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ABSTRACT 

Independent component analysis (ICA) for separating 
complex-valued sources is needed for convolutive source-
separation in the frequency domain, or for performing 
source separation on complex-valued data, such as 
functional magnetic resonance imaging data. Functional 
magnetic resonance imaging (fMRI) is a technique that 
produces complex-valued data; however the vast majority 
of fMRI analyses utilize only magnitude images. We 
compare the performance of the complex infomax 
algorithm that uses an analytic (and hence unbounded) 
nonlinearity with the traditional complex infomax 
approaches that employ bounded (and hence non-analytic) 
nonlinearities as well as with a cumulant-based approach. 
We compare the performances of these algorithms for 
processing both simulated and real fMRI data and show 
that the complex infomax using analytic nonlinearity has 
the ability to separate both sub- and super-Gaussian 
sources with a hyperbolic tangent nonlinearity. The 
complex infomax algorithm that uses analytic nonlinearity 
thus provides a potentially powerful method for 
exploratory analysis of fMRI data. 

1. INTRODUCTION 
Independent component analysis (ICA) has been 
successfully used for blind source separation (BSS), and to 
separate mixtures in a variety of applications. In the 
cocktail party problem, if the mixing is convolutive, then it 
is common to work in the frequency domain, thus 
requiring an algorithm for complex-valued data. Likewise, 
it is useful for analyzing complex-valued data, such as the 
functional magnetic resonance (fMRI) data. Virtually all 
fMRI studies analyze only the magnitude images from the 
MRI scanner even though the data are acquired as 
complex images. When performing an analysis of fMRI 
data using the complex-valued images, results demonstrate 
an increased ability to isolate the task-related functional 
changes [1,2] illustrating the importance of performing 
source separation directly on the acquired data that is 
complex-valued. 

In the following, we first review a number of 
approaches for performing complex ICA, the JADE 
algorithm [3], two infomax approaches that use bounded 
nonlinearities [3], and then an infomax approach that uses 
an analytic and thus unbounded nonlinearity for infomax 
[4]. We demonstrate their application to fMRI analysis 
and discuss their performance differences, in particular 
when processing sub- and super-Gaussian sources.  

2. BACKGROUND 
We briefly review the four different approaches for 
performing complex ICA, three based on infomax and the 

fourth-order cumulant-based joint approximate diagonali- 
zation of eigenmatrices (JADE) algorithm. 
2.1. Infomax  
We use bold for matrix and vector quantities and underline 
to differentiate complex-valued variables and functions 
from those that are real-valued. In the complex ICA 
problem, the data, ix , at sample i , is assumed to be a 
linear mixture of N  statistically independent, complex-
valued sources is : 
 1, ... , i i i M= =x As  (1) 
where N N×∈A £ , ,  N

i i ∈x s £ , and M  is the number of 
samples. In this derivation, we assume that the number of 
sources is equal to the number of sensors. The infomax 
algorithm proceeds by maximizing the entropy of the 
output of a single layer neural network. That is: 
 ( ) 1, ... , ii

g i M= =y u  (2) 

where N N×∈W £  is the inverse of the mixing matrix, and 
,  N

iii
= ∈y u Wx £  are the output and estimated sources, 

respectively. The entropy of a complex number is 
appropriately defined as the joint differential entropy of its 
real and imaginary parts [5]: 
 ( ) ( ) ( )Re Im Re Imj ,H y H y y H y y= + @ , (3) 

which can be written, in terms of the output probability 
density function (pdf), ( )p x , (which does not depend 
upon the weights, W ) and the Jacobian: 
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The weight update equation for infomax using the 
natural gradient [6] can be written for the complex case as: 
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Note that it is entropy that is being maximized, which is 
equivalent to maximization of the mutual information 
between the input and the output of the neural network. 
This works well provided the nonlinearity can at least 
roughly approximate the source distributions [7]. 
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2.1.1. Split-Complex Infomax 1 (SCI-1) 

Complex infomax using a non-analytic nonlinearity is 
introduced in [8]. In this case, the nonlinearity is defined 
as: 
 ( ) ( ) ( )Re Im Re Imj tanh jtanhy g u u u u= + +@ . (7) 
Following the terminology of [9], we call this 
implementation of complex infomax, the split complex 
infomax (SCI-1), since the real and imaginary values have 
been split into separate channels and define this 
nonlinearity as ( )stanh ⋅ . This is introduced as a complex-
valued extension of the ( )tanh ⋅  function used in the 
original derivation of infomax [7]. A split-complex 
function similar to (7) has also been used for deriving 
complex back-propagation for training the multi-layer 
perceptron network, and has been the traditional form of a 
complex neural network. The importance of using this 
function for back-propagation is that ( )g ⋅  is bounded over 
the entire complex plane. A motivation for using this 
function for complex infomax can be given as the need to 
use a function whose magnitude obeys the properties of a 
joint cumulative distribution function (cdf), ( )R I,F u u . 
Such an argument, however, ignores the fact that the 
nonlinearity is a complex-valued function and thus also 
contains phase information. 

2.1.2. Split-Complex Infomax 2 (SCI-2) 

In [8], where a shifted and scaled version of (7) is used for 
complex infomax, the update equations are directly written 
as a function of the nonlinearity, however the form given 
is a special case that only holds for the real-valued 
hyperbolic tangent. The function ( )ϕ u  is directly defined 
as the nonlinearity; a definition that is only true when 

( )tanh ⋅  is used as the nonlinearity. The update equations 
involve the first and second order derivatives of the 
nonlinearity, thus it is important to derive these equations 
for the desired nonlinearity. The infomax update using this 
split nonlinearity is given in [1] where each element of 

( ) Nϕ ∈u £  is given by: 

 ( ) ( ) ( )iRe iIm iRe iIm
'j2

i
i

yu y y y y e
θ

ϕ
−

= − + − −  (8) 
We refer to this approach as SCI-2. 

2.1.3. Fully-Complex Infomax (FCI) 

Instead of using bounded but non-analytic functions as the 
nonlinearity, we can use an analytic nonlinearity for the 
complex infomax algorithm. Since in this case, the real 
and imaginary values are not split into separate channels, 
we refer to this algorithm as the fully-complex infomax 
(FCI). Because boundedness and analyticity are 
conflicting requirements in the complex plane (stated by 
Liouville's theorem), split processing has been the 
traditional way of defining complex neural networks such 
as MLP networks. Since learning on the MLP requires 
backpropagation of error through the layers of neurons, 
the boundedness of the activation functions has been noted 
as being essential for stability. However, recent work has 
shown that, for the MLP, a complex counterpart of the 
universal approximation theorem can be shown with 
activation functions that are entire (analytic for all values 
of z ) but bounded only almost everywhere [9]. In the case 

of infomax, since the network is single layer, and the 
output of the first layer is not used beyond the 
optimization stage, the problem is simpler. We can 
proceed by noting that the singular points have measure 
zero and hence will not be realized in practice and 
convergence thus will not be affected by their presence. 

It is thus possible to use an analytic function for the 
nonlinearity in infomax as well and to directly use the 
complex form of the update in equation (5) where 

( ) ( )2tanhϕ =u u . The real and imaginary parts of the 
( )tanh ⋅  function are plotted in Figure 1. One of the 

appealing properties of the infomax approach has been its 
straightforward implementation and low computational 
complexity. With ( )tanh ⋅  as the nonlinearity, these 
properties are preserved for complex infomax. This is not 
necessarily the case for its split-complex implementations.  

 
Figure 1: Plots of ( )g ⋅  for Fully-Complex Infomax 

2.2. Cumulant-based Approach  
The JADE algorithm [10] uses fourth-order cumulants to 
achieve statistical independence. A computationally 
efficient technique is used for the blind estimation of 
directional vectors based on joint diagonalization of 
fourth-order cumulant matrices. It has been successfully 
applied to blind-beamforming and other areas. 

3. APPLICATION TO FMRI ANALYSIS 

3.1. Complex-Valued fMRI Images 
Commonly, reconstruction techniques in MRI acquire the 
data in the complex k-space, and the data are mapped to a 
complex image space by an inverse discrete Fourier 
transform. The complex data in the magnitude/phase 
domain can be considered useful in terms of MR physics. 
For example, voxels with high blood volume fractions 
tend to exhibit the most detectable changes in phase and 
thus one can use phase to exclude large veins from further 
analysis. A different approach is to consider that the phase 
information can be used to improve the ability to identify a 
given source (by using both phase and magnitude behavior 
to “separate” or classify the source). For this approach, the 
complex data is operated upon in the imaginary/real 
domain, although following detection may be converted to 
magnitude/phase images and time courses for 
interpretation. 

 
3.2. Simulated fMRI Data 
One application of interest for complex infomax is the 
analysis of fMRI data where the data are naturally 
acquired as a spatio-temporal complex data set. The goal 
is to separate non-systematically overlapping (spatially 
independent) networks of activation. A source can be 
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interpreted as an image indicating areas that are related to 
one another functionally. 

Two complex sources with two complex mixing 
vectors are generated. The source(s) consisted of 

M M×  images (shaped into an 2M ×  matrix, S ), 
where M  is the number of spatial samples, and the 
(random) mixing matrix is 2 2× . We generate a data set 
with two sources, one having a slightly super-Gaussian 
(random) spatial distribution, modeling a “non-interesting” 
source, and one having between two and sixteen 
“activation” regions. The activations are generated by 
calculating the outer product of two 1M ×  sinusoidal 
functions with periods of 2, 3, or 4. To make the 
activations “focused” (and their distributions super-
Gaussian) this image was the raised to the power of 3,5,7, 
or 9 (odd powers were used to preserve “negative” 
activations). Two sets of the sources, 1is and 2is  were 
generated to create for each column of iS : 
 ( ) ( )1 2sin j cosi ii θ θ= +S s s  (9) 
where θ  is uniformly distributed on [ ],  π π−  (different for 
each column), and iS  represents the thi  column of S . An 
example of the activations is presented in Figure 2. Our 
simulated data set also included an additive complex 
Gaussian noise contribution. 

 
Figure 2: Sample of Simulated Sources 

3.3. Real fMRI Data 
BOLD fMRI data were acquired in a Philips 1.5T 
Gyroscan NT PT-6000 scanner. Nine 5 mm, single-shot 
gradient-echo echo-planar slices were acquired (repeat 
time=1s, echo time=39ms, flip angle=90°) over a four-
minute period. The paradigm consisted of an 8 Hz 
reversing checkerboard turned off and on with a period of 
60 seconds. The visual stimuli were provided on a rear-
projection screen subtending 25 degrees of visual field via 
an LCD projector. Following review and approval by the 
Johns Hopkins University Institutional Review Board, four 
subjects gave informed consent. 
3.4. ICA Estimation 
The data matrix was of dimension 240 M×  where M  is 
the number of voxels inside the brain, hence performing 
spatial ICA. This matrix was reduced from 240 time points 
to 15 time points using principal component analysis 
(PCA). Following PCA, independent component 
estimation was performed using the algorithm described in 
section 2 to separate 15 sources. Time courses were 
reconstructed by multiplying the 15 15×  mixing matrix by 
the 240 15×  reducing matrix from the PCA stage. The 
source of interest was selected by correlating the 
magnitude of the time courses with the experimental 
paradigm (after convolution with a standard empirical 
hemodynamic response function). This source image was 
then converted to a Z-score image and thresholded at 

2.5Z > . In this work, the ICA for each subject was 
estimated separately although one ICA estimation for all 
subjects is also possible [11].  

4. RESULTS 

4.1. Convergence 
A summary of our results is presented in Table 1, 

where convergence is measured in both number of 
iterations and number of seconds. Convergence occurred 
when the weight change was less than 10e-6. Our 
algorithm was implemented in Matlab™ 6.5, running on a 
dual-processor AMD 1800+ machine with Windows XP™ 
as the operating system. 

M = 3600 Iterations Time 
Split CI-1 45.6±2.1 1.1±0.1s 
Split CI-2 247.4±13.5 9.74±0.55s 
Fully CI 58.0±2.97 1.3±0.1s 
JADE -- 0.02±0.01s 

Table 1: Convergence Results from 100 Experiments 
The JADE algorithm was by far the fastest, as it is 

highly optimized. The SCI-1 and FC approaches 
performed comparably whereas the SCI-2 took 
considerably longer to converge. 
4.2. Approximation 

It is important to examine the properties of each 
complex approach in terms of its ability to separate the 
final sources. The infomax algorithm works as the 
nonlinearity “matches” the distribution of the sources up to 
a scaling factor [7]. In general, the best performance (in 
terms of both convergence and approximation properties) 
should be obtained when the assumed distributions are 
selected to match the true distributions closely. 

For infomax algorithms, it is important to have a 
nonlinearity that is capable of approximating the pdf of the 
sources. We show that a fully-complex activation function 
has reduced computational complexity compared with a 
split-complex approach, and, for a real-valued input the 
presence of cross terms in the Jacobian enables the 
analytic nonlinearity to approximate a more general class 
of input distributions. Contrary to previous assumptions 
[8], for infomax, any complex activation function that is 
unbounded (such as the hyperbolic tangent we use) 
provides convergence problems, we demonstrate that the 
opposite is the case, and the unbounded fully-complex 
activation function improves the shape of the performance 
surface, and, as a result, the algorithm converges faster. 

We now measure, for simulated sources, the 
performance using the Kullback-Leibler (KL) divergence 
between the “true” and estimated distributions, and the 
normalized correlation between the “true” and estimated 
sources (given as ρ  in the table). We also calculate the 
bias and variance of the estimated sources. The results, 
averaged over 100 experiments, along with their standard 
errors, are presented in Table 2. 

M = 3600 ρ  KL Bias Var 
Split-1 0.513±0.015 1.172±0.067 0.360±0.024 0.494±0.549 
Split-2 0.460±0.014 1.363±0.068 0.420±0.023 0.575±0.052 

FC 0.518±0.016 1.185±0.066 0.087±0.012 0.341±0.025 
Jade 0.455±0.015 1.252±0.070 0.418±0.024 0.572±0.054 

Table 2: Approximation Results from 100 Experiments 
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The fully-complex and the first split infomax 
approaches appeared to perform the best, with FCI slightly 
outperforming SCI-1 on all but the KL measure on the 
average (note that the difference is insignificant given the 
standard deviance). In the experiments above, we used a 
contrast-to-noise level of 1.0 (typical for fMRI data). If the 
additive noise is doubled, then FCI performs slightly better 
than SCI-1 (and the other two algorithms) on all four 
measures, suggesting robustness to noise. 
4.3. Sub-Gaussianity 
We are also interested in determining how well various 
complex ICA methods can separate sources that are sub-
Gaussian. For temporal ICA of fMRI data, the expected 
signals are often bimodal in nature, and thus sub-Gaussian. 
In the next simulation we have a mixture of two sub-
Gaussian sources (generated from uniform distributions). 
The results are presented in Table 3. In both cases, the 
fully-complex approach significantly outperforms the 
other three approaches. 

Sub-Gaussian Sources 
M = 3600 ρ  KL Bias Var 
Split CI-1 0.534±0.026 0.698±0.051 0.384±0.025 0.557±0.059 
Split CI-2 0.598±0.020 0.614±0.036 0.137±0.0091 0.035±0.005 
Fully CI 0.980±0.008 0.047±0.095 0.087±0.012 0.008±0.037 
JADE 0.563±0.020 1.004±0.065 0.382±0.025 0.555±0.025 
Table 3: Results for Sub-Gaussian Sources (N=100) 
In [12], it is shown that the sigmoid nonlinearity is 

specialized for a super-Gaussian distribution, but a 
bimodal-distribution is necessary to appropriately separate 
a sub-Gaussian distribution. If we examine the fully-
complex nonlinearity (see Figure 1), we see that it has the 
properties of a real-valued sigmoid nonlinearity along the 
real axis in that it increases smoothly from –1 to 1. 
However as one moves closer to the imaginary axis the 
profile begins to resemble the cdf of the bimodal density 
suggested in [12] for modeling sub-Gaussian sources. 
Thus it appears that the fully-complex nonlinearity has 
properties important for modeling both sub- and super-
Gaussian distributions. This property potentially makes the 
complex  ( )tanh ⋅  nonlinearity a very general tool for 
source separation with complex-valued data. 
4.4. fMRI Data 
We performed ten ICA estimations and calculated the 
average of the normalized sources. All complex-valued 
algorithms yielded a greater spatial extent of activation. 
Figure 3 demonstrates the empirical performance increase 
gained when using the complex-valued fMRI data. 

 
Figure 3: ICA Activation Maps: Supra threshold regions 
(outlined in white/black) overlaid onto anatomic image. 

We compared performance of the various complex-valued 
ICA approaches again for this case, i.e., using real fMRI 
data, and noted results similar to simulated data results 
given in 4.1 for convergence and increased sensitivity to 
detected activations with all four algorithms. 

5. DISCUSSION 
Using simulations and application to complex-valued 
functional MRI data, we have presented results comparing 
the convergence and approximation properties of several 
complex ICA approaches. Three infomax approaches (two 
split-complex and one fully-complex approach) and the 
JADE algorithm are compared. In general the fully-
complex and the first split-complex infomax both perform 
comparably on super-Gaussian sources. However the 
fully-complex infomax outperforms all other approaches 
when the mixture involved sub-Gaussian sources. In this 
paper, we have presented only one choice for fully-
complex nonlinearities. It is worth investigating the 
properties of infomax with other complex nonlinear 
functions such as the elementary transcendental functions 
proposed for MLP in [13] and study the performance of 
other complex ICA approaches such as the FastICA 
algorithm. 
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