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ABSTRACT 
 
We have previously proposed SIPEX as a fast-converging 
and accurate principal components algorithm. Its 
superiority in terms of data efficiency and solution 
accuracy was demonstrated through Monte Carlo 
simulations. In this paper, we focus on the convergence 
properties of the original gradient-based algorithm as well 
as two modified versions of SIPEX based on 
approximations to the Hessian of the cost function. We 
provide practical bounds on the step sizes of these 
algorithms and compare their convergence properties. 

 

1. INTRODUCTION 
 
Principal components analysis (PCA) is an important 
statistical tool that has found place in many important 
signal processing applications. The first on-line PCA 
algorithms started with Oja’s [1] and Sanger’s [2] rules. 
These can be grouped into two main categories: gradient-
based and fixed-point algorithms. Regardless of category, 
almost all PCA algorithms use the deflation-normalization 
procedure to guarantee the orthonormality of the solution. 
Exceptions include LMSER [3], and APEX [4]. The 
weight matrix of LMSER is not restricted to be 
orthonormal. Fixed-point algorithms, e.g., power rule [5] 
converge fast, but they still need to use deflation, which is 
undesirable due to accuracy considerations. 
 Recently, we have proposed a gradient-based 
algorithm for simultaneous principal component 
extraction (SIPEX-G), which has been demonstrated to 
outperform benchmark PCA algorithms [6,7]. In these 
publications, we did not investigate the stability 
conditions. Clearly, any update rule using a step size can 
be made to converge to the vicinity of the solution. Once 
in this neighborhood, it is important to select a proper step 
size to converge stably to the optimal solution. 
 In this paper, we will determine the stability 
conditions for SIPEX-G and two other variants, named 
SIPEX-L and SIPEX-H. The latter is motivated by the 
fact that the Hessian of the SIPEX criterion evaluated at a 

solution becomes diagonal, and hence, a Newton-type 
optimization algorithm becomes feasible. Monte Carlo 
simulations using synthetic data are performed to compare 
the convergence performances of these three algorithms.  
 

2. AN OVERVIEW OF SIPEX-G 
 
 Consider a PCA network y=Rx, where  
are the zero-mean input and output vectors, respectively, 
and , is the weight matrix restricted to the 
subset D of orthonormal matrices. It was shown in [6] that 
if R is parameterized in terms of Givens rotations, then all 
stationary points of 
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correspond to PCA solutions, where the rows of R are all 
the eigenvectors of the covariance matrix Σ=E[xxT]. The 
gains γo satisfy γ1>γ2>…>γn-1>0. In (1), the subscripts 
indicate the entry of the vector/matrix. SIPEX-G updates 
the Givens rotation angles, which are collected in a vector 
θ, using steepest ascent/descent. Since all stationary 
points are PCA solutions, any local minima, maxima, or 
saddle points are equally acceptable. In the previous 
papers, we have presented extensive comparisons of 
SIPEX-G with Sanger’s rule, APEX, and LMSER that 
clearly demonstrated the superiority of SIPEX-G in speed 
and accuracy [6,7]. We also experimented with SIPEX-G 
in various problems including subspace Wiener filtering 
and direction of arrival estimation. SIPEX-G performed 
well in all these problems. 

 
3. SIPEX-L AND SIPEX-H 

 
In SIPEX-L, we use the matrix  similar to the 
Levenberg algorithm, where G

)( T
kk GGI +

))(( kdiagabs H
k is the current gradient, 

and in SIPEX-H we use , where H~
kH = k is 

the current Hessian matrix. The diag(.) operator generates 
a diagonal matrix from the diagonal entries of the 
argument and abs(.) takes elementwise absolute values. In 
SIPEX, the current gradient and Hessian are defined as 
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With these definitions, all three algorithms become 
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Using the matrix inversion lemma, the matrix inverse in 
SIPEX-L is found as ( ))1/( k

T
k

T
kk GGGGI +− , therefore 

this algorithm becomes 
 ( )k

T
kkkkk GGGθθ +−=+ 11 η  (4) max

k

This is similar to the normalized LMS algorithm. SIPEX-
L is a normalized gradient update rule. On the other hand, 
in SIPEX-H, the update direction is different from the 
gradient. The Hessian of (1) will be shown to be diagonal 
at the solutions. Therefore SIPEX-H essentially becomes 
a Newton update near the solutions. 
 
4. LOCAL STABILITY CONDITIONS FOR SIPEX 

 
In order to guarantee stable convergence to the solution 
once the weights are in its neighborhood, the step size 
must satisfy some inequality. 

Theorem 1. The following is the upper bound on the 
step size of SIPEX-G that guarantees stable convergence 
to the solution nearby the current weights.  
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where jλ  is the eigenvalue corresponding to the 

eigenvector in the jth row of R at this nearby solution. 
Proof. From MSE adaptation, we know that gradient 

update stability requires max/2 λη ≤ , where maxλ  is the 
maximum eigenvalue of the Hessian evaluated at the 
solution of interest. After tedious calculations, the Hessian 
of (1) with respect to the Givens angles is interestingly 
found to be diagonal (discussion in Appendix). Thus, the 
maximum eigenvalue is immediately obtained as the 
maximum diagonal entry. Using the chain rule, the 
Hessian can be expressed as 
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To obtain (6), we defined T
xQRR = , where Qx is the 

orthonormal eigenvector matrix of Σ in descending order 
and )(Rr vec= . Evaluating (6) at the solution of interest 
yields (at this point PR = , P being a permutation matrix, 
i.e. all Givens angles pqθ  are integer multiples of π/2). 
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where the eigenvalues are reordered using Pλλ = , where 
λ is the vector of eigenvalues in descending order. Thus, 
the result in the theorem is obtained. � 
 SIPEX-L: This result immediately applies to the 
SIPEX-L algorithm if we regard the term  as 
the effective step size of this algorithm. 
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In practice, the eigenvalues can be approximated by 
output variances. In addition, γ can be manipulated to 
facilitate stability. In particular, selecting γ close to each 
other, we can increase the upper bound for the step size. 
Thus, we can traverse the transition region in the weight 
space faster to converge to the solution. 
 SIPEX-H: Assume that the weights are sufficiently 
near a solution so the performance surface is 
approximated by a quadratic function around this solution. 
Let this solution be θ . The gradient is accurately 
approximated by a first order Taylor expansion at the 
solution. 

*

  (9) ))(()( 3
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Here 0G =*
θ
 and the higher order terms are negligible. 

Subtracting  from both sides of the SIPEX-H update 

equation in (3), assuming 
*

*
~~ H≈kH , and defining 

*θθε −= kk  we get 
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We mentioned that the Hessian becomes diagonal at the 
stationary points. Therefore, in the vicinity of a stationary 
point, the error dynamics are kk Iεε )1(1 η−=+ . Choosing 

1=η  results in immediate convergence if the surface is 
actually quadratic, which is the motivation behind SIPEX-
H. In practice, this is not the case, so the error dynamics 
are roughly governed by )~( . For this error to 
decay to zero, according to the Lyapunov theory, the 
eigenvalues of this matrix must be in the unit circle. Let 
the Hessian be 

1
kk HH−ηI −

][ ijk h=H . Then, )~( 1
kk HHI −−η  is 
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According to Gershgorin’s theorem, the eigenvalues 
of an mxm matrix are always inside the union of m 
circular sets in the complex plane, where the centers of 
these circles are the diagonal elements of the matrix and 
the radii are the sum of the absolute values of off-diagonal 
elements in the corresponding row [5]. For (11), all circles 
are centered at (1-η) and the radius of the union set is 

∑ ≠=

m
ijj iiiji hh

,1
/max η . This radius is equivalently 






 −

∞
− 1~ 1

kk HHη , where ∞⋅  is the  matrix norm. 

Therefore, a sufficient stability condition for SIPEX-H 
reduces to 

∞L

2~ 1 <
∞

−
kk HH  and 

∞
−< kk HH 1<

~/0 η 2 . 

This bound only requires the evaluation of the Hessian 
entries. Hence, it is simpler to evaluate compared to a 
bound that based on the eigenvalues. In SIPEX γ could be 
used to manipulate the upper bound for stability. 

The approach in SIPEX-H could, in fact, be applied 
to arbitrary topologies and criteria. The convergence 
results discussed above would still hold for these 
scenarios. The Hessian matrix, however, could be non-
diagonal in general, in contrast to SIPEX. 
 

5. NUMERICAL EXPERIMENTS 
 
In order to test the convergence characteristics of the three 
SIPEX variants, we have performed a series of Monte 
Carlo simulations using 3-dimensional, synthetic, jointly 
Gaussian data. In each of the 200 simulations, the 
covariance matrix of the joint Gaussian density was 
selected randomly (as the product of a random matrix with 
its transpose), which usually resulted in highly large 
eigenspreads (on the order of tens and hundreds). All 
SIPEX variants were iterated using the same 10000 
samples generated for each simulation and the 
convergence times and final eigenvector direction 
accuracies were recorded. We have defined the 10o-
convergence time and the 1o-convergence time as the 
smallest iteration (sample) index such that all the 
estimated eigenvectors of the input covariance matrix are 
within the specified error threshold 99% of the time in the 
remaining iterations. As the reference eigenvectors, we 
have used the true eigenvectors of the true covariance 
matrix that is used to generate the data. The accuracy is 
measured by the root-mean-square (RMS) angle error, 
where the averaging is performed over 200 Monte Carlo 
simulations, three eigenvector angle errors, and the last 
1000 iterations of each simulation.  

For SIPEX-G,L,H, we used constant step sizes of 
, , and , respectively. The results 

are shown in Figs. 1-3. The subplots in the right-columns 
show in detail the histograms of 10

2103 −⋅ 2103 −⋅ 1103 −⋅

o- and 1o-convergence 
times using 100-length bins, and the RMS error histogram 

using 0.1o-length bins. Fig. 1 shows that, almost surely, in 
1000 iterations all three algorithms converge to within 
10o. However, SIPEX-G and SIPEX-H seem to be faster 
in this respect compared to SIPEX-L. In terms of the 1o-

Figure 1. Histograms of 10o-convergence times for 
SIPEX-G, SIPEX-L, and SIPEX-H (top to bottom). 

Figure 2. Histograms of 1o-convergence times for 
SIPEX-G, SIPEX-L, and SIPEX-H (top to bottom). 

Figure 3. Histograms of RMS eigenvector direction 
angle errors in measured in degrees. 
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convergence times, all algorithms seem to be roughly 
equivalent. Likewise, the average final RMS angle errors 
of all algorithms are roughly identically distributed. 

 
6. DISCUSSION 

 
Recently, we have proposed SIPEX-G as a fast-
converging and accurate PCA algorithm that identifies the 
principal components simultaneously, as opposed to the 
traditional methods that converge to the eigenvectors 
sequentially.  
 In this paper, we have proposed two variations for the 
SIPEX algorithm based on two different approximations 
of the Hessian matrix of the criterion. We have presented 
the stability conditions on the step size of all three 
algorithms. In Monte Carlo simulations (with 

) whose results are not presented due to 
lack of space, we have observed that the original SIPEX-
G and the new variant SIPEX-H performed similarly in 
terms of convergence speed. SIPEX-L, on the other hand, 
remained initially slower, due to the step size reducing 
effect of the normalization term. However, it took about 
the same time for it to converge to highly accurate 
solutions as the other two versions.  

Tnn ]2,...,1,[ −=γ

In simulations, it was observed that SIPEX-H could 
tolerate larger step sizes compared to the other two. This 
was expected from the theoretical stability analysis, since 
the upper bound of the SIPEX-H step size depends on the 

-norm of the diagonal-normalized Hessian matrix, 
whereas it depends on the maximum eigenvalue (L
∞L

2-norm) 
of the Hessian matrix for the others. 

The analysis presented in this paper clarified the 
relationship between the free γ parameters of the criterion 
and the eigenstructure of the performance surface near the 
solutions. Therefore, it is possible to manipulate these free 
parameters during adaptation to speed up convergence 
and to modify the stability characteristics of the algorithm. 
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7. APPENDIX 
 
In this appendix, due to space limitations, we briefly 
discuss how the Hessian matrix is calculated. We start by 
expressing the Hessian as in (6) using the chain rule and a 
change of optimization variables from  to θ θ . The latter 
simplifies computations since the PCA solutions are 
represented by angles that are multiples of π/2 in this 
setup. The first and second derivatives with respect to the 
rotation matrix entries, which appear in (6), are easily 
found to be 

 lqkplk
klpq

kllk
kl

JJ δδλγ
RR
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where abδ  denotes the Kronecker-delta.  
 The first and second derivatives of the rotation matrix 
entries with respect to the angles are determined after 
substituting the values of pqθ  (p=1,…,n-1;q=p+1,…,n), 

which are all multiples of π/2. This leads to highly sparse 
matrices; therefore, most of these derivatives are zeros. 
Consequently, the vector matrix multiplications in (6), 
which can be written as summations of products of the 
entries of the considered gradients and Hessians, generate 
only a few non-zero terms. These terms, when added 
together, show that the Hessian matrix of interest is 
diagonal. In mathematical terms, we find that 

 qsprpqqp
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where *θ  is the vector consisting of pqθ  values 

corresponding to the solution of interest. 
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