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ABSTRACT

Independent component analysis (ICA) for separating
complex-valued sources is needed for convolutive source-
separation in the frequency domain, or for performing
source separation on complex-valued data, such as
functional magnetic resonance imaging data. Functional
magnetic resonance imaging (fMRI) is a technique that
produces complex-valued data; however the vast majority
of fMRI analyses utilize only magnitude images. We
compare the performance of the complex infomax
algorithm that uses an analytic (and hence unbounded)
nonlinearity with the traditional complex infomax
approaches that employ bounded (and hence non-analytic)
nonlinearities as well as with a cumulant-based approach.
We compare the performances of these agorithms for
processing both simulated and real fMRI data and show
that the complex infomax using analytic nonlinearity has
the ability to separate both sub- and super-Gaussian
sources with a hyperbolic tangent nonlinearity. The
complex infomax algorithm that uses analytic nonlinearity
thus provides a potentialy powerful method for
exploratory analysis of fMRI data.

1. INTRODUCTION

Independent component analysis (ICA) has been
successfully used for blind source separation (BSS), and to
Separate mixtures in a variety of applications. In the
cocktail party problem, if the mixing is convolutive, then it
is common to work in the frequency domain, thus
requiring an algorithm for complex-valued data. Likewise,
it is useful for analyzing complex-valued data, such as the
functional magnetic resonance (fMRI) data. Virtually all
fMRI studies analyze only the magnitude images from the
MRI scanner even though the data are acquired as
complex images. When performing an analysis of fMRI
data using the complex-valued images, results demonstrate
an increased ability to isolate the task-related functional
changes [1,2] illustrating the importance of performing
source separation directly on the acquired data that is
complex-valued.

In the following, we first review a number of
approaches for performing complex ICA, the JADE
algorithm [3], two infomax approaches that use bounded
nonlinearities [3], and then an infomax approach that uses
an analytic and thus unbounded nonlinearity for infomax
[4]. We demonstrate their application to fMRI analysis
and discuss their performance differences, in particular
when processing sub- and super-Gaussian sources.

2. BACKGROUND

We briefly review the four different approaches for
performing complex ICA, three based on infomax and the
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fourth-order cumulant-based joint approximate diagonali-
zation of eigenmatrices (JADE) agorithm.

2.1. Infomax

We use bold for matrix and vector quantities and underline
to differentiate complex-valued variables and functions
from those that are real-valued. In the complex ICA
problem, the data, x,, a samplei, is assumed to be a
linear mixture of N statistically independent, complex-
valued sourcess; :

X =As i=1..,M &)
whereAT C"'™, x,sT C", and M is the number of
samples. In this derivation, we assume that the number of
sources is equa to the number of sensors. The infomax
algorithm proceeds by maximizing the entropy of the
output of asingle layer neural network. That is:

y =g(y) i=1..,M 2
where WT C"'" is the inverse of the mixing matrix, and
Y, U =Wxl C" are the output and estimated sources,
respectively. The entropy of a complex number is

appropriately defined as the joint differential entropy of its

real and imaginary parts [5]:
H(X):H(yRe+jylm)éH(yRelyIm)’ (3)

which can be written, in terms of the output probability

density function (pdf), p(x), (which does not depend
upon the weights, W ) and the Jacobian:

u
: Egnp(x)g- Inw|. (4

The weight update equation for infomax using the
natural gradient [6] can be written for the complex case as:

ke [Ty
H(X)_ia:iEgn flu,

iH (y) AT
PW g WIW =R (W)W ()
where

(6)

j (u ég‘l(g):gg_m(g1) Q_G(HN)E_
- g(u) egdu)’ T oqu)g

Note that it is entropy that is being maximized, which is
equivalent to maximization of the mutual information
between the input and the output of the neural network.
This works well provided the nonlinearity can at least
roughly approximate the source distributions [7].
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2.1.1. Split-Complex Infomax 1 (SCI-1)

Complex infomax using a non-analytic nonlinearity is
introduced in [8]. In this case, the nonlinearity is defined
as.

Y = 9(Uge +jU,) = tanh(ug, ) + jtanh(u,,,) . (7
Following the terminology of [9], we cdl this
implementation of complex infomax, the split complex
infomax (SCI-1), since the real and imaginary values have
been split into separate channels and define this
nonlinearity as stanh(% . This is introduced as a complex-
valued extension of the tanh(¥ function used in the
original derivation of infomax [7]. A split-complex
function similar to (7) has aso been used for deriving
complex back-propagation for training the multi-layer
perceptron network, and has been the traditional form of a
complex neural network. The importance of using this
function for back-propagation isthat g(% isbounded over
the entire complex plane. A motivation for using this
function for complex infomax can be given as the need to
use a function whose magnitude obeys the properties of a
joint cumulative distribution function (cdf), F (ug,u,).
Such an argument, however, ignores the fact that the
nonlinearity is a complex-vaued function and thus aso
contains phase information.

2.1.2. Split-Complex Infomax 2 (SCI-2)

In [8], where a shifted and scaled version of (7) isused for
complex infomax, the update equations are directly written
as a function of the nonlinearity, however the form given
is a specia case that only holds for the real-valued
hyperbolic tangent. The function j (u) is directly defined
as the nonlinearity; a definition That is only true when
tanh(% is used as the nonlinearity. The update equations
involve the first and second order derivatives of the
nonlinearity, thus it is important to derive these equations
for the desired nonlinearity. The infomax update using this
split_nonlinearity is given in [1] where each element of
j (u)T C" isgivenby:

. -j2q,,

(W)= (Yie *Yim) - (Ve - Yim)€
We refer to this approach as SCI-2.

©)

2.1.3. Fully-Complex Infomax (FCI)

Instead of using bounded but non-analytic functions as the
nonlinearity, we can use an analytic nonlinearity for the
complex infomax agorithm. Since in this case, the real
and imaginary values are not split into separate channels,
we refer to this algorithm as the fully-complex infomax
(FCI). Because boundedness and analyticity are
conflicting requirements in the complex plane (stated by
Liouvilles theorem), split processing has been the
traditional way of defining complex neural networks such
as MLP networks. Since learning on the MLP requires
backpropagation of error through the layers of neurons,
the boundedness of the activation functions has been noted
as being essentia for stability. However, recent work has
shown that, for the MLP, a complex counterpart of the
universal approximation theorem can be shown with
activation functions that are entire (analytic for al values
of z) but bounded only almost everywhere [9]. In the case

of infomax, since the network is single layer, and the
output of the first layer is not used beyond the
optimization stage, the problem is simpler. We can
proceed by noting that the singular points have measure
zero and hence will not be redized in practice and
convergence thus will not be affected by their presence.

It is thus possible to use an analytic function for the
nonlinearity in infomax as well and to directly use the
complex form of the update in eguation (5) where
j (gs): 2tanh(u). The real and imaginary parts of the
fanh(3) function are plotted in Figure 1. One of the
appealing properties of the infomax approach has been its
straightforward implementation and low computational
complexity. With tanhf(% as the nonlinearity, these
properties are preserved for complex infomax. This is not
necessarily the case for its split-complex implementations.

Real Imaginary

Figure 1: Plotsof g(¥ for Fully-Complex Infomax

2.2. Cumulant-based Approach

The JADE agorithm [10] uses fourth-order cumulants to
achieve statistical independence. A computationally
efficient technique is used for the blind estimation of
directional vectors based on joint diagonalization of
fourth-order cumulant matrices. It has been successfully
applied to blind-beamforming and other areas.

3. APPLICATION TO FMRI ANALYSIS

3.1. Complex-Valued fMRI Images

Commonly, reconstruction techniques in MRI acquire the
data in the complex k-space, and the data are mapped to a
complex image space by an inverse discrete Fourier
transform. The complex data in the magnitude/phase
domain can be considered useful in terms of MR physics.
For example, voxels with high blood volume fractions
tend to exhibit the most detectable changes in phase and
thus one can use phase to exclude large veins from further
analysis. A different approach isto consider that the phase
information can be used to improve the ability to identify a
given source (by using both phase and magnitude behavior
to “separate” or classify the source). For this approach, the
complex data is operated upon in the imaginary/real
domain, although following detection may be converted to
maghitude/phase  images and time courses for
interpretation.

3.2. Smulated fMRI Data

One application of interest for complex infomax is the
andysis of fMRI data where the data are naturaly
acquired as a spatio-temporal complex data set. The goal
is to separate non-systematically overlapping (spatialy
independent) networks of activation. A source can be
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interpreted as an image indicating aress that are related to
one another functionally.

Two complex sources with two complex mixing
vectors _are generated. The source(s) consisted of
JM M images (shaped into an M~ 2 matrix,S),
where M is the number of spatiad samples, and the
(random) mixing matrix is2” 2. We generate a data set
with two sources, one having a dlightly super-Gaussian
(random) spatial distribution, modeling a“non-interesting”
source, and one having between two and sixteen
“activation” regions. The activations are generated by
calculating the outer product of two ~/M ~1 sinusoidal
functions with periods of 2, 3, or 4. To make the
activations “focused” (and their distributions super-
Gaussian) this image was the raised to the power of 3,5,7,
or 9 (odd powers were used to preserve “negative’
activations). Two sets of the sources, s, and s, were
generated to create for each column of S :

S =s;sin(q) +js, cos(q) 9)
where g isuniformly distributed on [-p, p] (different for
each column), and S represents the i" column of S. An
example of the activations is presented in Figure 2. Our
simulated data set also included an additive complex
Gaussian noise contribution.

Figure 2: Sample of Simulated Sources

3.3. Real fMRI Data

BOLD fMRI data were acquired in a Philips 1.5T
Gyroscan NT PT-6000 scanner. Nine 5 mm, single-shot
gradient-echo echo-planar slices were acquired (repeat
time=1s, echo time=39ms, flip angle=90°) over a four-
minute period. The paradigm consisted of an 8 Hz
reversing checkerboard turned off and on with a period of
60 seconds. The visual stimuli were provided on a rear-
projection screen subtending 25 degrees of visual field via
an LCD projector. Following review and approval by the
Johns Hopkins University Institutional Review Board, four
subjects gave informed consent.

3.4. ICA Estimation

The data matrix was of dimension 240° M where M is
the number of voxels inside the brain, hence performing
spatial ICA. This matrix was reduced from 240 time points
to 15 time points using principa component analysis
(PCA). Following PCA, independent component
estimation was performed using the algorithm described in
section 2 to separate 15 sources. Time courses were
reconstructed by multiplying the 15° 15 mixing matrix by
the 240”15 reducing matrix from the PCA stage. The
source of interest was selected by correlating the
magnitude of the time courses with the experimenta
paradigm (after convolution with a standard empirical
hemodynamic response function). This source image was
then converted to a Z-score image and thresholded at

|Z|>2.5. In this work, the ICA for each subject was
estimated separately although one ICA estimation for all
subjectsis also possible [11].

4. RESULTS

4.1. Convergence

A summary of our results is presented in Table 1,
where convergence is measured in both number of
iterations and number of seconds. Convergence occurred
when the weight change was less than 10e-6. Our
algorithm was implemented in Matlab™ 6.5, running on a
dual-processor AMD 1800+ machine with Windows XP™
as the operating system.

M = 3600 Iterations Time
Split CI-1 45.6+2.1 1.1+0.1s
Split CI-2 247.4+13.5 9.74+0.55s
Fully Cl 58.0+2.97 1.3+0.1s
JADE -- 0.02+0.01s

Table 1: Convergence Results from 100 Experiments

The JADE agorithm was by far the fastest, as it is
highly optimized. The SCI-1 and FC approaches
performed comparably whereas the SCI-2 took
considerably longer to converge.

4.2. Approximation

It is important to examine the properties of each
complex approach in terms of its ability to separate the
final sources. The infomax agorithm works as the
nonlinearity “matches’ the distribution of the sources up to
a scaling factor [7]. In general, the best performance (in
terms of both convergence and approximation properties)
should be obtained when the assumed distributions are
selected to match the true distributions closely.

For infomax algorithms, it is important to have a
nonlinearity that is capable of approximating the pdf of the
sources. We show that a fully-complex activation function
has reduced computational complexity compared with a
split-complex approach, and, for a real-valued input the
presence of cross terms in the Jacobian enables the
analytic nonlinearity to approximate a more general class
of input distributions. Contrary to previous assumptions
[8], for infomax, any complex activation function that is
unbounded (such as the hyperbolic tangent we use)
provides convergence problems, we demonstrate that the
opposite is the case, and the unbounded fully-complex
activation function improves the shape of the performance
surface, and, as aresult, the algorithm converges faster.

We now measure, for simulated sources, the
performance using the Kullback-Leibler (KL) divergence
between the “true” and estimated distributions, and the
normalized correlation between the “true” and estimated
sources (given as r in the table). We also calculate the
bias and variance of the estimated sources. The results,
averaged over 100 experiments, along with their standard
errors, are presented in Table 2.

M = 3600 r KL Bias Var

Split-1 | 0.513+0.015 | 1.172+0.067 | 0.360+0.024 | 0.494+0.549

Split-2 | 0.460+0.014 | 1.363+0.068 | 0.420+0.023 | 0.575+0.052

FC 0.518+0.016 | 1.185+0.066 | 0.087+0.012 | 0.341+0.025

Jade 0.455+0.015 | 1.252+0.070 | 0.418+0.024 | 0.572+0.054

Table 2: Approximation Results from 100 Experiments
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The fully-complex and the first split infomax
approaches appeared to perform the best, with FCI dightly
outperforming SCI-1 on al but the KL measure on the
average (note that the difference is insignificant given the
standard deviance). In the experiments above, we used a
contrast-to-noise level of 1.0 (typica for fMRI data). If the
additive noise is doubled, then FCI performs dlightly better
than SCI-1 (and the other two algorithms) on all four
measures, suggesting robustness to noise.

4.3. Sub-Gaussianity

We are aso interested in determining how well various
complex ICA methods can separate sources that are sub-
Gaussian. For tempora ICA of fMRI data, the expected
signals are often bimodal in nature, and thus sub-Gaussian.
In the next smulation we have a mixture of two sub-
Gaussian sources (generated from uniform distributions).
The results are presented in Table 3. In both cases, the
fully-complex approach significantly outperforms the
other three approaches.

Sub-Gaussian Sour ces

M = 3600 r KL Bias Var

Split Cl-1 | 0.534+0.026 | 0.698+0.051 | 0.384+0.025 | 0.557+0.059

Split Cl-2 | 0.598+0.020 | 0.614+0.036 | 0.137+0.0091 | 0.035+0.005

Fully CI  |0.980+0.008|0.047+0.095| 0.087+0.012 |0.008+0.037

JADE 0.563+0.020 | 1.004+0.065 | 0.382+0.025 |0.555+0.025

Table 3: Results for Sub-Gaussian Sources (N=100)

In [12], it is shown that the sigmoid nonlinearity is
specialized for a super-Gaussian distribution, but a
bimodal-distribution is necessary to appropriately separate
a sub-Gaussian distribution. If we examine the fully-
complex nonlinearity (see Figure 1), we see that it has the
properties of a real-valued sigmoid nonlinearity along the
rea axis in that it increases smoothly from -1 to 1.
However as one moves closer to the imaginary axis the
profile begins to resemble the cdf of the bimodal density
suggested in [12] for modeling sub-Gaussian sources.
Thus it appears that the fully-complex nonlinearity has
properties important for modeling both sub- and super-
Gaussian distributions. This property potentially makes the
complex tanh(¥ nonlinearity a very general tool for
source separation with complex-valued data.

4.4. fMRI Data

We performed ten ICA estimations and caculated the
average of the normalized sources. All complex-valued
algorithms yielded a greater spatial extent of activation.
Figure 3 demonstrates the empirical performance increase
gained when using the complex-valued fMRI data.

Magnitude-Only

Complex

Z-Score

Figure 3: ICA Activation Maps. Suprathreshold regions
(outlined in white/black) overlaid onto anatomic image.

We compared performance of the various complex-valued
ICA approaches again for this case, i.e., using real fMRI
data, and noted results similar to simulated data results
given in 4.1 for convergence and increased sensitivity to
detected activations with all four algorithms.

5. DISCUSSION

Using simulations and application to complex-vaued
functional MRI data, we have presented results comparing
the convergence and approximation properties of several
complex ICA approaches. Three infomax approaches (two
split-complex and one fully-complex approach) and the
JADE agorithm are compared. In genera the fully-
complex and the first split-complex infomax both perform
comparably on super-Gaussian sources. However the
fully-complex infomax outperforms all other approaches
when the mixture involved sub-Gaussian sources. In this
paper, we have presented only one choice for fully-
complex nonlinearities. It is worth investigating the
properties of infomax with other complex nonlinear
functions such as the elementary transcendental functions
proposed for MLP in [13] and study the performance of
other complex ICA approaches such as the FastiCA
agorithm.
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