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ABSTRACT

In this paper, we describe an efficient algorithm to sequentially
update a density support estimate obtained using one-class sup-
port vector machines. The solution provided is an exact solution,
which proves to be far more computationally attractive than a batch
approach. This deterministic technique is applied to the problem
of audio signal segmentation, with simulations demonstrating the
computational performance gain on toy data sets, and the accuracy
of the segmentation on audio signals.

1. INTRODUCTION

Support vector machines (SVMs) have recently received much at-
tention as efficient nonparametric classification and regression tools
[2, 3]. More recently, a support vector method for density support
estimation was introduced by Sch¨olkopf et al. [4], and has been
successfully applied to a number of problems, including jet engine
pass-off tests [5] and audio signal segmentation [1]. This method
permits the control of the number of outliers in the training set; the
solution of the optimization problem leads to a decision function
which classifies new points as inliers and outliers.

Many real-life pattern recognition applications take as their in-
put a sequential flow of data points; the study of such on-line pro-
cesses can generally be undertaken by placing a sliding window
on a subset of the incoming data. With no loss of generality, we
consider windows evolving with unitary increments: applying this
strategy to learning techniques therefore leads to process descrip-
tors��� extracted from the input signal, with evolving training sets
of fixed size (as depicted in Fig 1):�� � ������� � � � � ������. The
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Fig. 1. Evolution of the “sliding” training set: the oldest data point
is removed from the training set and replaced by a new one.

density support can be estimated in two distinct ways: from scratch
at each iteration (a quadratic programming problem is solved at
each timestep), or by continually updating the SV solution ob-
tained in the previous iteration. We use the latter approach, based
on the algorithm proposed by Cauwenberghs and Poggio [7] for
on-line�-SV two-class classification, for reasons of computational
efficiency. As we shall see, however, the solution procedure in the

one class case requires a somewhat different approach to this ear-
lier work. Note that this scheme can also be adopted for off-line
analyses.

The sequential update of the SV solution is particularly well
suited to the signal segmentation problem, as in [1]. This descriptor-
based approach requires two steps (Fig. 2). First, high-level dis-
criminant descriptors are extracted. Second, we apply SV novelty
detection: at time�, we train the novelty detector using a training
set��, made up of a fixed number� of consecutive descriptors
���, taken from time��� to time�� � : �� � ������� ���� ������.
The vector at time�, ��� is then tested with respect to�� using the
novelty detector, so as to determine when a substantial change oc-
curs in the signal. This procedure is repeated, with the addition
of next observation��� and the removal of the oldest:����� (the
new training set being���� � ��������� ���� ����). The training
set is thus defined by a sliding window, and the novelty detection
decision function is recomputed at each time�.

training set            test vector

preprocessing step

signal

� � ����� ���� ����

�� � ������� ���� ������ � ���
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Fig. 2. Signal segmentation algorithm ([1]). A sliding window
is used to extract discriminant descriptors from the signal, which
train a SV novelty detector; the output of the latter is a stationarity
index, and allows the detection of abrupt changes in the signal.

The remainder of the paper is organized as follows. In Section
2, the soft-margin support vector novelty detection is reviewed,
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and in Section 3 our on-line algorithm is presented. Results ob-
tained with both toy and real-life data are presented in Section 4.

2. �-SV NOVELTY DETECTION

We assume a set of� training points,� �� ����� � � � � ���� �
��� in which ��� � � , where� is the input space. We define a
learning algorithm� � ������

� 	
, where���� belongs to a
hypothesis space
 � ��� ��� ; this represents a space of indicator
functions�� for sets	 � � . Next, we define afeature space � ,
endowed with an inner product
����	�, where� �� ����, and
� � � 	 � . We restrict
 to functions of the form


 ��
�
�� �	 ��� � ������
����� � � � 
 � ��

�
� (1)

where we limit our choice of� to linear combinations of mapped
training points,

� �
��
���

����� where� � 0� (2)

Under these conditions, we need never compute the mapping����:
rather, by equation (2), it follows that
���	� can be computed
using only the inner product function,����� �	� �� 
x�� x	�. A
kernel� represents an inner product in some feature space if it ful-
fills the Mercer conditions [9]. These conditions are satisfied for a
wide range of kernels, including Gaussian radial basis functions,

� ����� ��	� � ��	
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Let us now define a function������ in �� , such that���� �
��� � 
��������; thus

������ � 
���� � 
�

All training points��� for which������� � � are calledsupport vec-
tors (SVs); these are the only points for which SV algorithms yield
�� �� � in equation (2), thus the SVs alone determine�����. SVs
are divided into two sets: themargin SVs , for which������� � �,
and thenon-margin SVs, for which ������� � �; the indices of
these sets in the training sample are written���� and���� re-
spectively. We determine the parameters� and 
 of ������ by
solving
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It is proved in Sch¨olkopf et al. [4] that � is an upper bound on
the fraction of non-margin SVs, and a lower bound on the frac-
tion of support vectors; in addition,� is asymptotically equal to
both the fraction of SVs and the fraction of non-margin SVs with
probability 1, under mild conditions on the probability distribution
generating the data. In the dual formulation, we want to minimize
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The following results, known as theKarush-Kuhn-Tucker (KKT)
constraints, must therefore hold at the global optimum;
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3. ON-LINE ALGORITHM

In this section, we describe an efficient on-line method to ob-
tain a solution����� 
���, which uses the training set���� �
��������� � � � � ����, from the solution��� 
� found with the train-
ing set�� � ������� � � � � ������. Thus, each update step requires
us to add one point��� to the training set�, and to remove another
point�����.

The dependence on� of the upper bound (4) on� (which
does not occur in�-SV classification), however, causes our ap-
proach to differ from that in Cauwenberghs and Poggio [7]. Thus,
in updating��� 
�, we first obtain an intermediate solution���� �
�
with the composite training set��� � ������� � � � � ����. This so-
lution is not a feasible solution, however, in that the upper bound
on the�� is kept at �

��
, and not �

������
. Next, we remove�����

from ��� to obtain the feasible solution����� 
���.
Let us denote by��� the point for which the coefficient��

is being changed, either through being added to the training set
� (so that� � � ) or through being removed from� (so that
� � � � � � � ). In the former case, we must adjust�� un-
til the requirements of (4) and (5) are met, whereas in the latter
case, we must reduce�� to zero. In making these adjustments,
however, it is necessary to shift the coefficients of the remaining
points ��� � � �� �� to preserve optimality according to (4) and
(5). Briefly, adjustments to the solution� are made such that
the slopes��� � � ������ of � with respect to the weights
��� � � ������ of the margin SVs do not change (they stay
at zero) although the weights themselves are allowed to change;
whereas for non-margin and non-SVs,��� � � ������� are not
allowed to change (they must remain respectively at either�

��
or

�) but slopes may change. This adiabatic process is described in
Section 3.1. In the course of these shifts, however it is possible
for the sets of margin, non-margin and non-SVs to evolve, due for
instance to the weight�� of a margin SV��� being shifted down
to zero, or the slope�� of the cost function for a non-margin SV
reaching zero (obviously, this is not a complete set of possible con-
ditions). The resulting updates are described in Section 3.2.

3.1. Adiabatic changes to solution

We now consider how a solution�� 
 might be updated in an adi-
abatic manner when the coefficient�� of a particular data point���
is shifted by���. Thus, there can be no shift to the values of��
for points��� that are non-margin SVs or non-SVs, and no shift to
the �� for margin SVs (the latter remains zero). The sets of mar-
gin, non-margin and non-SVs are assumed to stay the same in the
course of the update (we deal with changes to these sets in the next
section). Given these goals and constraints, shifts��� in �� cause
changes to�� � � � � ���, and to the slopes�� � � �� ���� of
the cost function. Thus, to obtain an on-line solution procedure,
we must find the explicit dependence of these quantities on���.
There is then a shift to the constraints in (4) and (5), such that
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here	� is the matrix of inner products between margin SVs, and
���� is the vector of inner products between the margin SVs and
the new point��. In equilibrium,

�
 � ��
 ������� ��	 � �	 ������� (7)

where we define
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and �	 ��� � � for � �� �����. Substituting this result into
(6) yields the desired relation between��� and the cost function
slopes of points that are not margin SVs;

��� � �� ������� �� � ��� � � � ��� � ��� � (9)
where :

�� ��� � ������ ���� 
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�
 ��� �� �������
(10)

The above also defines�� ���, and a corresponding slope shift
���, for the new point���, which does not begin as a margin SV
in the solution� . Finally,�� � � when� �����.

3.2. Points entering and leaving the margin set

Let us now consider what it means to add a point�� to the set
of margin SVs. This means that (6), which is used to find the
variation in the� when a new point�� is added to the training set,
becomes
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Using the Woodbury formula, we therefore obtain
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We now consider the effect on����
� of a point�� leaving the mar-

gin set. Again using the Woodbury formula, it is possible to define
the update (where�
���� denotes the elements of the matrix	 lo-
cated at row� and column�, and�
���� indicates that row� has
been removed from
);
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(12)

3.3. Comparison with stochastic updates to the SV solution

An alternative method that has been proposed for obtaining sup-
port vector solutions on-line is the stochastic gradient descent method
of Kivinen et al. [8], which may be used both in classification and
density support estimation. This stochastic algorithm effectively
applies an exponential window to the data, where a more rapid
adaptation of the solution corresponds to a greater expected rate of
decay of the training point weights. In a similar manner, our de-
terministic method requires a tradeoff between window width and

speed of adaptation, in that a shorter window causes the SV nov-
elty detector to adapt faster to new points. Indeed, it is possible for
both methods to yield similar solutions in practice, given appro-
priate parameters choices: it is not certain, however, how well the
on-line method would perform with relatively short signal lengths,
like those observed when performing music segmentation.

4. SIMULATIONS

First, we investigate the numerical stability and computational cost
of the algorithm. To achieve this, a set of 50 2-D time series of
1024 points was generated. For each series, the parameters of the
SV detector were computed for training sets defined by a sliding
window over a subset of the data, using both the on-line algorithm
and the batch solution procedure. Comparison of the resulting so-
lutions shows negligible difference in terms of precision (the aver-
age difference between weights for margin support vectors is be-
low 0.1 %). Fig. 3 plots the average computational cost of both
methods versus the training set size�, measured over the 50 time
series. As can be seen, the on-line method is always quicker, and
the advantage increases with larger�.
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10
10

(a)

Training set size�

Log of complexity (matlab functionflops)

Fig. 3. Comparison of computational costs at various window
sizes�, for the on-line algorithm (dashed line) and the batch im-
plementation. These results were obtained using a toy data set.

In the second set of experiments, we applied the sequential
SV procedure to increase the speed of the audio segmentation al-
gorithm proposed by Davyet al. [1]. In this study, the accuracy
of a combined time-frequency representation/single class SV ap-
proach was demonstrated, due to the fact that time series changes
appear as frequency shifts in TFRs (for more information about
TFRs, refer to [10]). Furthermore, the method is a descriptor-based
approach, and does not require an explicit statistical model. The
simulation we describe involves a fragment of solo classical piano
(Fig. 4, bottom). Two TFRs yield excellent results, namely the
spectrogram computed with a Hamming window (width 3.4ms),
and the smoothed Pseudo Wigner-Ville. Each training vector���
consists of three consecutive TFR columns. The dominance of
high frequencies over low frequencies is reduced by using�����	� .
Our SV detector had the parameters� � ��, 
� � ����, and
� � ��
. The results again confirm the stability of the on-line
algorithm. In Fig. 4 (middle), we plot the index
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where������������������� are the weights computed using the train-
ing set� . All abrupt changes were correctly detected. Note that
all the tested points are classified as outliers (i.e.���� � �� ��),
due to the small kernel width
� chosen. The index of Eq. (13)
is therefore best interpreted as a distance in the feature space be-
tween the bulk of the training points and the tested vectors, with
large distances corresponding to large changes in the frequency
content of the signal. This implies that our support vector parame-
ters need not be tuned very precisely, as the detector does not rely
on an accurate population estimate of the fraction of points within
the region of suppport.

Spectrogram

Stationarity index����

Music signal (time series)

0.3s0
0

5.5kHz

Fig. 4. Segmentation results obtained with a music signal. The
peaks in���� are plotted along with the true abrupt change times,
where the latter are indicated by dashed lines.

5. CONCLUSION

The online one-class support vector solution technique presented
in this paper provides exact updates when a sliding window is used
to sequentially define the training set. Simulations show that the
computational gain is appealing in practice, although theoretical
estimates of the computational cost have yet to be determined;
these will depend on the stability of the solution when new points
are added.
Further research directions include the modification of the algo-
rithm to allow the training set size to grow, i.e. incremental learn-
ing.
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