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ABSTRACT

A comple-valuedgradientasedalgorithmfor trainingnon-
linear complex-valuedfinite impulserespons€FIR) filters
isderived. Theproposeadtomplex erroradaptvenormalised
nonlineagradientdescen{CEANNGD)andsmoothedCE-
ANNGD (SCEANNGD)algorithmsareanimprovemenin
the complex nonlineargradientdescent{CNGD) and the
complex normalisednonlineargradientdescen{ CNNGD)
algorithmby including an adaptve termin the normalised
learningrate of the CNNGD. This is achieved by perform-
ing aminimisationof thecomplex-valuednstantaneousut-
puterrorthathasbeenapproximatedia a Taylor seriesex-
pansionwhich makesit suitablefor the processingf non-
linearandnonstationansignals.Experimentson complex-
valuedcolouredandnonlinearsignalsshav thatthe CEAN-
NGD andSCEANNGDalgorithmsoutperformthe standard
CNNGD andCNGD algorithms.

1. INTRODUCTION

The datathatis processedn mary signalprocessingreas
is residentin the field of realnumbersR, recentlyhowever
progressin biomedicine,communicationsand signal pro-
cessinghasbroughta new classof signalsandit hasbeen
necessaryo extend known techniquesof dataprocessing
to include the field of complex numbersC. The develop-
mentof comple-valuedadaptve filtering began with the
developmenbf the complex leastmeansquarg(CLMS) al-
gorithm[1] for linear complex-valuedFIR filters. As with
the developmenif real-valuedadaptve filters, the needto
extendthe classof algorithmsfrom thelinearto non-linear
casefor complex-valuedadaptve filtering algorithmswas
apparent. The issueof finding a suitableactivation func-
tion is still underinvestigation. Liouville’s theoremthat
states’a boundedentire functionin the comple planeis
a constant”, and thereforea generalholomorphicactiva-
tion function that is boundedalmosteverywherein C is
a good choicefor the nonlinearity The effects of differ-
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ent activation functionsusedin any complex-valuednon-
linear gradientdescentalgorithm are shavn in [2]. This
paperfirst derivesthe complex-valuednormalisednonlin-
eargradientdescen{CNNGD) algorithmfor a dynamical
perceptronshavn in Figurel. The CNNGD algorithmis
derived accordingto the usualindependencassumptions.
Thereforethe dynamicsof the input signal are not fully
consideredn the derivation of the adaptve learningrate,
n(k). To this causethe paperthen presentsa complex-
valuederroradaptve normalisechonlineargradientdescent
(CEANNGD) algorithm, that minimisesthe instantaneous
output error accordingto an estimateof the remainderof
theTaylorseriesexpansiorusedn thederivationof the CN-
NGD algorithm. The proposedalgorithmappliesto ary ac-
tivationfunctionthuscomplementinghe analysisshavn in

2.
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Fig. 1. Comple-valuednonlinearadaptve FIR filter

2. THE COMPLEX NONLINEAR GRADIENT
DESCENT ALGORITHM

The equationghatdescribethe complex nonlineargradient
descen{CNGD) algorithmfor a complex-valuednonlinear
adaptvefilter aregivenby
]‘ *

E(k) = Sle(®)]* = Sle(k)e” (k)] )
where E(k) is the costfunction, (-)* denoteghe comple
conjugateande(k) is thecomplex instantaneousutputer-
ror givenby

e(k) = d(k) —y(k), y(k) = ®(net(k)) )
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net(k) = > zn(kwn (k) =x"(k)w(k),  (3)

whered(k) is the desiredoutput,the complex-valuedinput
signalis givenby x(k) £ [z1(k),...,zn(k)]T, w(k) =
[wy (k), - .. ,wx(k)]T thecomplex weightvector N is the
numberof tapinputs,and®(net(k)) is somenonlineatolo-
morphicfunctionthatis boundedalmosteverywherein the
complex domain.For simplicity we statethat

d(net(k)) = @ (net(k)) + j® (net(k))
= u(k) +jv(k), 4)
wherej = +/—1 andthe superscript-)" and(-)! denote

therealandimaginarypartsrespectiely. We canthensplit
uptheerrorterm(2) into its realandimaginaryparts

e (k) = d'(k) —u(k), €(k)=di(k)—v(k). (5)

The individual weight adaptatiorin the complex nonlinear
gradientdescentalgorithm can be written in the compact
form, andis givenby [3]

w(k +1) = w(k) + ne(k)(®'[net(k)])*x* (k). (6)

wheren denoteghe stepsizeof the algorithm.

3. ACOMPLEX NORMALISED NONLINEAR
GRADIENT DESCENT ALGORITHM

Let usfind an optimallearningratethat minimisesthe out-
put errorby expandingthe errorterm (2) by a Taylor series
expansion4]. Assumingthe usualstatisticalindependence
betweerweights,inputsignal,error, andlearningraten, the
expandeckerrortermthenbecomes

ek +1) = eh) + 3 2By, )

— Qwn (k)

1S ek

The weight updateterm Aw, (k) hasalreadybeenderived
in (6), thuswe mustfind 8‘206"('(‘,)9). Sincee(k) is ananalytic
comple functionwe canapplythe Cauchy-Riemanequa-
tionsto give[3]

Oe(k)  Oer(k) . 0€i(k)
dua(k) — Bup(k) " owy(k)
= —&(net(k))zn (k). ®)

The weight updateterm has alreadybeenderived in (6),
thereforetruncating(7) to include the first two terms,and
substituting(6) and(8), gives

e(k+1) = e(k)[1 — n|®'[net(®)]P|Ix(®)I[3).  (9)

In orderfor theerrorin (9) to bezero,thetermin thesquare
bracketsmustbezeroandcanthusbe usedto find 5 (k) as

1

nk) = |®[net(k)]|2||x(k)||2 + C

(10)

Theoptimallearningratefor acomplex-valuedfeed-forward
FIR filter employedasa nonlinearadaptvefilter is givenin

(10)andgivesriseto thecomplex normalisechonlineargra-
dientdescen{CNNGD) algorithm.

4. A COMPLEX-VALUED ERROR-ADAPTIVE
NORMALISED NONLINEAR GRADIENT
DESCENT ALGORITHM

Noticethatin the derivationof the normalisedearningrate
n(k) of the comple-valuednormalisednonlineargradient
descen{CNNGD)algorithm,asmallpositive constanterm
C hasbeenaddedto balancethe truncationof the Tay-

lor seriesexpansion,andto preventthe learningrate from

tendingto infinity. Namely the CNNGD algorithm expe-
riencesproblemssimilar to thoseof the normalisedleast-
meansquare(NLMS) algorithm, which are dueto the as-
sumptionsn its derivation. Thereforea constanterm,C, in

the CNNGD algorithmaccountdor thecorrelationbetween
the signal, error, andlearningrate,n. This algorithmcan
beimprovedby adjustingthisterm C' automaticallyaccord-
ing to the instantaneousutputerror. This givesriseto the
comple-valuederroradaptve normalisedhonlineargradi-
ent descent(CEANNGD) algorithm. Applying the same
methodasin (8) to derive the secondorder derivative we

obtain

0e?(k)

Fon ) dwne) ~ L met(k)en(k)zm (k).

11)

Takingthe secondandhigherordertermsto betheremain-
derof theexpansion,R,,(k) andrecognisinghatnet(k) =
xT (k)w(k) we cancomputeR,, (k) usingthe meanvalue
theorem(MVT) andRolle’stheoremto give

Ry, (k) = —ne(k)C(k), (12)
suchthat

OK) = yme(k) @' (kywik)]
X" [ (k) (w(k) + 0w (k)| [z (R, (13

anqo < 6 < 1. Theexpandederrorterm (9) cannow be
written as

e(k +1) = [1 - n/@'[x" (k)w(K)]13]x(%)I13

— g eR) @' (Ryw k)

x®"[x" (k) (w(k) + 0Aw(k))]|[x(k)|[5]e(k). (14)
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It is shovn in [5] thatexplicit computationof C'(k) hasa
large computationaburden. Thereforeit is proposedhat
we re-write the Taylor seriesexpansionin termsof a func-
tion v(k) suchthat the squaredexpansionof the instanta-
neousoutputerrorbecomes

e*(k +1) = 7*(k)e’ (k), (15)
and~ (k) is continuouson the set[5]
R =R\ {~|®(net(k))*||x[[3}, (16)

whereR is the setof realnumbers.It is thenshavn thatC
is boundedas

2 <. (17)

2

To ensurghatatruecornvergenceas obtainedwewishto de-
rive someupdatetermsuchthatC'(k) = C(k—1) + AC(k)

for k = 1,2,.... However, for signalswith rich dynamics
and long time correlation, explicit computationof C' can
leadto large perturbatiorin thelearningrate. To this cause,
an iterative algorithmis proposedn [5] that employs the
proportionalsquareckerrorastheinstantaneougradient.In

termsof acomple-valuedalgorithmthis canbeinterpreted
as

C(k) = aC(k — 1) + pu¢? (k) (18)

wherethe function {(k) = |e(k)| providesthe algorithm
with theinstantaneougradientthesmoothingoperatorw =
1,andu € R is choserto beasmallpositive constantvhich
denoteghe stepsizeof thealgorithm.

It canbe shavn that the CEANNGD algorithm cancause
largefluctuationsof thelearningrate,n(k), asthealgorithm
reachegheoptimalpoint. At this pointtheerrortermtends
to oscillatecausingthe learningrateto containsignificant
misadjustmengrrors.To this causefollowing theproposed
methodgivenin [6], we updateterm for C'(k) in the CN-
NGD algorithm. This methodincorporates smoothingop-
eratorinto theupdatetermof thealgorithm,in thiscase( (k)
is definedas,

((k) = wC(k=1) + (1 = &)le(k)e(k —1)[,  (19)

wherex € R is a weighting parameterthat controlsthe
time averagingconstant.It canbe seenfrom (19) thatcon-
secutve termsof the instantaneousutputerror are multi-
plied, thisis to minimizeuncorrelatechoisein the updateof
C. To this causeijt is proposedhatthe smoothedCEAN-
NGD (SCEANNGD)algorithmbedefinedwith 0 < a < 1
which controlsthe smoothingof the updateterm and i is
somesmall positive constanthatcontrolsthe speedf con-
vergenceof C'(k). To this causetheterm C(k) in thede-
nominatorof the learningrateis adjustedaccordingto the

filtering of the instantaneousutputerrors. This way, the
analysisof theterm C'(k) in the CEANNGD and SCEAN-
NGD algorithms,conformsto the analysisgivenin [6].

5. EXPERIMENTAL RESULTS

Toinvestigatehe performancef thecomplex-valuederror
adaptvenormalisechonlineamgradientdescenfCEANNGD)
andsmoothedCEANNGD (SCEANNGD)algorithmscom-
paredto the complex-valuednormalisednonlineargradient
descenf{CNNGD) and the complex-valuednonlineargra-
dientdescen{CNGD) algorithms they wereappliedto the
problemof time-seriegpredictionof complex-valuedcoloured
andnonlinearsignals.In all theexperimentgheorderof the
filter was N = 10 andthe holomorphicactivationfunction
®(-) waschosento be the complex-valuedhyperbolictan-
gentfunction

ef* — e=Pz

2(70) = o (20)
where 8 = 0.2 controlsthe slope of the algorithm and
z € C. Thefirst experimentinvolvedaveragingthe perfor
mancecurves of 700 independensimulationson the pre-
diction of acomplex colouredsignal. Theinput, 7(k), was
normally distributed (0, 1) complex white noisethatwas

thenpassedhrougha stableAR filter definedas

y(k) = 1.79y(k—1)—1.85y(k —2) + 1.27y(k — 3)
—041y(k — 4) + r(k) (21)

In the CNGD algorithmalearningraten = 0.1 waschosen,

andin the CNNGD the valueswerechoserto be C' = 0.7

andC = 2. In the SCEANNGDalgorithmthe valuescho-
senwerex = 0.5, p = 0.1, @ = 0.97, anda = 0.3. Figure
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Fig. 2. Averagedcorvergencecurvesfor CNGD, CNNGD,
CEANNGD, andSCEANNGDon acolouredinput signal

2 shows the performancecurvesfor the CNGD, CNNGD,
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Fig. 3. Averagedconvergencecurvesfor CNGD, CNNGD,
CEANNGD, andSCEANNGDon a nonlinearinput signal

CEANNGD, and SCEANNGD algorithmson colouredin-
put. A quantitatve performancevasbasedon E,, which
is the averagevalue of the squaredmoduluserror. The
CNGD algorithmreachedE,, = —15.0 dB after 3,000
iterationswhereasghe CNNGD algorithmwith a value of
C = 2.0 reachedE,, = —26.0 dB after 3,000 itera-
tions of the algorithm. Similarly, the CNNGD algorithm
with avalueof C = 0.7 reachedE,, = —28.0 dB after
2,500 iterations. The CEANNGD algorithm corvergedto
E,, = —28.0 dB afterjust 1,000 iterations,which shavs
a significantincreasein performance. The SCEANNGD
algorithm corvergedtoE,, = —27.5 dB in 1000 itera-
tionsand E,, = —26.0 dB in 1000 iterationsfor values
of @ = 0.97 anda = 0.3 respectiely. The secondex-
perimentconsistedf averagingthe performancecurvesof
700 independensimulationson the predictionof a nonlin-
eartime-series.The input, r(k), was normally distributed
N(0,1) complex white noisethatwasthenpassedhrough
abenchmarlnonlineaffilter definedas

y(k—1)
A )

In the CNGD algorithma learningraten = 0.1 wascho-
sen,andin the CNNGD algorithms,valuesof C = 2 and
C = 0.7 werechosen.In the SCEANNGD algorithmthe
valueschoserwerex = 0.5, p = 0.1, & = 0.97, anda =
0.3. Figure3 shows the performanceurvesfor the CNGD,
CNNGD, CEANNGD, and SCEANNGD algorithms. The
CNGD algorithmreachedE,, = —21.0 dB after 3,000
iterationsof the algorithm. The CNNGD algorithmfor a
valueof C' = 2 reachedE,, = —27.0 dB after3, 000 it-
erationswhereadf C' = 0.7 the CNNGD reachedF,, =
—35.0 dB after 3,000 iterations. The CEANNGD algo-
rithm corvergedto avalueof E,, = —44.0 dB afterjust
2,000 iterationsof the algorithm. The SCEANNGD algo-
rithm corvergedtoE,, = —44.0 dB in 400 iterationsand

+r3(k) (22)

E., = —44.0 dB in 100 iterationsfor valuesof a = 0.97
anda = 0.3 respectiely. In the experimentof nonlinear
prediction,it is clearthatthereis somenoisein the perfor
mancecurvesfor all algorithms. In this way the SCEAN-
NGD outperformsthne CEANNGD by filtering the instan-
taneousoutputerrors,which in turn providesa moreaccu-
rate estimateof C(k). However, for signalswith uniform
distribution and high signalto noiseratio, the CEANNGD
algorithmoutperformghe SCEANNGDalgorithm.

6. CONCLUSIONS

A comple-valuederroradaptve normalisechonlineargra-
dientdescenfCEANNGD)andsmoothedCEANNGD (SC-
EANNGD) algorithmfor complec-valuednonlinearFIR fil-
ters hasbeenderived. It hasbeenshownn that the result-
ing algorithmsare an extensionof the fully adaptve nor-
malisednonlineargradientdescenfFANNGD) algorithm
givenin [5] to the comple planevia the useof holomor
phic activation functions. As such,they have beenshovn
to be bettersuitedfor the processingf nonlinearandnon-
stationarysignals.Experimentatesultshave shavn thatthe
CEANNGD and SCEANNGD algorithmsoutperformthe
comple-valuednonlineargradientdescenf{CNGD) algo-
rithm andthe complex-valuednormalisednonlineargradi-
entdescen{CNNGD) algorithmonthepredictionof comple-
valuedcolouredandnonlinearsignals.
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