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ABSTRACT

A complex-valuedgradientbasedalgorithmfor trainingnon-
linear complex-valuedfinite impulseresponse(FIR) filters
isderived.Theproposedcomplex error-adaptivenormalised
nonlineargradientdescent(CEANNGD)andsmoothedCE-
ANNGD (SCEANNGD)algorithmsareanimprovementon
the complex nonlineargradientdescent(CNGD) and the
complex normalisednonlineargradientdescent(CNNGD)
algorithmby including an adaptive term in the normalised
learningrateof theCNNGD. This is achievedby perform-
ingaminimisationof thecomplex-valuedinstantaneousout-
put errorthathasbeenapproximatedvia a Taylor seriesex-
pansion,which makesit suitablefor theprocessingof non-
linearandnonstationarysignals.Experimentson complex-
valuedcolouredandnonlinearsignalsshow thattheCEAN-
NGD andSCEANNGDalgorithmsoutperformthestandard
CNNGD andCNGDalgorithms.

1. INTRODUCTION

Thedatathat is processedin many signalprocessingareas
is residentin thefield of realnumbers� , recentlyhowever
progressin biomedicine,communicationsand signal pro-
cessinghasbroughta new classof signalsandit hasbeen
necessaryto extend known techniquesof dataprocessing
to includethe field of complex numbers� . The develop-
ment of complex-valuedadaptive filtering beganwith the
developmentof thecomplex leastmeansquare(CLMS) al-
gorithm[1] for linear complex-valuedFIR filters. As with
thedevelopmentof real-valuedadaptive filters, theneedto
extendtheclassof algorithmsfrom thelinear to non-linear
casefor complex-valuedadaptive filtering algorithmswas
apparent. The issueof finding a suitableactivation func-
tion is still under investigation. Liouville’ s theoremthat
states”a boundedentire function in the complex plane is
a constant”, and thereforea generalholomorphicactiva-
tion function that is boundedalmosteverywherein � is
a good choicefor the nonlinearity. The effects of differ-

ent activation functionsusedin any complex-valuednon-
linear gradientdescentalgorithm are shown in [2]. This
paperfirst derives the complex-valuednormalisednonlin-
eargradientdescent(CNNGD) algorithmfor a dynamical
perceptronshown in Figure1. The CNNGD algorithmis
derived accordingto the usualindependenceassumptions.
Thereforethe dynamicsof the input signal are not fully
consideredin the derivation of the adaptive learningrate,�����
	 . To this causethe paperthen presentsa complex-
valuederror-adaptivenormalisednonlineargradientdescent
(CEANNGD) algorithm, that minimisesthe instantaneous
output error accordingto an estimateof the remainderof
theTaylorseriesexpansionusedin thederivationof theCN-
NGD algorithm.Theproposedalgorithmappliesto any ac-
tivationfunctionthuscomplementingtheanalysisshown in
[2].
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Fig. 1. Complex-valuednonlinearadaptiveFIR filter

2. THE COMPLEX NONLINEAR GRADIENT
DESCENT ALGORITHM

Theequationsthatdescribethecomplex nonlineargradient
descent(CNGD) algorithmfor a complex-valuednonlinear
adaptivefilter aregivenby

� ����	�
����� � ���
	 � � 
����� � ���
	 ��� ���
	�� (1)

where
� ���
	 is the cost function, ����	 � denotesthe complex

conjugate,and � ���
	 is thecomplex instantaneousoutputer-
ror givenby
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where �!���
	 is thedesiredoutput,thecomplex-valuedinput
signal is given by <����
	CB � 7 5 ���
	D%FEGEFE?% 7 0 ���
	:� > , @A����	HB� 9 5 ���
	D%FEGEFE?%/9 0 ����	�� > thecomplex weightvector, I is the
numberof tapinputs,and (*�J+ �.- ���
	/	 is somenonlinearholo-
morphicfunctionthat is boundedalmosteverywherein the
complex domain.For simplicity westatethat

(*�J+ �.- ���
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where Q[
�\ " � andthe superscripts����	 L and �T� 	 R denote
therealandimaginarypartsrespectively. We canthensplit
up theerrorterm(2) into its realandimaginaryparts

� L ���
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	DE (5)

The individual weightadaptationin the complex nonlinear
gradientdescentalgorithm can be written in the compact
form, andis givenby [3]

@A���_O � 	�
`@A����	POa� � ����	D��(Mb � + �.- ���
	:�c	 � < � ����	&E (6)

where� denotesthestepsizeof thealgorithm.

3. A COMPLEX NORMALISED NONLINEAR
GRADIENT DESCENT ALGORITHM

Let usfind anoptimal learningratethatminimisestheout-
put errorby expandingtheerrorterm(2) by a Taylor series
expansion[4]. Assumingtheusualstatisticalindependence
betweenweights,inputsignal,error, andlearningrate � , the
expandederrortermthenbecomes
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	?O 023e4W5
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f � � ���
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	Ng 9 3 ���
	 g 9 k ���
	PO=�F�G� (7)

Theweight updateterm g 9 3 ���
	 hasalreadybeenderived
in (6), thuswe mustfind monSprqDsm.t!u8prq&s . Since � ���
	 is ananalytic
complex functionwe canapplytheCauchy-Riemannequa-
tionsto give [3]f � ����	f 9 3 ���
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The weight updateterm hasalreadybeenderived in (6),
thereforetruncating(7) to includethe first two terms,and
substituting(6) and(8), gives

� ���dO � 	�
 � ���
	 � � "^� � ( b � + �.- ���
	�� � � �w� <�����	 �r� �� ��E (9)

In orderfor theerrorin (9) to bezero,thetermin thesquare
bracketsmustbezeroandcanthusbeusedto find �����
	 as

�����
	x
 �� ( b � + �.- ���
	:� � � �r� <����
	 �w� �� Ozy (10)

Theoptimallearningratefor acomplex-valuedfeed-forward
FIR filter employedasanonlinearadaptivefilter is givenin
(10)andgivesriseto thecomplex normalisednonlineargra-
dientdescent(CNNGD)algorithm.

4. A COMPLEX-VALUED ERROR-ADAPTIVE
NORMALISED NONLINEAR GRADIENT

DESCENT ALGORITHM

Noticethatin thederivationof thenormalisedlearningrate�����
	 of the complex-valuednormalisednonlineargradient
descent(CNNGD)algorithm,asmallpositiveconstanttermy has beenaddedto balancethe truncationof the Tay-
lor seriesexpansion,andto prevent the learningratefrom
tendingto infinity. Namely, the CNNGD algorithmexpe-
riencesproblemssimilar to thoseof the normalisedleast-
meansquare(NLMS) algorithm,which aredue to the as-
sumptionsin its derivation.Thereforeaconstantterm, y , in
theCNNGDalgorithmaccountsfor thecorrelationbetween
the signal,error, and learningrate, � . This algorithmcan
beimprovedby adjustingthis term y automaticallyaccord-
ing to the instantaneousoutputerror. This givesrise to the
complex-valuederror-adaptivenormalisednonlineargradi-
ent descent(CEANNGD) algorithm. Applying the same
methodas in (8) to derive the secondorderderivative we
obtain f � � ���
	f 9 3 ���
	 f 9 k ���
	 
{"v(Mb b��,+ �.- ����	T	 7 3 ����	 7 k ���
	&E (11)

Takingthesecondandhigherordertermsto betheremain-
derof theexpansion,| 3 ���
	 andrecognisingthat + �.- ���
	}
< > ���
	�@A���
	 we cancompute| 3 ���
	 usingthe meanvalue
theorem(MVT) andRolle’s theoremto give

| 3 ����	�
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suchthat

�yH���
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and �'� �'� � . The expandederror term (9) cannow be
writtenas
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It is shown in [5] that explicit computationof �yH���
	 hasa
large computationalburden. Thereforeit is proposedthat
we re-write theTaylor seriesexpansionin termsof a func-
tion � ����	 suchthat the squaredexpansionof the instanta-
neousoutputerrorbecomes

� � ���dO � 	�
 � � ���
	 � � ���
	&% (15)

and � ���
	 is continuouson theset[5]�� 
 �[��� " � (MbJ�,+ �.- ���
	T	 � � �w� < �r� ��e� % (16)

where � is thesetof realnumbers.It is thenshown that �y
is boundedas " � ( b �,+ �.- ����	T	 � � �w� <����
	 �w� ��� ���y�E (17)

To ensurethatatrueconvergenceis obtained,wewishtode-
rivesomeupdatetermsuchthat yH���
	}
=yH���}" � 	NO g yH���
	
for �A
 � % � %FEGEFE . However, for signalswith rich dynamics
and long time correlation,explicit computationof y can
leadto largeperturbationin thelearningrate.To thiscause,
an iterative algorithm is proposedin [5] that employs the
proportionalsquarederrorastheinstantaneousgradient.In
termsof acomplex-valuedalgorithmthiscanbeinterpreted
as

yH����	;
=�VyH����" � 	?O[�P� � ����	 (18)

wherethe function �
����	A
 � � ���
	 � provides the algorithm
with theinstantaneousgradient,thesmoothingoperator�$
� , and �^� � is chosento beasmallpositiveconstantwhich
denotesthestepsizeof thealgorithm.

It canbe shown that the CEANNGD algorithmcancause
largefluctuationsof thelearningrate,�Z���
	 , asthealgorithm
reachestheoptimalpoint. At thispoint theerrortermtends
to oscillatecausingthe learningrateto containsignificant
misadjustmenterrors.To thiscause,following theproposed
methodgiven in [6], we updateterm for yH���
	 in the CN-
NGD algorithm.Thismethodincorporatesasmoothingop-
eratorinto theupdatetermof thealgorithm,in thiscase�
���
	
is definedas,

�����
	}
]�!�
����" � 	WO=� � "'�!	 � � ���
	 � ����" � 	 � % (19)

where ��� � is a weighting parameterthat controls the
time averagingconstant.It canbeseenfrom (19) thatcon-
secutive termsof the instantaneousoutputerror aremulti-
plied,this is to minimizeuncorrelatednoisein theupdateofy . To this cause,it is proposedthat the smoothedCEAN-
NGD (SCEANNGD)algorithmbedefinedwith �C� � � �
which controlsthe smoothingof the updateterm and � is
somesmallpositiveconstantthatcontrolsthespeedof con-
vergenceof yH���
	 . To this cause,the term yH���
	 in the de-
nominatorof the learningrateis adjustedaccordingto the

filtering of the instantaneousoutputerrors. This way, the
analysisof theterm yH���
	 in theCEANNGD andSCEAN-
NGD algorithms,conformsto theanalysisgivenin [6].

5. EXPERIMENTAL RESULTS

To investigatetheperformanceof thecomplex-valuederror-
adaptivenormalisednonlineargradientdescent(CEANNGD)
andsmoothedCEANNGD(SCEANNGD)algorithmscom-
paredto thecomplex-valuednormalisednonlineargradient
descent(CNNGD) and the complex-valuednonlineargra-
dientdescent(CNGD) algorithms,they wereappliedto the
problemof time-seriespredictionof complex-valuedcoloured
andnonlinearsignals.In all theexperimentstheorderof the
filter was I 
 � � andtheholomorphicactivationfunction(*����	 waschosento be the complex-valuedhyperbolictan-
gentfunction

(*�J��%T�6	�
 �G�N� " �N���N�� �N� O � ���N� (20)

where ��
 � E � controls the slope of the algorithm and��� � . Thefirst experimentinvolvedaveragingtheperfor-
mancecurvesof  ��e� independentsimulationson the pre-
diction of a complex colouredsignal. Theinput, ¡ ���
	 , was
normallydistributed ¢ � � % � 	 complex white noisethatwas
thenpassedthrougha stableAR filter definedas

#�����	x
 � E  �£ #����_" � 	V" � E ¤h¥¦#�����" � 	?O � E �   #����_"'§N	" � E ¨ � #����_"$¨8	?O ¡ ����	 (21)

In theCNGDalgorithmalearningrate �H
 � E � waschosen,
andin the CNNGD thevalueswerechosento be y©
 � E  
and yª
 � . In theSCEANNGDalgorithmthevaluescho-
senwere �«
 � E ¥ , �X
 � E � , �'
 � E £h  , and �^
 � E § . Figure
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CEANNGD, andSCEANNGDalgorithmson colouredin-
put. A quantitative performancewasbasedon

��¬&­
which

is the averagevalue of the squaredmoduluserror. The
CNGD algorithm reached

�v¬&­ 
®" � ¥�E � �h¯ after §
% �N�e�
iterationswhereasthe CNNGD algorithm with a valueofyx
 � E � reached

� ¬&­ 
°" ��± E � �h¯ after §
% �N�e� itera-
tions of the algorithm. Similarly, the CNNGD algorithm
with a valueof y²
 � E   reached

� ¬D­ 
³" � ¤�E � �h¯ after� %´¥ �e� iterations. The CEANNGD algorithmconvergedto� ¬&­ 
�" � ¤�E � �h¯ after just � % �N�e� iterations,which shows
a significant increasein performance. The SCEANNGD
algorithm converged to

� ¬&­ 
µ" �   E�¥]�h¯ in � �e�e� itera-
tions and

� ¬&­ 
¶" ��± E � �N¯ in � �e�N� iterationsfor values
of �·
 � E £h  and ��
 � E § respectively. The secondex-
perimentconsistedof averagingtheperformancecurvesof ¦�N� independentsimulationson thepredictionof a nonlin-
ear time-series.The input, ¡ ���
	 , wasnormally distributed¢ � � % � 	 complex white noisethatwasthenpassedthrough
a benchmarknonlinearfilter definedas

#����
	�
 #�����" � 	� O¸# � ����" � 	 O ¡o¹ ����	 (22)

In the CNGD algorithma learningrate �z
 � E � wascho-
sen,andin the CNNGD algorithms,valuesof y�
 � andyº
 � E   werechosen.In the SCEANNGDalgorithmthe
valueschosenwere �$
 � E ¥ , �[
 � E � , �»
 � E £h  , and �»
� E § . Figure3 shows theperformancecurvesfor theCNGD,
CNNGD, CEANNGD, andSCEANNGDalgorithms. The
CNGD algorithm reached

�v¬&­ 
®" � � E � �h¯ after §
% �N�e�
iterationsof the algorithm. The CNNGD algorithm for a
valueof y�
 � reached

� ¬&­ 
¼" �   E � �h¯ after §
% �e�e� it-
erations,whereasif y�
 � E   the CNNGD reached

� ¬&­ 
"½§N¥
E � �N¯ after §
% �e�N� iterations. The CEANNGD algo-
rithm convergedto a valueof

� ¬&­ 
¼"~¨N¨�E � �h¯ after just� % �e�e� iterationsof the algorithm. The SCEANNGDalgo-
rithm convergedto

� ¬&­ 
¼"~¨e¨�E � �h¯ in ¨ �e� iterationsand

� ¬&­ 
¾"~¨e¨�E � �h¯ in � �e� iterationsfor valuesof �»
 � E £h 
and �¿
 � E § respectively. In the experimentof nonlinear
prediction,it is clearthat thereis somenoisein theperfor-
mancecurvesfor all algorithms. In this way the SCEAN-
NGD outperformsthe CEANNGD by filtering the instan-
taneousoutputerrors,which in turn providesa moreaccu-
rateestimateof yH����	 . However, for signalswith uniform
distribution andhigh signalto noiseratio, the CEANNGD
algorithmoutperformstheSCEANNGDalgorithm.

6. CONCLUSIONS

A complex-valuederror-adaptivenormalisednonlineargra-
dientdescent(CEANNGD)andsmoothedCEANNGD(SC-
EANNGD) algorithmfor complex-valuednonlinearFIR fil-
ters hasbeenderived. It hasbeenshown that the result-
ing algorithmsare an extensionof the fully adaptive nor-
malisednonlineargradientdescent(FANNGD) algorithm
given in [5] to the complex planevia the useof holomor-
phic activation functions. As such,they have beenshown
to bebettersuitedfor theprocessingof nonlinearandnon-
stationarysignals.Experimentalresultshaveshown thatthe
CEANNGD and SCEANNGD algorithmsoutperformthe
complex-valuednonlineargradientdescent(CNGD) algo-
rithm andthe complex-valuednormalisednonlineargradi-
entdescent(CNNGD)algorithmonthepredictionof complex-
valuedcolouredandnonlinearsignals.
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