected feedback network where
the input-output relation is given by

y(t) =T - W) a(t). (14)

In a similar manner, the natural gradient algorithm which finds a
minimum solution to the objective function (5), can be derived [5].
It has the form

AW () = W({t+1)—W(t)

=W eI - A7 Oy Oy (1) 15)

Remark
The learning algorithm (13) can also be written as

AW () = A~ O {AD -y Oy O} W), (19

Thus this differential decorrelation algorithm has propertiesinher-
ited from the nonholonomic ICA agorithms[2].

3. RANDOM WALK MODEL

Let's consider a linear generative model where the observation
vector z(t) € R™ ismodelled as alinear transform of latent vari-
ables, i.e,,

xz(t) = As(t), (17)

where s(t) is an n-dimensional vector, each element of which is
latent variable. Latent variables are assumed to be spatially inde-
pendent. In source separation or independent component analysis
(ICA), latent variables are called sources.

Now we introduce a random walk model for latent variables
which isasimple Markov chain, i.e.,

Si(t) = Si(t — 1) + €; (t), (18)

where the innovation ¢;(t) is assumed to have Gaussian distribu-
tion with zero mean and variance o7, i.e,, ¢; ~ N(0,07).. In
addition, innovations {e;} are assumed to be mutually indepen-
dent.

Let us consider the latent variables s;(t) over N-point time
block. Define the vector s; as

si = [5i(0),...,5:(N —1)]". (19)

Then the joint probability density function of s; can be written as

pi(si) = pi(si(0),..., s (N —1))
= I pi(si®)]si(t — 1)), (20)

where s;(¢) = 0for¢ < 0.
The conditional probability density of s;(¢) given its past sam-
ples can be written as

pi(si()si(t —1)) = q(e(?)), (21)
where
1 €2
qi(€;) = \/W exp {72012 } . (22)
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Combining (20) and (21) leadsto
pi(si) = ][] eu(a(®)
t=0

= g (si(t))) , (23)

where s;(t) = s;(t) — s;(t — 1) which is the first-order approxi-
mation of differentiation.

Take the statistical independence of latent variables and (23)
into account, then we can write the joint density p(s1,...,8n) 8

n
HPi(S
" n

— H H qi (s;(t)) . (24)

The factorial model given in (24) will be used as a optimization
criterion to derive the proposed algorithm.

p(81,...,8n) =

4. MAXIMUM LIKELIHOOD ESTIMATION

4.1. Algorithm Derivation

Herewe show that the differential decorrelation algorithm (13) can
be derived using the factorial model (24) in the framework of max-
imum likelihood estimation.

Denote a set of observation databy X = {x1,...,x,} where
z; = {x:(0),...,2;(N—1)}. Thenthenormalized log-likelihood
isgiven by

+ logp(¥]4)

1
= —logl|det A| + —logp(sl,l.wsn)

—log |det A + — Z ogqi(si(t)). (25)

Let usdenotetheinverseof A by W = A~!. Theestimate of
latent variables is denoted by y(t) = W x(t). With these defined
variables, the objective function (that is the negative normalized
log-likelihood) is given by

N—1 n
1
J2 = —log|det W| — N Z Zlong yi(t
t=0 =1
1 N—1 n 1
= —logl|det W |+ N 2 ; log27raZ ,

where s; isreplaced by its estimate y;. Neglecting the termsirrel-
evant to W leadsto

N—1 n / 2
Js = —log|det W| + L S [y;g] . (26)

t=0 =1

If we assume that we have sufficient number of samples (i.e.,
N issufficiently large), then the ensemble average can be approxi-
mated by the sample average. In addition, for on-line learning, we

replace the ensemble average by its instantaneous value. Under
this, the objective function (26) is simplified as

i (1))
201.2 '

Js = —log|det W[+ > (27)
i=1

We employ a natural gradient learning method to derive an
updating rule to find a minimum of the objective function (27).
The derivation is carried out in a similar manner that was used in
Section 2.2.

We calculate the total differential d.75(W
dw

) due to the change

AW = {Z L

} — d{log |det W}
- iiyé(tﬁyl() tr {dWwW '}

/

= yT(t)A”

’ﬁ

LaVy'(t) — tr {dV'}, (28)

where A isthe differential variance matrix that is diagonal and its
ith diagonal element is estimated by (9). The nonholonomic basis
dV isdefinedin (8).

A interesting point here is that the differential dJ3(W) is
identical to the differential d.7: (W) even though objective func-
tions J1 (W) and J3(W) are dightly different. Thus a natural
gradient learning algorithm which finds aminimum solution to the
objective function (27) has the form

AW () =n {1 - A7y Oy O WO, ()

4.2. Differential ICA Algorithm

In general, the objective function (27) has the form

Js = —log|det W| — Z log gi (yi(t)), (30)
i=1

where ¢;(+) is the probability density function for ¢;(¢). The dif-
ferential decorrelation agorithm (29) is derived from assuming
q:i(-) being Gaussian. Allowing ¢;(-) to have a general distribu-
tion, leads to the differential version of ICA algorithm that has the
form

AW (t) = e {T = oy (H))y" (1)} W (), 3D
where
ey’ (1) = [pr(yi (1)), -, on(yn(t))] (32
and
ei(yi) = —dloiigz(y’{)- (33
Remarks

e Thealgorithm (31) was derived in an ad hoc manner in [4].
Here we show that the algorithm (31) can be derived in the
framework of maximum likelihood estimation with a ran-
dom walk model.

e The algorithm (31) can be viewed as a special case of tem-
poral ICA agorithm [3] where the spatiotemporal genera-
tive model was employed.
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5. LOCAL STABILITY ANALYSIS

In this section, we show that the stationary points of (29) are lo-
cally stable. To this end we calculate the Hessian d2 7 in terms of
the modified differential matrix dV' and show that it is positive.

For shorthand notation, we omit thetimeindex ¢ in the follow-
ing analysis. The Hessian d2 7 is computed as

&P = E{y'TdVTA’ldVy’+y'TA71dVdVy’}

E{y"av ATy} + E{y" A" avay'}
= > i\_ (dvji)® + ) dvijd;i, (34)

i Y ij

where the statistical expectation istaken at the solution which sat-
isfies the condition E{y;y;} = 0 fori # j.

For apair (i,7), ¢ # j, the summand in the first term in (34)
can be rewritten as

ﬁ (dvji)2 + ﬁ (dwj)2 + 2dv;;dvj;
Aj Ai
o1 dvij
s a ) [ L[]
J

which is always non-negative. Hence d>.7; is always positive.
Therefore the algorithm (29) islocally stable around the solutions.

6. ANUMERICAL EXAMPLE

A simple numerical example is given to evaluate the validity of
the differential decorrelation algorithm (29). Three independent
colored Gaussian random variables is linearly mixed to generate
the observation vector x(t) with adifferential correlation matrix

3.274 1.349 0.943
2.448 0.943 0.790

8.367 3.274 2.448
Ca:’x’: . (36)

We applied the algorithm (29) with the differential variance matrix
being fixed as 3 = I and with a constant learning rate, n = .001.
Fig. 1 showstheevolution of E{y1 (t)y3(t)} asan example. Other
differential correlations were also suppressed in asimilar fashion.

7. DISCUSSION

In this paper we have presented a natural gradient learning algo-
rithm for differential decorrelation, the goal of which is to mini-
mize the correlation between differentiated random variables. We
showed that the differential decorrelation algorithm could be de-
rived from learning a linear generative model by the maximum
likelihood estimation under a random walk model. We also dis-
cussed adifferential version of the natural gradient ICA agorithm
and showed that it could also be derived under the random walk
model. The differential correlation algorithm (29) or the differen-
tial ICA algorithm (31) could be generalized by adopting higher-
order differentiation. This generalization is currently under inves-
tigation.

diferential correlation

500 1000 1500 2000 2500 3000
number of iterations

Fig. 1. Differential correlation between y; and y-.

8. ACKNOWLEDGMENTS

This work was supported by Korea Ministry of Science and Tech-
nology under Brain Science and Engineering Research Program
and an International Cooperative Research Project, by KOSEF-
ARIEL, and by Ministry of Education of Korea for its financial
support toward the Electrical and Computer Engineering Division
at POSTECH through its BK21 program.

9. REFERENCES

[1] S. Amari. Natural gradient works efficiently in learning. Neu-
ral Computation, 10(2):251-276, 1998.

[2] S.Amari, T. P. Chen, and A. Cichocki. Nonholonomic orthog-
onal learning algorithms for blind source separation. Neural
Computation, 12(6):1463-1484, 2000.

[3] H. Attias and C. E. Schreiner. Blind source separation and
deconvolution: The dynamic component analysis algorithms.
Neural Computation, 10:1373-1424, 1998.

[4] S. Choi. Differential Hebbian-type learning agorithms for
decorrelation and independent component analysis. Electron-
ics Letters, 34(9):900-901, 1998.

[5] S. Choi. Adaptive differential decorrelation: A natura gra-
dient algorithm. In Proc. ICANN, pages 1168-1173, Madrid,
Spain, Aug. 2002.

[6] S.Choi, A. Cichocki, and S. Amari. Equivariant nonstationary
source separation. Neural Networks, 15(1):121-130, 2002.

[7] D.O. Hebb. The Organization of Behavior. Wiley, New York,
1949.

[8] B. Kosko. Differential Hebbian learning. In Proc. American
Ingtitute of Physics: Neural Networks for Computing, pages
277-282, 1986.

[9] K. Matsuoka, M. Ohya, and M. Kawamoto. A neura net for
blind separation of nonstationary signals. Neural Networks,
8(3):411-419, 1995.

I-724




