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ABSTRACT examples decreases with the forecast horizon. In iterative forecast-

ing the complexity of the nonlinear mapping is much lower than
The object of Bayesian modelling is the predictive distribution, in the direct case, the number of training samples higher, but the
which in a forecasting scenario enables evaluation of forecastedperformance is diminished by the uncertainty of the forecasted val-
values and their uncertainties. In this paper we focus on reliably yes. Consequently the involved effects provide a delicate trade-off.
estimating the predictive mean and variance of forecasted valuespe restrict this work to iterative forecasting, which offers the ad-
using Bayesian kernel based models such as the Gaussian Proceggtional advantage that multi-step ahead forecasts can be obtained
and the Relevance Vector Machine. We derive novel analytic ex-with only one trained model.
pressions for the predictive mean and variance for Gaussian kernel | classical iterative forecasting only the predictive mean is it-
shapes under the assumption of a Gaussian input distribution in theyrated, here we consider an improvement to the methods suggested
static case, and of a recursive Gaussian predictive density in iteraj, [7] which iterate both the predictive mean and variance. This
tiVe forecasting. The Capablhty Of the method iS demonstrated fOI’ Corresponds to using the mode| in reca”/test phase under uncer-
forecasting of time-series and compared to approximate methods.tain input. We do not consider training the model under uncertain
inputs, which has been addressed for nonlinear model in [8] and
for linear models in e.g, [9].

In section 2 we introduce the Bayesian modelling framework.

The problem of nonlinear forecasting is relevant to numerous ap-ln. section 3_w_e consider_ th? evaluation of th_e predi_ction density

with uncertain inputs, which is formulated for time-series forecast-

plication domains e.g. in financial modelling and control. This ing in section 4. Finally section 5 provides numerical experiments
aper focuses on providing better estimates of the forecasted valu : o ’
pap P 9 J?hat demonstrate the capability of the proposed method.

as well as its uncertainty. The object of interest in Bayesian mod-
elling framework [1] is the predictive density which contains all
information about the forecasted value given the history of known 2. BAYESIAN KERNEL MODELLING

values. For many Bayesian models the predictive density can only

be approximated using Monte-Carlo sampling, local expansions, consider ab-dimensional column input vectarand a single out-
or variational approaches. However, when using Bayesian Gauspyty, then the nonlinear model is defined as

sian shaped kernel models such as the Gaussian Process (GP) wiPh

a Gaussian kernel [1, 2] or the Relevance Vector Machine (RVM) y=f(z)+e, 1)
[3, 4] the predictive mean and variance are given by analytic ex-

pressions under mild assumptions. _I\/_Ioreover_the Bayesian keme{/vheref(-) is a nonlinear function implemented as a GP or a RVM,
methods have proven to be very efficient nonlinear models [2, 4], 3nge ~ N(0,02) is additive i.i.d. Gaussian noise with variance
with flexible approximation capabilities and high generalization 2. Suppose that the training data seDis= {z;,y:}.,, where
performance. N is the number of training samples. When using a GP [1, 2] or a

We focus on the nonlinear auto-regressive (NAR) model with RyM [3, 4], the predictive distribution of the output, is Gaussian
Gaussian innovations although more flexible nonlinear time-series[10],

mod_els [5] sometimes are more efficient. l\_/lultl-step ahead fore- p(ylz, D) = N (u(z), 02(96))7 )
casting can be done as direct forecast or as iterative one-step ahead

forecasting. In [6] it is concluded that iterative forecasting usually Wherez is an arbitrary input at which we perform prediction. For
is superior to direct forecasting. Generally the complexity of the & GP the mean and variance of the predictive distribution are given
nonlinear mapping in direct forecasting increases with the forecastoy

horizon and for a fixed length time-series the number of training . . .
w@)=k' (@)K 'y, obp(x)=1-k'(2)K k=), (3)

1. INTRODUCTION

This work is supported by the Multi-Agent Control Research Train-
ing Network - EC TMR grant HPRN-CT-1999-00107. Roderick Murray- 1We tacitly assume thaf has zero mean, although a bias term can be
Smith is acknowledged for useful discussions. included, see further [10].
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whereCap(z;, x;) is the kernel, which we set to the commonly 0.5
used Gaussian fofmWe have
Car(@i, ;) = exp[—(zi —z;) " A™ (@i —x;)/2], (4) of
A = diag[A},..., AD), (5)
K = {K;;} = {Cap(zi,z;) + 0265} (6) -0.5¢
k(m) = [CGP(Z,Zl),--- 7CGP(m7mN)]T7 (7)
Yy = [yla"':yN]T' (8) -1r ,
The kernel width hyper-parameters,, are fitted by maximizing :
the evidence (ML-II) using conjugate gradient, see e.g. [2]. -1.51 ' e
Forthe RVM, let{¢; (=)} and{a;} withj = 1,2,--- , M be el N
respectively the basis functions and the weight hyper-parameters Y g A S L
whereM is the number of relevance vectors. Since typicAlly< tr e et e
N, the RVM yields sparse kernels, spanned by a finite number of
basis functions [3, 10]. For the RVM the predictive distribution (2) -2.5
has mean and variance specified by -9 -8 -7 -6 -5 -4 -3 -2

px) =" ()wwp, orvu(z) =@ (2)Z '¢(x), (9) Fig. 1. Prediction with uncertain inpuOn thez-axis the dashed
line represents the Gaussian input distribution, with mean located

where, choosing Gaussian basis functions, we have by the triangle, from which we draw 100 samples (dots under it).

wyp = 07?53 Ty (10) In the middle of the figurehe solid line represents the true under-
R 1 lying function. We fit a model to it, and propagate the 100 input
T=(0" 2+ A), (11) samples through the model (dots close to the true functi@n).
A = diaglai,- - ,am], (12) they-axiswe project the 100 predicted values (dots) and use them
. _ . TA=l/.. to estimate the predictive density (dashed line), with mean located
¢i(@) = exp[—(z; —2) A~ (z; —2)/2], (13) by the triangle. The error bar with a circle and the error bar with
d(x) = [p1(x), -, du ()], (14) a star show the mean and 95% confidence interval of the Gaussian
@ = {®;} ={¢;(zi)}, i = [1; N], j = [1; M]. (15) approximation with exact computation of mean and variance and

of the method with Taylor expansion respectively.
The details of training the RVM are described in [3, 4].

S. Using properties of the conditional mean and variance
m(u, S) = Ex[Ey[ylx]] = Ex[u(z)], (19)

3. PREDICTION WITH UNCERTAIN INPUT

Assume that the test input can not be observed directly and the _
uncertainty is modeled a8 ~ p(z) = N(u, S), with meanu v(u, §) = E”[Vg[’"“’” + Val By lyl]]
and covariance matri$. The resulting predictive distribution is = Ea[o™(2)] + Va[u(z)], (20)
then obtained by marginalizing over the test input where E.[], Va[-] denote the expectation and variance wart.
When using Gaussian kernels in GPs and Gaussian basis func-
p(y|u, 8, D) = /p(y|m,1))p(m) de. (16) tions in RVMs, the expressions foi(z) in eq. (3) and (9) are

Gaussian shaped functionsmfand the expressions fef (x) are
The principle is shown in Figure 1. The marginalization can in Products of Gaussian shaped functionsein Therefore the inte-
most cases only be carried out using Monte-Carlo numerical ap-9rants involved in determining:(u, S) andv(u, S) are products
proximation techniques, however, in the case of Gaussian kérnels ©f Gaussian shaped functions, which allows an analytical calcula-
it is possible to obtain exact analytical expressions for the meantion. In [10] itis shown that

and variance of the marginalized predictive distribution: m(u, S) = BTl (21)
_ For the GP3 = {f1,--- , 8~} = K~ 'y and for the RVMB =
m(u, S) = /y-p(y|u, S,D)dy, and 17) {B1,--- ,Bu} = wwup. Vectorl = {l1,--- ,Ix} is given by
o) = [ m(,$)polu,5,)dy. (19 TSRS (&

1 T 1 ‘
The proposed method is an extension of the work presented in [7], “exXp [_i(u —zj) (A+S5) (u-— mf)} » (22

which makes additional approximations, viz. Taylor series expan-

sions of () ande” (x) to first and second order aroundand wherelT is the identity matrix. Note that if is the zero matrix,

thenl = k(u) andm(u, S) = p(u) as would be expected.

2The exponential in equation (4) is usually multiplied by an additional Further, for the GP
hyperparameter whose value is fitted during training. We here setlit to 9 - T _1
for clarity, which requires normalizing the data to unit variance. v(u,S) = ogp(u) + Tr (L(ﬂﬂ -K ))
SExact analytical results can also be obtained for polynomial kernels, . . .
Clxp, 2q) |25 — 4|7, €.g. a linear model. +Tr ((k(u)k(u) —1i)Bp ) » o (29)
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whereL = L — k(u)k(u)" and the elements of matrik are
Li; = ki(w)k; (u) - [2A"'S + I| % (24)
- exp [Q(u —xg) AT AT+ ST TIA T (u — md)],
and wherery = 1(x; + ;). For the RVM
v(u, §) = ohvw(u) + Tr (L(BBT +571))
+Tr ([e(wk(w)" -uT1887) . (29)

Notice that both for GPs and RVMs, whéhis the zero matrixL
is also the zero matrix, agaln= k(u), andv(u, S) = o*(u).

4. APPLICATION TO TIME-SERIESFORECASTING

In the RGPD scheme, the input distribution is giver by
p(@rirly’) = N(urir, Stir), (27)
where
urik = [m(urse-1,STk-1)s- -y MUk, ST4r-1)];

and whereSr . is iteratively computed by using the fact that its
first column is given by

(S748)1.0,1 = COV(YT+ky BT 4k) = Zﬁij (cj —urir),

J (28)

wherec; = (A~ + S Y)Y (A tx; + S 1u), refer to [10].

5. EXPERIMENTS

We examine the comparative performance of the exact and

approximate-RGPD on a hard prediction problem, the Mackey-
Suppose thafy, } are the ordered samples of a time-series, where Glass chaotic time series [11], which is well-known for its strong
t is an integer time index. We wish to make time-series forecast- non-linearity. In [4] we showed that non-linear models, in particu-
ing using a NAR model (1), where the inputs are formed by a col- |ar RVMs, have a prediction error four orders of magnitude lower
lection of previous output valuesy = [yi—1,yt—2,- .., Yi—L], than optimized linear models. The Mackey-Glass attractor is a
where the integeL. is the size of the lag space. non-linear chaotic system described by the following equation:
Given that we have observed the valugs = {y;}/_,, T
being the number of observed samples, computing the predictive dz_(t) = —bz(t) + aM
density of the valuegyry; is readily given by the model from (2) dt L+ z(t—7)t0
as . where the constants are setd¢o= 0.2, b = 0.1 andr = 17.
p(yr+ilzrir) = N(p(zri1), 0 (r41)) The series is re-sampled with peribéccording to standard prac-

The predictive density of the valugr» (two steps ahead) de- tice. The inputs are formed by = 16 samples spaced 1 periods
pends oner 1, which now contains a stochastic element. In gen- from each othex, = [z_1, ks, ..., zx—z] and the targets are

eral, the predictive distribution ofr, with & > 2, requires chosen to bgy, = z. _ .
integrating out the uncertainty of the input: We train a GP model with Gaussian kernel on only 100 exam-

ples — enough to obtain a 1-step ahead normalized mean squared
error on the order o10~*. Besides, we normalize the data and
contaminate it with a small amount of Gaussian noise with vari-
ance10™3. Figure 2 shows the result of making 100 iterative

It is straightforward that this scheme leads to a recursive den-predictions using a GP model, both for the exact-RGPD and the
sity estimation. The integral in (26) has no analytical solution. approximate-RGPD methods. By informal visual inspection, the
A naive approach to the recursion is to ignore the error-bars of the exact-RGPD seem to be better than those of the
uncertainty in the distribution of the input by setting approximate-RGPD. Consequently the exact-RGPD produces a bet-
p(@rir) = 6(x—[(@rsp-1),- -, w(®T4r—r)] " )* thus prop-  ter predictive density, which we show in figure 3. The mean value
agating only the mean predictions. This method yields very poor of the predictions seems also to be a slightly closer to the true tar-
error-bars, since it in some way only considers one step ahead preget values for the exact-RGPD than for the approximate-RGPD.
dictions, treating the previous predicted values as exact, and is  In order to better evaluate the performance of the proposed
therefore overconfident, [7]. Alternatively, one can approximate methods, for a given prediction horizon, we compute the nega-
the predictive density ofr . by a Gaussian density and compute tive log predictive density, the squared error and the absolute error.
only the mean and variance pfyr|y”). By doing this one en-  While the two last measures only take into consideration the mean
sures that the input distributign(zr4.|y") is always Gaussian,  of the Gaussian predictive distribution, the first one also takes into
which allows to use the results described in section 3 for comput- account its variance. We average 0260 repetitions with dif-

ing the mean and variance gf, k-, see eq. (26). This can be done ferent starting points (chosen at random from the series), and rep-
exactly (for Gaussian or polynomial kernels) or in an approximate resent averages of the three loss measures for prediction horizons
fashion, [7]. The recursive mechanism works because the pre-ranging from 1 to 100. Figure 3 shows the results. The means are
dictive distribution ofyr1 at the first step is Gaussian (26), and  slightly better for the exact-RGPD, but the predictive distribution
therefore the input distribution aér., is also Gaussian. We call  is much improved. The better error-bars obtained by the exact-
this procedure of recursively approximating the predictive density RGPD result in a lower value of the negative log predictive den-
by a Gaussian the Recursive Gaussian Predictive Density (RGPD)sity for all values of the prediction horizon. The performance of
and distinguish between exact-RGPD for the case of exact computhe nave iterative method is identical to that of the approximate-
tation of mean and variance and approximate-RGPD for the caseRGPD in terms of absolute and squared error. In terms of pre-
where the model is approximated by a Taylor expansion, [7]. dictive density (since it produces unrealistic small error-bars) its
performance is so poor that it is not worth reporting.

(29)

pyrily”) = / plyrsaler) pr ily”) derss. (26)

4Whered(z) is 1 for z = 0 and0 otherwise. Ifk < L, we have simply
w(en) =yn forn < T.

SIf k < L, we have simplyu(z,,) = yn forn < T.
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Fig. 2. 100 iterated predictions for the exact-RGPD (dashed) and iterated prediction
approximate-RGPD (dotted): for each the thicker lines represent
the mean of the predictive distributions and the two thinner Iines' Fig. 3. Negative log predictive density, mean absolute error and
around represent the upper and lower bounds of the 95% confiyyean squared error as a function of the iterative prediction hori-
o_Ience interval of the Gaussian predictive distributions. The solid ., tor the exact-RGPD method (dashed) and for the approximate-
line shows the true target values. RGPD (dotted). Averages over 200 repetitions.
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