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ABSTRACT

In recent work, we showed that the Minimum Classification
Error (MCE) criterion function commonly used for discrim-
inative design of pattern recognition systems is equivalent to
a Parzen window based estimate of the theoretical classifi-
cation risk. In this analysis, each training token is mapped
to the center of a Parzen kernel in the domain of a suit-
ably defined random variable; the kernels are then summed
and integrated over the domain of incorrect classifications,
yielding the risk estimate. Here, we deepen this approach by
applying Parzen estimation at an earlier stage of the overall
definition of classification risk. Specifically, the new analy-
sis uses all incorrect categories, not just the single best in-
correct category, in deriving a ”correctness” function that is
a simple multiple integral of a Parzen kernel over the region
of correct classifications. The width of the Parzen kernel
determines how many competing categories to use in opti-
mizing the resulting overall risk estimate. This analysis uses
the classic Parzen estimation method to support the notion
that using multiple competing categories in discriminative
training is a type of smoothing that enhances generalization
to unseen data.

1. INTRODUCTION

The Minimum Classification Error (MCE) framework is an
approach to discriminative training for pattern classification
that explicitly incorporates classification performance into
the training criterion. Given discriminant functions for each
category, MCE defines a loss function that is a smoothed ap-
proximation of the recognition error rate, and then uses this
function as the criterion function for optimization [3, 4, 5,
6]. Through minimization of this criterion function, MCE is
aimed directly at minimizing classification error rather than
at learning the true data probability distributions, the target
of Maximum Likelihood Estimation (MLE). MCE has been
used succesfully in various pattern recognition tasks [1, 7].
In recent work, a new theoretical perspective on MCE
was presented [8, 9]. This addressed the nature of the smooth-
ness of the MCE loss function, as well as the relationship
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between minimization of an overall MCE loss summed over
a finite set of training data and minimization of the theoret-
ical classification risk measured over the continuous den-
sities underlying the classification problem. It was shown
that the continuous, 0-1 MCE loss function can be derived
from an estimate of the theoretical classification risk, using
Parzen estimation of the density of a suitably defined mis-
classification measure. In this analysis, the specific kernel
type used for Parzen estimation leads to a specific type of
MCE loss function, and vice versa; the width of the Parzen
kernel directly corresponds to the steepness of the MCE
loss function, and vice versa. Minimization of the MCE
loss function corresponds to the minimization of a Parzen
estimate of the theoretical classification risk. This deriva-
tion used a Parzen estimate of the density of a random vari-
able corresponding to a comparison of the correct category’s
score against the best incorrect category’s score.

Here, we deepen this approach by applying Parzen esti-
mation to the density of a vector of jointly distributed ran-
dom variables, each corresponding to a pair-wise compar-
ison between the correct category and all incorrect cate-
gories. By using Parzen estimation at an earlier level than
that used in the previous analysis, a finer grained model of
classification risk is obtained. In the new analysis, larger
kernel widths, used in Parzen estimation to obtain smoother
estimates and better generalization to unseen data, directly
result in more categories being used in gradient-based opti-
mization of the risk estimate. This analysis shows that the
use of multiple competing categories, intuitively appealing
for the sake of generalization to unseen data, and commonly
used in existing MCE and Maximum Mutual Information
(MMI) speech recognition studies, can be rigorously linked
to the theoretical classification risk.

2. THE MINIMUM CLASSIFICATION ERROR
FRAMEWORK

The MCE framework has been described in several publica-

tions [3, 5, 6]. For each training token, MCE maps a training
pattern token x and the system parameters A (e.g., all the
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hidden Markov model means and covariances) to a 0-1 loss
function reflecting classification error. The pattern x could
be a single pattern vector or a sequence of, e.g., speech-
derived feature vectors, x = x¥' = (x!,...,x?,...,xT). The
formalism assumes that discriminant functions g;(x, A) can
be defined for each string category C';, and uses a misclas-
sification measure dj(x, A) to compare the match between
the training token to the correct category C}, with the match
to the best incorrect categories. The loss function is typi-
cally a sigmoid,

1
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The total loss L(X, A) is the local loss summed over the M
categories and NNy, tokens in each category C} making up
the training data X:
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where x;, ; denotes the j-th training token in category Cj,

and N = 22/121 Ny. The overall loss function can be mini-
mized using several different approaches [6].

3. ANOVEL ANALYSIS OF THE SMOOTHNESS
OF THE MCE LOSS FUNCTION

3.1. Theoretical classification risk

The starting point for our new formalization of Minimum
Classification Error is the theoretical classification risk, in-
tegrated over the entire pattern space X [2]:

R = }:/

This represents the probability of error, optimal or not, for
a given pattern classification system in the theoretical sit-
uation where the joint densities p(C, X) are known. Here
a(x, A) represents the classification decision (the choice of
one out of M categories) made for the input pattern x, given
the system parameters A, while A\(«;|C};) denotes the cost
of mis-classifying a member of category C}, as category C;.
Typically this cost is 1 whenever ¢ and & are different. In the
following it is assumed that the system decisions a(x, A)
are taken by choosing the category with the largest discrim-
inant function value g;(x, A).

alx, A)|C)p(Cr, )dx.  (3)

3.2. Defining classification risk in a new domain

The new approach defines a pair-wise misclassification mea-
sure for each of the M — 1 incorrect categories C;,

ME; = d]m;(X, A) = —gk(X, A) + gi(X, A), 4

where 4 ranges from 1 to M but skips the correct category
C},. The overall risk can then be written as

_1_§:/

where the indicator function 1(Vi : di;(X,A) < 0) is 1
when all the misclassification measures are negative, and 0
otherwise. In turn, this is equivalent to integrating over the
correctly classified part of the pattern space X’:

—1—}2/‘ (Ch., X)dx, (6)

where X, = {x € X | Vi : d(x,A) < 0}. For con-
venience, in the following we use the classification chance
C = 1 — R rather than the risk R, but use the two terms
interchangeably, with the understanding that the one is just
1 minus the other.

If X and all the g;(X, A) are continuous random vari-
ables, then all the M}, ; = di (X, A) are also continuous
random variables. We can then express the integral for each
category C over the reduced space X}, with a multiple inte-
gral over the negative domains of the misclassification mea-
sures:

/ p(Cl, X)dX @)
Xk
= P[Mk}l <0, .., My < O,Ck]

= / / p(ck,ka,...,mk,M)dmk,l...dmk7]\4.
— 00 oo

sdii (X, A) < 0)p(Ch, X)dX, (5)

Letmy = (mg,1, ..., Mk,itk, ..., Mk, ar) denote an arbitrary
M — 1 dimensional vector of jointly distributed pair-wise
misclassification measures, and M, = {my| Vi : my,; <
0} be the jointly negative part of the misclassification mea-
sure space. We can now express the overall chance corre-
sponding to Equ. (6) as:

M
C=)» P(Cy) p(Mg|Cr)dmy. (8)
kz::l k /Mk kICk k

This is equivalent to (1 minus) the original expression of
risk given in Equ. (3). In contrast to the previous approach
[8, 9] where the classification risk was rewritten using just
one variable, comparing the correct category with the best
incorrect category, here the classification risk has been rewrit-
ten using the vector of comparisons between the correct cat-
egory and all incorrect categories.

A new approach to pattern classifier design is suggested
by Equ. (8). We can try to estimate the density p(my|Cy)
given the available training tokens xy, ; and the system pa-
rameters A, plug that estimate into Equ. (8) to obtain an
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estimate of classification chance, and then adjust the system
parameters so as to maximize the estimate of chance / min-
imize the estimate of risk. The following sections outline
this new approach.

3.3. Parzen estimate of classification chance

Let dj(Xx,;,A) denote the A — 1 dimensional vector of
pair-wise misclassification measures resulting from present-
ing training token Xy ; to a recognition system with param-
eters A. In order to explicitly relate a finite body of training
data to the theoretical cost, we use a Parzen estimate of the
density p(my|Cy):

mg — dk(XkJ‘, A))
Y .
9)
Here ¢((my, — di(Xk,5, A))/h) is a kernel of uniform width
h along each dimension, centered on the transformed data
point dy (Xx,;, A). With py, (mg|Cy) defined for any value
of my,, we can now define an estimate of the theoretical clas-
sification chance expressed in Equ. (8):

M
Cn = ;P(Ok) /M

Expanding this using the estimate py, (My|C)) given by
Equ. (9) yields

M
P(Ck)
v =300
= N Jm

AL
=1

pn,. (Mg|Cr)dmy.  (10)

k

k j=1
(11)
Rearranging, and using Ny /N for P(C}), gives:
M Ny
1 1 my, —dk(Xk,j,A)
CNZNZZW/M‘O;( h )dmy.
k=1 j=1 k
12)

Defining the "correctness” function for a single training to-
ken,

1 Mg — dp (Xp.i, A
Vk(xk,jaA) — W/M ¢( k Ich( k,j ))dm]@,
k

(13)
we can express the Parzen estimate of classification chance
(Equ. (12)) as

M Ny

CN = %szk(xk*j’A)'

k=1 j=1

(14)

This analysis has arrived at an estimate of classification
chance, defined in terms of an integral over jointly negative
values of the misclassification measures, and using a Parzen

Ny
1 Mg — dp (X5, A
Zthl & : kh( £.d ))dmk-

estimate of the joint density of the misclassification mea-
sures. The interpretation of the integral that Vi (X, ;, A) is
based on is that it expresses the hyper-volume of the joint
density in the all-negative region of the misclassification
measure vector space corresponding to correct classifica-
tions, for a single Parzen window, centered on the trans-
formed data point dj (X, ;, A). Figure 1 illustrates a Parzen
kernel in this scenario. This hyper-volume ranges from 0
to h™~1, depending on the center dy (X, ;, A), and, signifi-
cantly, on the kernel width h. Normalizing by the maximum
volume hM~1 yields a 0-1 density; summing over all data
tokens and all categories yields the overall estimate of clas-
sification chance.
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Fig. 1. Example of a Parzen kernel for use in the estimation
of p(m3|Cs3) in a 3-category problem. The kernel center
and width determine what fraction of the kernel distribution
falls in the (all-negative) part of m-space corresponding to
correct classifications.

Parzen estimation theory [2] tells us that this estimate
converges to the theoretical chance as the number of data
tokens approaches infinity and the kernel width is reduced.
Furthermore, we have some control over the value of C v via
the system parameters A that are implicit in the definition of
the misclassification measures, and that therefore affect the
specific values of the window anchor points dj, (X ;, A).

3.4. Parzen kernel leads to a multi-category sigmoid “’cor-
rectness” function

For simple Parzen kernels, we can easily find the closed
form of the multiple integral in Equ. (13). In previous
work [8, 9], it was shown that the sigmoid loss function
commonly used in MCE studies can be seen as the result of
using a particular type of Parzen kernel. Here we examine
the corresponding multi-variate kernel:

$(u) = H ﬁ- (15)

ik
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As above, the kernel is centered on a given (transformed)
data point dx (X ;, A) and its width is controlled by a scalar
h. Using this kernel in Equ. (13) gives:

M-—1 1
Vie(Xg.i, A) = , 16
k(X5 A) 171 oA 19

illustrated for a 3-category problem in Figure 2. As the
training set grows larger, the kernel width A should be de-
creased as per Parzen estimation theory, resulting in an in-
creasingly steep Vi(Xx,j, A). As the training set size ap-
proaches infinity, h approaches zero, and Vi (X, ;, A) ap-
proaches a binary 1-0 step function.

‘\\\\\\\

"correctness"

c,=dy,(x\) 05 -05 c,=d3 ,(N)
Fig. 2. Estimate of classification correctness as a function of
Parzen kernel center, for a single training token (belonging

to category 3) in a 3-category problem

3.5. Minimizing the risk estimate

The task of any optimization procedure applied to the risk
estimate corresponding to Equ. (14) is to choose the system
parameters A so as to position the kernel centers in such
a way as to minimize the estimated risk. Whether the re-
sulting minimization corresponds to the theoretically opti-
mal Bayes risk rests on the effectiveness of the optimization
procedure (and on the model structure). Though the new
risk estimate derived here is different from previous MCE
losses, it is closely related; the techniques already in use for
MCE optimization can be applied with few difficulties.
The new formalism has appealing consequences for gra-
dient based optimization. The gradient of Equ. (16) with re-
spect to A will be negligible for incorrect categories whose
misclassification measure is extreme, i.e. who have very
good or very bad scores. This effect is controlled by the
kernel width A: narrower (wider) kernels will result in fewer
(more) categories having significant gradients. In particular,
narrow kernels will lead the optimization procedure to use
mainly the top incorrect categories. Parzen estimation the-
ory in this context effectively suggests that when the train-
ing set is small, more incorrect categories should be used

in gradient-based optimization of the classification risk es-
timate, but that as the training set increases, only the top few
categories need be used.

4. SUMMARY

Here we have shown that an MCE-like "correctness” func-
tion using pair-wise comparisons between the correct cat-
egory and all incorrect categories can be derived from a
smooth Parzen window based estimate of the true theoreti-
cal classification risk. The risk estimate is found by simple
integration over the domain of misclassifications in a vector
space that is a system-dependent transformation of the in-
put pattern space. Gradient-based methods can then be used
to find system parameters that minimize the resulting risk
estimate. The smoothness of the estimate is controlled by
the Parzen kernel width, which also determines the number
of incorrect categories deemed “competitive” to the correct
category during optimization. This type of margin control,
typically effective for generalization to unseen data, is here
shown to be the direct consequence of a novel Parzen win-
dow based approach to estimating the theoretical probability
of classification error.
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