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ABSTRACT one class case requires a somewhat different approach to this ear-

. . - . i lier work. Note that this scheme can also be adopted for off-line
In this paper, we describe an efficient algorithm to sequentially analyses.
update a density support estimate obtained using one-class sup-  The sequential update of the SV solution is particularly well
port vector machines. The solution provided is an exact solution, g jited to the signal segmentation problem, as in [1]. This descriptor-
which proves to be far more computationally attractive than a batchpaseq approach requires two steps (Fig. 2). First, high-level dis-
approach. This deterministic technique is applied to the problem ciminant descriptors are extracted. Second, we apply SV novelty
of audio signal segmentation, with simulations demonstrating the getection: at time, we train the novelty detector using a training
computational performance gain on toy data sets, and the accurac¥et .. made up of a fixed numben of consecutive descriptors

of the segmentation on audio signals. #;, taken from time — m totimet —1: x; = {& _m,..., &1}
The vector at time, @, is then tested with respect #g using the
1. INTRODUCTION novelty detector, so as to determine when a substantial change oc-

curs in the signal. This procedure is repeated, with the addition
Support vector machines (SVMs) have recently received much at-Of next observatior; and the removal of the oldest;—n, (the
tention as efficient nonparametric classification and regression tool§€W training set being;+1 = {:-m+1, ..., :}). The training
[2, 3]. More recently, a support vector method for density support Set is thus defined by a sliding window, and the novelty detection
estimation was introduced by Sulkopf et al. [4], and has been  decision function is recomputed at each titne
successfully applied to a number of problems, including jet engine

pass-off tests [5] and audio signal segmentation [1]. This method signal
permits the control of the number of outliers in the training set; the ¢
solution of the optimization problem leads to a decision function | preprocessing stepl

which classifies new points as inliers and outliers.

Many real-life pattern recognition applications take as their in-
put a sequential flow of data points; the study of such on-line pro-
cesses can generally be undertaken by placing a sliding window

X = {T1, ..., 70}

tet41 t=m+1

on a subset of the incoming data. With no loss of generality, we
consider windows evolving with unitary increments: applying this . . .
strategy to learning techniques therefore leads to process descrip- @t = A{Tim, o Teo1}, Tt
tors#; extracted from the input signal, with evolving training sets training set test vector
of fixed size (as depicted in Fig 1 = {Z¢t—m,...,T+—1}. The
|SV novelty detectio+
z z \L
~ >
F 7, Z foi (Fe) = 1(t)

Fig. 1. Evolution of the “sliding” training set: the oldest data point
is removed from the training set and replaced by a new one.
1= {I(t)}t:m+1 ..... n

density s_uppo_rt can be estim_ated in two di_stinctways: from scratch,:ig_ 2. Signal segmentation algorithm ([1]). A sliding window
at each iteration (a quadratic programming problem is solved atjs yseq to extract discriminant descriptors from the signal, which
each timestep), or by continually updating the SV solution ob- csrain a SV novelty detector; the output of the latter is a stationarity

tained in the previous iteration. We use the latter approach, base ndex, and allows the detection of abrupt changes in the signal.
on the algorithm proposed by Cauwenberghs and Poggio [7] for

on-lineC-SV two-class classification, for reasons of computational The remainder of the paper is organized as follows. In Section
efficiency. As we shall see, however, the solution procedure in the2, the soft-margin support vector novelty detection is reviewed,
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and in Section 3 our on-line algorithm is presented. Results ob-

tained with both toy and real-life data are presented in Section 4.

2. v-SV NOVELTY DETECTION

We assume a set of: training points,x := (&1, -+ ,Zm) €
X™ inwhichZ; € X, whereX’ is the input space. We define a
learning algorithmA : Ujs_; X™ — H, whereA(x) belongs to a
hypothesis space H C {0, 1}X; this represents a space of indicator
functionsI4 for setsA C X'. Next, we define deature space F,
endowed with an inner produék;, x;), wherex := ¢(z), and

¢ : X — F. We restrictH to functions of the form

Hi={Z Lo wx—p>s|WEFpE{R}, (1)
where we limit our choice ofv to linear combinations of mapped
training points,

w=> aix; Wwherea>0. )

Under these conditions, we need never compute the magging
rather, by equation (2), it follows thdtv,x;) can be computed
using only the inner product functiot(z;, z;) := (X;,X;). A
kernelk represents an inner product in some feature space if it ful-
fills the Mercer conditions [9]. These conditions are satisfied for a
wide range of kernels, including Gaussian radial basis functions,
. 1 o 2
O - L )
Let us now define a functiorf, (€) in RY, such thatd(z) =
Liz: fo(@)>0y; thus

fa(@) = (x,w) — p.

All training pointsz; for which f. (Z;) < 0 are calledsupport vec-
tors(SVs); these are the only points for which SV algorithms yield
a; # 0 in equation (2), thus the SVs alone determjag-). SVs
are divided into two sets: thmargin SVs, for which f.(Z;) = 0,
and thenon-margin SVs, for which f.(Z;) < 0; the indices of
these sets in the training sample are writlefiice) and N («) re-
spectively. We determine the parametersand p of f.(Z) by
solving

1 S
g}?ﬁ—gnwﬂ —%;&ﬂLA

subjectto (w,x;) >p—&, & >0.
It is proved in Scblkopf et al. [4] that v is an upper bound on
the fraction of non-margin SVs, and a lower bound on the frac-
tion of support vectors; in addition; is asymptotically equal to
both the fraction of SVs and the fraction of non-margin SVs with
probability 1, under mild conditions on the probability distribution
generating the data. In the dual formulation, we want to minimize

m
. (1-3a),
i=1 =1
. 1
subjectto 0 <a < —1.
vm

The following results, known as th€arush-Kuhn-Tucker (KKT)
constraints, must therefore hold at the global optimum;

m
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3. ON-LINE ALGORITHM

In this section, we describe an efficient on-line method to ob-
tain a solutiona+1, pt+1, Which uses the training sat;+1 =
{Z¢—m+1,..., %}, from the solution;, p: found with the train-

ing sete; = {Zi—m,...,Ti—1}. Thus, each update step requires
us to add one poing; to the training set, and to remove another
point Z;_ .

The dependence om of the upper bound (4) om (which
does not occur irfC-SV classification), however, causes our ap-
proach to differ from that in Cauwenberghs and Poggio [7]. Thus,
in updatingay, p¢, we first obtain an intermediate solution, p;
with the composite training sét; = {Z¢—m,...,Z+}. This so-
lution is not a feasible solution, however, in that the upper bound
on thea; is kept at-1-, and not——— e +1) Next, we remover; .,
from z; to obtain the feasible solutiot;+1, p+1-

Let us denote byi. the point for which the coefficient.
is being changed, either through being added to the training set
x (so thatc = t ) or through being removed frons (so that
¢ =t—m—1). Inthe former case, we must adjust un-
til the requirements of (4) and (5) are met, whereas in the latter
case, we must reduce. to zero. In making these adjustments,
however, it is necessary to shift the coefficients of the remaining
points {«; : 7 # ¢} to preserve optimality according to (4) and
(5). Briefly, adjustments to the solutiom are made such that
the slopes{g; : i € M(a)} of W with respect to the weights
{a; : 1 € M(a)} of the margin SVs do not change (they stay
at zero) although the weights themselves are allowed to change;
whereas for non-margin and non-SV{sy; : i ¢ M ()} are not
allowed to change (they must remain respectively at eilgbneor
0) but slopes may change. This adiabatic process is described in
Section 3.1. In the course of these shifts, however it is possible
for the sets of margin, non-margin and non-SVs to evolve, due for
instance to the weight; of a margin SVZ#; being shifted down
to zero, or the slope; of the cost function for a non-margin SV
reaching zero (obviously, this is not a complete set of possible con-
ditions). The resulting updates are described in Section 3.2.

3.1. Adiabatic changesto solution

We now consider how a solutiam, p might be updated in an adi-
abatic manner when the coefficient of a particular data point.

is shifted byAa.. Thus, there can be no shift to the valueswof

for pointsZ; that are non-margin SVs or non-SVs, and no shift to
the g; for margin SVs (the latter remains zero). The sets of mar-
gin, non-margin and non-SVs are assumed to stay the same in the
course of the update (we deal with changes to these sets in the next
section). Given these goals and constraints, shifts in a. cause
changes tay; : i € M (), and to the slopeg; : i ¢ M(ax) of

the cost function. Thus, to obtain an on-line solution procedure,
we must find the explicit dependence of these quantitiedAan.

There is then a shift to the constraints in (4) and (5), such that

—Ap | _ 1
QM [ AQM :| - - [ kM,c :| Aa07 (6)
whereQM:[(l) Ig/[]’
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hereK s is the matrix of inner products between margin SVs, and speed of adaptation, in that a shorter window causes the SV nov-
ks, is the vector of inner products between the margin SVs and elty detector to adapt faster to new points. Indeed, it is possible for

the new pointk.. In equilibrium, both methods to yield similar solutions in practice, given appro-
priate parameters choices: it is not certain, however, how well the
Ap = —=Bp(c)Aac,  Aa; =pj(c)Aac, (7) on-line method would perform with relatively short signal lengths,

like those observed when performing music segmentation.

where we defin({ ﬂﬂ;((cg) } =-Q;/ [ kzlw,c } , (8

andB; (¢) = 0forj ¢ M(a®). Substituting this result into
(6) yields the desired relation betwegmy. and the cost function
slopes of points that are not margin SVs;

4. SIMULATIONS

First, we investigate the numerical stability and computational cost
of the algorithm. To achieve this, a set of 50 2-D time series of
Agi =i (¢) Aae, Vie{1,---,m}U{c}, (9) 1024 points was generated. For each series, the parameters of the
SV detector were computed for training sets defined by a sliding
window over a subset of the data, using both the on-line algorithm
vi(e) = k(Zi,Ze) + 3 cni(a) B(&i, T5)B; (c) (10) and the batch solution procedure. Comparison of the resulting so-
+8,(c) Vig M(c). lutions shows negligible difference in terms of precision (the aver-
age difference between weights for margin support vectors is be-
The above also defines. (c), and a corresponding slope shift Jow 0.1 %). Fig. 3 plots the average computational cost of both
Agec, for the new pointz., which does not begin as a margin SV methods versus the training set sing measured over the 50 time
in the solutionee . Finally,y; = 0 wheni € M (c). series. As can be seen, the on-line method is always quicker, and
the advantage increases with larger

where :

3.2. Pointsentering and leaving the margin set
) . ) Log of complexity (matlab functiofil ops)
Let us now consider what it means to add a poiptto the set 10%° : ‘ : :

of margin SVs. This means that (6), which is used to find the
variation in thea: when a new poink. is added to the training set, . ]
becomes 100 | I :
- Ap 1 o
Qu | Aan | =—| kue | Ao, 10° | 1
Qd kd,c
0 17 1 107 L e ]
where Qu=|1 Ky kua |. P
1 kya  kaa Lo° | | | |
20 30 40 50 50 =N

Using the Woodbury formula, we therefore obtain

=S4
M= 0T 0 Fig. 3. Comparison of computational costs at various window
Bo (d) '| (11) sizesm, for the on-line algorithm (dashed line) and the batch im-
+m [ ,BMl(d) J [ B, (d) Bi (d) 1 ]. plementation. These results were obtained using a toy data set.

Training set sizen

In the second set of experiments, we applied the sequential
SV procedure to increase the speed of the audio segmentation al-
gorithm proposed by Davst al. [1]. In this study, the accuracy
of a combined time-frequency representation/single class SV ap-
proach was demonstrated, due to the fact that time series changes
appear as frequency shifts in TFRs (for more information about

We now consider the effect (:Q;j of a pointx, leaving the mar-
gin set. Again using the Woodbury formula, it is possible to define
the update (wherfA],,, denotes the elements of the matrixo-
cated at ronz and columrb, and[A]z ; indicates that rows has
been removed from\);

Q7! = [~—1} _ TFRs, refer to [10]). Furthermore, the method is a descriptor-based
R d1,d41 _ (12) approach, and does not require an explicit statistical model. The
[QJ_VII} [Qj—ﬂ - [QX;] - simulation we describe involves a fragment of solo classical piano
d+1,d+1 d+1,d+1 d+1,d+1 (Fig. 4, bottom). Two TFRs yield excellent results, namely the
) ) ] ] spectrogram computed with a Hamming window (width 3.4ms),
3.3. Comparison with stochastic updatesto the SV solution and the smoothed Pseudo Wigner-Ville. Each training vegtor

An alternative method that has been proposed for obtaining Sup_consists of three consecutive TFR columns. The dominance of

port vector solutions on-line is the stochastic gradient descent metHgigh frequencies over low frequencies is reduced by ugiiy .

of Kivinen et al. [8], which may be used both in classification and ©Ur SV detector had the parameters = 50, o = 0.05, and
density support estimation. This stochastic algorithm effectively ¥ = 0-2. The results again confirm the stability of the on-line
applies an exponential window to the data, where a more rapig@/gorithm. In Fig. 4 (middle), we plot the index

adaptation of the solution corresponds to a greater expected rate of 1

decay of the training point weights. In a similar manner, our de- I(t) = —log ( Z i tk(i"i,i"t)/p) 7 (13)
terministic method requires a tradeoff between window width and T '

1= m
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where{ai, ¢ }i=t—m,...,.—1 are the weights computed using the train-
ing setx . All abrupt changes were correctly detected. Note that
all the tested points are classified as outliers (I.g.) > 0, Vt),

due to the small kernel width;, chosen. The index of Eq. (13)

is therefore best interpreted as a distance in the feature space be-
tween the bulk of the training points and the tested vectors, with
large distances corresponding to large changes in the frequency
content of the signal. This implies that our support vector parame-
ters need not be tuned very precisely, as the detector does not rely
on an accurate population estimate of the fraction of points within
the region of suppport.

Spectrogram

Stationarity index (¢) !
T

Music signdl (time series)

Fig. 4. Segmentation results obtained with a music signal. The
peaks inI(t) are plotted along with the true abrupt change times,
where the latter are indicated by dashed lines.

5. CONCLUSION

The online one-class support vector solution technique presented
in this paper provides exact updates when a sliding window is used
to sequentially define the training set. Simulations show that the
computational gain is appealing in practice, although theoretical
estimates of the computational cost have yet to be determined,;
these will depend on the stability of the solution when new points
are added.

Further research directions include the modification of the algo-
rithm to allow the training set size to grow, i.e. incremental learn-

ing.
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