ON THE CONVERGENCE OF SIPEX: A SIMULTANEOUS
PRINCIPAL COMPONENTS EXTRACTION ALGORITHM

Deniz Erdogmusl, Yadunandana Raol, M. Can OZturkI, Luis Vielvaz, Jose C. Principel

! CNEL, Electrical and Computer Eng. Dept., University of Florida, Gainesville, FL 32611, USA
2 GTAS, DICOM, Universidad de Cantabria, Santander, Spain

ABSTRACT

We have previously proposed SIPEX as a fast-converging
and accurate principal components algorithm. Its
superiority in terms of data efficiency and solution
accuracy was demonstrated through Monte Carlo
simulations. In this paper, we focus on the convergence
properties of the original gradient-based algorithm as well
as two modified versions of SIPEX based on
approximations to the Hessian of the cost function. We
provide practical bounds on the step sizes of these
algorithms and compare their convergence properties.

1. INTRODUCTION

Principal components analysis (PCA) is an important
statistical tool that has found place in many important
signal processing applications. The first on-line PCA
algorithms started with Oja’s [1] and Sanger’s [2] rules.
These can be grouped into two main categories: gradient-
based and fixed-point algorithms. Regardless of category,
almost all PCA algorithms use the deflation-normalization
procedure to guarantee the orthonormality of the solution.
Exceptions include LMSER [3], and APEX [4]. The
weight matrix of LMSER is not restricted to be
orthonormal. Fixed-point algorithms, e.g., power rule [5]
converge fast, but they still need to use deflation, which is
undesirable due to accuracy considerations.

Recently, we have proposed a gradient-based
algorithm for simultaneous principal component
extraction (SIPEX-G), which has been demonstrated to
outperform benchmark PCA algorithms [6,7]. In these
publications, we did not investigate the stability
conditions. Clearly, any update rule using a step size can
be made to converge to the vicinity of the solution. Once
in this neighborhood, it is important to select a proper step
size to converge stably to the optimal solution.

In this paper, we will determine the stability
conditions for SIPEX-G and two other variants, named
SIPEX-L and SIPEX-H. The latter is motivated by the
fact that the Hessian of the SIPEX criterion evaluated at a
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solution becomes diagonal, and hence, a Newton-type
optimization algorithm becomes feasible. Monte Carlo
simulations using synthetic data are performed to compare
the convergence performances of these three algorithms.

2. AN OVERVIEW OF SIPEX-G

Consider a PCA network y=Rx, where x,y e R
are the zero-mean input and output vectors, respectively,

and Re D cR™ is the weight matrix restricted to the
subset D of orthonormal matrices. It was shown in [6] that
if R is parameterized in terms of Givens rotations, then all
stationary points of

n—1 n—1 n o n
T=Y0Var(y) =D 1,0 D RuR,E; (1)
o=1

o=l i=l j=1
correspond to PCA solutions, where the rows of R are all
the eigenvectors of the covariance matrix Z=E[xx’]. The
gains vy, satisfy y;>y,>...>v,.,/>0. In (1), the subscripts
indicate the entry of the vector/matrix. SIPEX-G updates
the Givens rotation angles, which are collected in a vector
0, using steepest ascent/descent. Since all stationary
points are PCA solutions, any local minima, maxima, or
saddle points are equally acceptable. In the previous
papers, we have presented extensive comparisons of
SIPEX-G with Sanger’s rule, APEX, and LMSER that
clearly demonstrated the superiority of SIPEX-G in speed
and accuracy [6,7]. We also experimented with SIPEX-G
in various problems including subspace Wiener filtering
and direction of arrival estimation. SIPEX-G performed
well in all these problems.

3. SIPEX-L AND SIPEX-H

In SIPEX-L, we use the matrix (I+G kGi ) similar to the
Levenberg algorithm, where Gy is the current gradient,
and in SIPEX-H we use Hj = abs(diag(H})) , where Hy is
the current Hessian matrix. The diag(.) operator generates
a diagonal matrix from the diagonal entries of the

argument and abs(.) takes elementwise absolute values. In
SIPEX, the current gradient and Hessian are defined as
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0 00}
With these definitions, all three algorithms become
SIPEX-G: 0, =0, —-7,G,
SIPEX-L: 0, =0, -7 (I+GkG,€)7le 3)
SIPEX-H: 0,, =0; -7, H'G,
Using the matrix inversion lemma, the matrix inverse in
SIPEX-L is found as (1-G ;G (1+GTG,)), therefore

this algorithm becomes

0/ :ek_Uka/(1+G£Gk) 4)
This is similar to the normalized LMS algorithm. SIPEX-
L is a normalized gradient update rule. On the other hand,
in SIPEX-H, the update direction is different from the
gradient. The Hessian of (1) will be shown to be diagonal
at the solutions. Therefore SIPEX-H essentially becomes
a Newton update near the solutions.

2

4. LOCAL STABILITY CONDITIONS FOR SIPEX

In order to guarantee stable convergence to the solution
once the weights are in its neighborhood, the step size
must satisfy some inequality.

Theorem 1. The following is the upper bound on the
step size of SIPEX-G that guarantees stable convergence
to the solution nearby the current weights.

1
Nk < = — — — (5)
max |Y A, +Y h, =Yk, — T4k
p=L..,n—1
qg=p+l,...n
where A j 1s the eigenvalue corresponding to the

eigenvector in the /™ row of R at this nearby solution.
Proof. From MSE adaptation, we know that gradient
update stability requires 7 < 2 /|/”Lmax|, where A,., 1s the

maximum eigenvalue of the Hessian evaluated at the
solution of interest. After tedious calculations, the Hessian
of (1) with respect to the Givens angles is interestingly
found to be diagonal (discussion in Appendix). Thus, the
maximum eigenvalue is immediately obtained as the
maximum diagonal entry. Using the chain rule, the
Hessian can be expressed as

T
0% _[ oF ] 62J[ oF }a_J IF
00,, 00y, ) or* |00, ) or o0,

To obtain (6), we defined R= EQ,{ , where Qy is the
orthonormal eigenvector matrix of £ in descending order
and 1 =vec(R). Evaluating (6) at the solution of interest
yields (at this point R =P, P being a permutation matrix,
i.e. all Givens angles 8 pg are integer multiples of 7/2).

02%J

a2

:2(Yp _'Yq)(xq _Xp) (7)

where the eigenvalues are reordered using =P, where
A is the vector of eigenvalues in descending order. Thus,
the result in the theorem is obtained. O

SIPEX-L: This result immediately applies to the
SIPEX-L algorithm if we regard the term 77/1+ G]ZG L as
the effective step size of this algorithm.

(1+G}Gy)

A

M < — (®)
max(’Yp _Yq)()“q _)“p)
P4

In practice, the eigenvalues can be approximated by

output variances. In addition, y can be manipulated to

facilitate stability. In particular, selecting y close to each
other, we can increase the upper bound for the step size.

Thus, we can traverse the transition region in the weight

space faster to converge to the solution.

SIPEX-H: Assume that the weights are sufficiently
near a solution so the performance surface is
approximated by a quadratic function around this solution.
Let this solution be 0x«. The gradient is accurately
approximated by a first order Taylor expansion at the
solution.

Gk=G*+H*(9k—9*)+O((9k—9*)3) ©)
Here G+ =0 and the higher order terms are negligible.
Subtracting 0« from both sides of the SIPEX-H update
equation in (3), assuming H P H., and defining
€, =0, -0+ we get

€1, =€, —nH; Hag, =(A-gH; ' Hag, (10)
We mentioned that the Hessian becomes diagonal at the

stationary points. Therefore, in the vicinity of a stationary
point, the error dynamics are €;,; = (1—-7)Ig; . Choosing

n =1 results in immediate convergence if the surface is

actually quadratic, which is the motivation behind SIPEX-
H. In practice, this is not the case, so the error dynamics

are roughly governed by (I— nI?IEIH ). For this error to

decay to zero, according to the Lyapunov theory, the
eigenvalues of this matrix must be in the unit circle. Let

the Hessian be Hy =[4;;]. Then, (I—nITIZIHk) is

hlZ hlm |
1-7 _p1z -7

. ) [ | ‘.hl 1

i ' B | (1D
_ 1-7 -n

[7i] |7

.hml hm.(m_]) .
-7 = -7

‘hmm ‘ ‘hmm ‘ i
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According to Gershgorin’s theorem, the eigenvalues
of an mxm matrix are always inside the union of m
circular sets in the complex plane, where the centers of
these circles are the diagonal elements of the matrix and
the radii are the sum of the absolute values of off-diagonal
elements in the corresponding row [5]. For (11), all circles
are centered at (1-7) and the radius of the union set is

max; 772}_:1,]_#|hi]-/ h;;|. This radius is equivalently

n(HﬁlekH —1), where ||||OO is the L, matrix norm.
o0

Therefore, a sufficient stability condition for SIPEX-H
reduces to ”ﬁ;lHk“oo <2 and 0 <7 < 2/”I?I;lHk“w.

This bound only requires the evaluation of the Hessian
entries. Hence, it is simpler to evaluate compared to a
bound that based on the eigenvalues. In SIPEX y could be
used to manipulate the upper bound for stability.

The approach in SIPEX-H could, in fact, be applied
to arbitrary topologies and criteria. The convergence
results discussed above would still hold for these
scenarios. The Hessian matrix, however, could be non-
diagonal in general, in contrast to SIPEX.

5. NUMERICAL EXPERIMENTS

In order to test the convergence characteristics of the three
SIPEX variants, we have performed a series of Monte
Carlo simulations using 3-dimensional, synthetic, jointly
Gaussian data. In each of the 200 simulations, the
covariance matrix of the joint Gaussian density was
selected randomly (as the product of a random matrix with
its transpose), which usually resulted in highly large
eigenspreads (on the order of tens and hundreds). All
SIPEX variants were iterated using the same 10000
samples generated for each simulation and the
convergence times and final eigenvector direction
accuracies were recorded. We have defined the 10°-
convergence time and the 1°-convergence time as the
smallest iteration (sample) index such that all the
estimated eigenvectors of the input covariance matrix are
within the specified error threshold 99% of the time in the
remaining iterations. As the reference eigenvectors, we
have used the true eigenvectors of the true covariance
matrix that is used to generate the data. The accuracy is
measured by the root-mean-square (RMS) angle error,
where the averaging is performed over 200 Monte Carlo
simulations, three eigenvector angle errors, and the last
1000 iterations of each simulation.

For SIPEX-G,L,H, we used constant step sizes of

3~10_2, 3~10_2, and 3-10_1, respectively. The results
are shown in Figs. 1-3. The subplots in the right-columns

show in detail the histograms of 10°- and 1°-convergence
times using 100-length bins, and the RMS error histogram
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Figure 1. Histograms of 10°-convergence times for
SIPEX-G, SIPEX-L, and SIPEX-H (top to bottom).

Orwerall Zoomed-in
40 10
°Q
i 20 5
o
ol
0 .1.-. x Mou ooombloan 0
0 £000 10000 0 £000 10000
40 10
=
]
o 20 5
W
0 0
0 5000 10000 0 s000 10000
40 10
T
=
o 20 5
W
0 | TP (W 0
0 5000 10000 0 5000 10000

lterations lterations

Figure 2. Histograms of 1°-convergence times for
SIPEX-G, SIPEX-L, and SIPEX-H (top to bottom).
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Figure 3. Histograms of RMS eigenvector direction
angle errors in measured in degrees.

using 0.1°length bins. Fig. 1 shows that, almost surely, in
1000 iterations all three algorithms converge to within
10°. However, SIPEX-G and SIPEX-H seem to be faster
in this respect compared to SIPEX-L. In terms of the 1°-
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convergence times, all algorithms seem to be roughly
equivalent. Likewise, the average final RMS angle errors
of all algorithms are roughly identically distributed.

6. DISCUSSION

Recently, we have proposed SIPEX-G as a fast-
converging and accurate PCA algorithm that identifies the
principal components simultaneously, as opposed to the
traditional methods that converge to the eigenvectors
sequentially.

In this paper, we have proposed two variations for the
SIPEX algorithm based on two different approximations
of the Hessian matrix of the criterion. We have presented
the stability conditions on the step size of all three
algorithms. In Monte Carlo simulations (with

v=[nn- 1,...,2]T) whose results are not presented due to

lack of space, we have observed that the original SIPEX-
G and the new variant SIPEX-H performed similarly in
terms of convergence speed. SIPEX-L, on the other hand,
remained initially slower, due to the step size reducing
effect of the normalization term. However, it took about
the same time for it to converge to highly accurate
solutions as the other two versions.

In simulations, it was observed that SIPEX-H could
tolerate larger step sizes compared to the other two. This
was expected from the theoretical stability analysis, since
the upper bound of the SIPEX-H step size depends on the
L, -norm of the diagonal-normalized Hessian matrix,

whereas it depends on the maximum eigenvalue (L,-norm)
of the Hessian matrix for the others.

The analysis presented in this paper clarified the
relationship between the free y parameters of the criterion
and the eigenstructure of the performance surface near the
solutions. Therefore, it is possible to manipulate these free
parameters during adaptation to speed up convergence
and to modify the stability characteristics of the algorithm.
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7. APPENDIX

In this appendix, due to space limitations, we briefly
discuss how the Hessian matrix is calculated. We start by
expressing the Hessian as in (6) using the chain rule and a
change of optimization variables from 0 to 0 . The latter
simplifies computations since the PCA solutions are
represented by angles that are multiples of m/2 in this
setup. The first and second derivatives with respect to the
rotation matrix entries, which appear in (6), are easily
found to be

aJ S 0°J
— :Zyk)\.lel,T
oR oR ,,0R

=27 048y (A1)

where 6, denotes the Kronecker-delta.

The first and second derivatives of the rotation matrix
entries with respect to the angles are determined after

substituting the values of épq (p=1,....n-1;g=p+1,...,n),

which are all multiples of 7/2. This leads to highly sparse
matrices; therefore, most of these derivatives are zeros.
Consequently, the vector matrix multiplications in (6),
which can be written as summations of products of the
entries of the considered gradients and Hessians, generate
only a few non-zero terms. These terms, when added
together, show that the Hessian matrix of interest is
diagonal. In mathematical terms, we find that
o%J - =
W = 2(Yp _’Yq)()"q _)‘p)é‘préqs (A2)
sV pq |

where 0« is the vector consisting of 9_pq values

corresponding to the solution of interest.
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