

AN IMPROVED PARALLEL ARCHUTECTURE FOR MPEG-4 MOTION
ESTIMATION IN 3G MOBILE APPLICATIONS

Donglai Xu, Rui Gao

SST, University of Teesside

Middlesbrough, TS1 3BA, UK
d.xu@tees.ac.uk

Hadj Batatia

IRIT
ENSEEIHT, Toulouse, 31071, France

batatia@enseeiht.fr

ABSTRACT

A high-parallel VLSI core architecture for MPEG-4 motion
estimation is proposed in this paper. It possesses the
characteristics of low memory bandwidth and low clock rate
requirements, thus primarily aiming at 3G mobile applications.
Based on a one-dimensional tree architecture, the architecture
employs the dual-register/buffer technique to reduce the preload
and alignment cycles. As an example, full-search block matching
algorithm has been mapped onto this architecture using a 16-PE
array that has the ability to calculate the motion vectors of QCIF
video sequences in real time at 1 MHz clock rate and using 15.5
Mbytes/s memory bandwidth.

1. INTRODUCTION

The third generation (3G) wireless system provides the
high-speed mobile platform with Internet Protocol (IP) [1], which
allows the implementation of many types of IP-based internet
applications, such as e-mail service, web page browsing and
image/video transmission. Among these, real-time video
applications represent an important part of mobile multimedia [2].
However, due to the inherent data intensity of video, compression
techniques are required to reduce bit rates. This is achieved
largely by exploiting temporal data redundancy in video streams
such as motion estimation (ME) techniques. Since the ME
operations can take up to 80% of the computational burden of a
complete video compression procedure, it is the most important
component in real-time video applications [3]. Many VLSI
architectures for ME have been proposed. However, most of them
target at MPEG-1/2 video coding applications, such as
videophone, video conferencing, video broadcasting, etc. These
architectures are not particularly suitable for mobile and low
power applications [4]. In this paper, a high parallel and low
power consumption architecture that is based on a
one-dimensional tree architecture is presented [5]. It features the
high data utilisation by using parallel pipelining and the low clock
rate by introducing the dual-register/buffer technique that reduces
idle clock cycles.

The rest of the paper is organised as follows. In section 2,
two typical ME algorithms are briefly described. Section 3
presents the proposed VLSI architecture in detail with emphasis
on the key component PE array. In section 4, the performance of
the architecture is analysed in terms of the minimum clock rate
and the minimum memory bandwidth requirement. Finally, the
conclusions are drawn in section 5.

2. MOTION ESTIMATION ALGORITHMS

Recently, MPEG-4 video standard has been introduced to cover
wireless multimedia applications [2]. It adopts block-matching
algorithms with alpha binary plane to achieve motion estimation
[3, 6]. Figure 1 illustrates the principle of the block matching
motion estimation technique. First, the video frames are
segmented into NhN non-overlapping rectangular blocks. Every
block within the current frame is matched to the corresponding
blocks within a search area on the previous frame. A matching
criterion, or distortion function, that measures the similarity
between the current block and candidate block is calculated. Then,
a motion vector to the position of the candidate block, which has
the minimum measurement with the current block, is generated to
replace the real movement of the objects in a compressed video
stream [3]. Thus, the temporal redundancy within a video
sequence is reduced.

(x+dx, y+dy)

(x+N+dx, y+N+dy)

Candidate blockCandidate MV

2p+N

2p+N

Previous Frame

Current Frame

Nh

Nv

Current block

(x, y)

(x+N, y+N)

x

yt

Figure 1. Block-matching

2.1. Full-search block-matching algorithm

Because of its low distortion and regular data flow, the full-search
block-matching has been one of the most widely used ME
algorithms. In this algorithm, the current block located at the pixel
(x,y), as shown in the figure 1, is matched to every candidate
block within a (2p+N-1)×(2p+N-1) search window, where [-p,
p-1] is the pixel search range. For every candidate block with a
displacement (dx, dy), a sum of absolute difference (SAD) is
calculated, which is given by

∑∑ −+

= −
−+

=
++−=

1
1

1
),(),(),(

Ny

yn
kk

Nx

xm
dyndxmInmIdydxSAD

where Ik(m,n), Ik-1(m,n) are the intensity values of the pixels

II - 6890-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

located at position (m, n) in current and previous blocks,
respectively. Similar SAD for next candidate block is calculated
and compared to the existing SAD. The block giving the smaller
SAD is kept as the minimum candidate. This process continues
until all blocks are matched and a final minimum SAD is obtained.
The motion vector is considered as being the displacement (dx, dy)
of the block corresponding to this minimum [3].

2.2. Object-based motion estimation

Recently finalised MPEG-4 standard emphasises object-based
motion estimation, which estimates the movements of the objects
in a video sequence, rather than blocks [6]. To support the
arbitrary-shaped objects motion estimation, an alpha binary plane
has to be defined. The alpha plane contains the information of
whether a pixel is inside the object or not [3]. Thus, the SAD for
the object can be represented below:

),(),(),(),(
1

1
1

yxAlphadyndxmInmIdydxSAD
Ny

yn
kk

Nx

xm
×++−= ∑∑ −+

= −
−+

=

where alpha (x, y) is the binary value for the (x, y) pixel in the
current block. The value is one when the pixel is inside the object;
otherwise, it is zero as shown in the figure 2.

 0 0 0 0 0 0 0 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 1 1 1 1 0 0

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

Figure 2. Alpha binary plane

3. PROPOSED ARCITECTURE

In this section, we describe the main components of the proposed
architecture and give details of the PE array, which is the most
computationally intensive part of the system.

3.1. System overview

The figure 3 shows the block diagram of the ME architecture,
which includes five components: memory unit, address generator,
PE array, minimum unit and control CPU [3].

The memory unit is divided into two modules. One is to store
current frame data and alpha plane data; the other is for previous
frame data. The address generator computes the addresses, at
which the candidate pixels for the block matching are stored. It
also fetches the pixel data from memory unit and feeds them into
the PE array. The PE array computes the absolute difference
between previous and current frames and sends result to the
minimum unit. Then, the SADs of all parallel-processed blocks
are generated in the minimum unit, and these SADs are compared
to find the minimum one to be stored in the minimum SAD
register. Meanwhile, a minimum flag signal is output to the
control CPU, which, jointly with address generator, gives the
location where a motion vector is found.

Current
Frame

Alpha Plane
Data

Previous Frame
(Search Range)

Memory Unit

Address
Generator

PE Array

Minimum Unit

Multiplexer

SAD Register
Array

Min. SAD
Register

Counter

CPU
MV

ME Architecture

Video data

Minimum Flag

System
 B

us

Control CPU

Figure 3. System block diagram

3.2. PE array

The PE array is the key component of the ME architecture. It
predominantly determines the performance of the system in terms
of memory bandwidth and minimum clock rate for real-time
processing. Based on a one-dimensional tree architecture
presented in the [5], the PE array architecture uses additional
preload cycles and to increase the parallelism of the data flow, a
group of parallel-pipelined processing elements have been
adopted, as shown in the figure 4.

8-bits processing bus, for previous data

9-bits preload bus, eight bits for current data,
one bit for alpha plane data

PE PE PE PE

MVNpe stages pipeline
(two preload buses)

Pipelines

M IN
Unit

ADD ADD ADDADD

Figure 4. PE array architecture

In this architecture, motion estimation is carried out through
two stages, preload and matching. In preload cycles, as shown in
the figure 5, the current block data and the alpha plane data are
preloaded into the PE array. They are stored locally in the
appropriate PEs. Then, as illustrated in the figure 6, in the
matching cycles, the previous block data are loaded into the PEs
by parallel pipelining. Before matching to the preloaded current
data, the previous data must align with the current data. It takes
NPE clock cycles to align the previous data with the current data,
where NPE is the number of PEs. While the SAD calculation starts,
the previous data shift from the left to the right within PE array
until they match the corresponding current data already in the PE
array. In every clock cycle, NPE absolute difference values for
each of the parallel-processed blocks are calculated; they are
summed up by a group of the adders in the PE array (Figure 4).
The summed result is then sent to the minimum unit to calculate
the SADs for each of the matching points and finds the minimum
SAD for motion vector.

II - 690

➡ ➡

PE PE PE PE

1, 1 1, 2

1, 3 1, 4

Current data and alpha data

Figure 5. Preload cycles

1, 4

1, 1

1, 2

1, 3

1, 4

1, 1

1, 2

1, 3

1, 4

Data unaligned

Data unaligned

1, 1 1, 2 1, 3 1, 4

Previous data

 1, 1 1, 2 1, 3

Figure 6. Matching cycles

Apparently, there should be NPE processing elements in the
PE array. Here, we assume that NPE is 16, and as an example, full
search BMA has been chosen to evaluate this architecture. In this
case, Np blocks of the candidates can be processed simultaneously,
and the pipelining can be organised as in the figure 7.

Therefore, the parallel pipeline is organized

1,Np+s-1 1,Np-1+s-1 … … … … 1,Np+1 1,Np

1,Np-1+s-1 1,Np-2+s-1 … … … … 1,Np 1,Np-1

… … … … … … … …

1,Npe+1 1,Npe 1,Npe-1 … … 1.4 1,3 1,2

 1,Npe 1,Npe-1 1,Npe-2 … … 1,3 1,2 1,1

1,Np+Npe-1 1,Np-1+Npe-1 … … 1,Npe+1 1,Npe 1,Npe-1 … … … 1,2 1,1

1,1 – 1,Npe, Npe pixels from every parallel
processed block are in the pipeline.

N
p P

arallel P
rocessed

B
locks

Figure 7. Pipeline Organisation

3.3. Dual register/buffer

The architecture presented in the section 3.2 suggests that the
current data and the alpha plane data need to be loaded only once
when processing Np candidate blocks. Hence, as the Np is
increased, the bandwidth required for processing current data is
sharply reduced. However, extra clock cycles are needed to
preload current data and align the previous data with current data,
thus the PEs are in idle status during the preloading and the
aligning. For instance, NPE / 4 (with four preload bus) cycles are
needed to preload current data and alpha plane data, and NPE
cycles are needed to deal with data alignment. This can cause high
clock speed requirement. To solve this problem, dual
register/buffer structure has been introduced in processing
elements. As illustrated in the figure 8, in each of the PEs, there
are two 8-bit registers for the previous data and two 9-bit registers
for the current and alpha plane data, respectively, to allow
preloading and matching to be performed simultaneously. While
the PE is matching the data in register Group A, the following
data are preloaded into register Group B. In addition, when the
matching operations of the data in Group A are completed, the PE
switches operational mode to match the data in Group B, while
the Group A register is during preloading cycles.

P E

M
ultiplexer

PE

M
ultiplexer

R eg ister G roup A

R eg ister G roup B

R egiste rs for previous data R eg isters for current & a lpha plan e da ta

Figure 8. Double register architecture

3.4. High parallelism

Different from other architectures presented in the [3, 4, 5],
high-parallel processing can be easily achieved on the proposed
architecture This is due to high number of blocks (more than 16)
can be processed simultaneously. Figure 9 illustrates the data flow
organisation of the architecture processing 32 blocks in parallel.
In this illustration the pixel search range is [-8, 7] and the block
size is 16×16. When the data of the first row (from [1, 1] to [1,16])
of the current block is in the PE array, as shown in figure 9 (a), all
previous data need to be matched in the search range, as shown in
the figure 9 (b). The data required to match the first sixteen blocks
is the first row of the search range, as shown in the figure 9 (c). To
achieve high-parallel processing, we simply load the data from
the blocks 17 to 32 (i.e., the second row of the search range) after
completing the matching of blocks 1 to16 without changing the
current data, as shown in figure 9 (d). Hence, there is no need to
access the memory for another group of current data, nor
preloading cycles. Furthermore, with dual register/buffer
structure, the data in the second row are loaded into register
Group B at the same time of matching the first row data in register
Group A. This allows the alignment cycles to be skipped for the
previous data.

D a ta in P E a r r a y (f i r s t r o w)

C u r r e n t b lo c k

p a ra l le l -
p ro c e s s e d
b lo c k s

A ll p re v io u s d a ta r e q u ir e d fo r
th e f i r s t ro w o f th e c u r re n t b lo c k

(b)(a)

S e a rc h r a n g e

1 6 p a r a l l e l -p r o c e s s e d b lo c k s

S e a r c h r a n g e

D a ta fo r b lo c k s 1 -1 6

1 6 p a r a l l e l -p ro c e s s e d b lo c k s

D a ta f o r b lo c k s 1 7 -3 2

S e a r c h r a n g e

(c) (d)

Figure 9. Paralleled data flow for previous block (search range)

II - 691

➡ ➡

4. PERFORMANCE ANALYSIS

The architecture is aiming at the 3G mobile platform, which
currently has 64 kbits bandwidth to upload and transfer data. Thus,
a minimum compression rate of 70 is required to achieve real time
video applications with acceptable visual quality [4]. If we adopt
QCIF as typical video format in mobile applications,
uncompressed and compressed video data per frame will be
(176×144×8)/1024 = 198 kbits and 198/70 = 2.829 kbits,
respectively. Therefore, the video transmission rate over the 3G
platform should be 64/2.829 = 22.628 frames.

Taking into consideration the bandwidth requirements of
audio and protocol, the maximum frame rate is going to be 20
frames per second, which determines the minimum clock rate for
real-time processing.

4.1. Minimum clock rate analysis

To meet the real-time processing condition, (Nh× Nv)/(N× N)× fps
current blocks have to be matched per second, where Nh× Nv is the
frame size (176 ×144 for QCIF), and N× N is the block size
(16×16 in our case). With a search range [-p, p-1], for every
current block, there are Ncan = 2p×2p candidate blocks. Therefore,
(Nh× Nv)/(N× N)× fps× (2p)× (2p) pairs of blocks must be matched
every second. The current blocks are divided into a group of NPE -
pixel sub-blocks, in which the pixels can be matched
simultaneously within the PE array. The number of clock cycles to
match a sub-block with Np candidate blocks, which are processed
simultaneously, is defined as Csub. In addition, the number of the
clock cycles needed to preload current data and alpha plane data is
defined as Cpre, and the number of cycles for matching and
aligning are defined as Cmatch and Calign, respectively. We have
Csub = (Cpre+ Calign+ Cmatch)× Nsub

Nsub = (N× N)/NPE ; Cpre = NPE / Npre ; Calign = NPE –1; Cmatch = 2p

where the NPE is the number of processing elements; Npre is the
number of preload buses; Nsub is the number of sub-blocks within
the current block. Moreover, Csub/Np is the number of clock cycles
required to match a sub-block. Therefore, the minimum clock rate
required is given by:

PEp

vhPEprePE
clk

NNN

NNfpspNpNNN
C

××

×××××+−+
=

2

22)2(]2)1(/[

 For the PE array with the dual register/buffer structure, there
are only NPE -1 preload cycles in the beginning of the motion
estimation process. Hence, the minimum clock rate can be
calculated as:

1
)2(2

2

22

_ −+
××

×××××
= PE

PEp

vh
doubleclk N

NNN

NNfpspNp
C

The above formulas suggest that the minimum clock speed
required decreases while Np increases for both single and dual
register structures. And, for smaller Np, the dual register based
architecture requires much lower clock speed than that based on a
single register.

4.2. Minimum memory bandwidth requirement analysis

Power consumption is another important consideration for the
intended mobile applications. For an ME algorithm, memory

access operations are the predominant factor contributing to the
power consumption, rather than the clock rate [3]. For the
parallel-pipelined architecture, as illustrated in the figure 7, the
total amount of data fed to the PE array per second, Mbw, is equal
to the quantity of memory access for every candidate block
multiplied by the number of candidate blocks. Therefore,

2
Pr& //)(NNNfpsNNNQQM vhcansubpeviousalphacurrentbw ×××××+=

9& ×= PEalphacurrent NQ ; 8)12(×−+= pN
N

N
Q

p
previous

where the Q current & alpha is quantity of current and alpha data
memory access for every sub-block; and the Q previous is quantity
of previous memory access for Np candidate sub-blocks. Then,

PEp

vhPE
bw

NNN

NNfpspNpNN
M

××

××××××−++×
=

2

22)2(]8)12(9[

If the preload bus is 9-bit wide, 8 bits are needed for current block
and 1 bit for the alpha plane data. The matching data bus is 8-bit
wide for the previous data. This formula shows that the memory
bandwidth is sharply reduced while Np increases, especially when
Np is falling into the range of 16 and 32. In addition, the
architectures with single and dual register/buffer structures have
the same quantity of memory access per second. Therefore, they
have the same minimum memory bandwidth requirement.

5. CONCLUSIONS

This paper presents a parallel VLSI architecture for motion
estimation, aiming at 3G mobile applications. Initial analysis
shows that the architecture requires relatively low memory
bandwidth and clock rate, therefore suitable for low power
consumption and low cost VLSI design/implementation.
Moreover, due to the adoption of the dual-register structure, the
architecture significantly speeds up data processing and therefore
provides high throughput. These make the architecture ideal for
the mobile video applications.

6. REFERENCES

[1] E.L.H. Zoraya, “Evolution in the Technological Revolution:
Preparing for 3G Wireless Technology,” National Urban League
Technology Policy Alert, January, 2001.
[2] S.N. Fabri, S. Worral, A. Sadka, and A. Kondoz, Real-time
Video Communications over GPRS, University of Surrey, UK.
[3] P. Kuhn, Algorithms, Complexity Analysis And VLSI
Architecture for MPEG-4 Motion Estimation, KLUWER
ACDEMIC PUBLISHERS, London, 2000.
[4] A.J. Roach and A. Moini, “VLSI Architecture for Motion
Estimation on a Single-chip Video Camera,” Visual
Communications and Image Processing 2000, Proceedings of
SPIE, Vol. 4067, 2000.
[5] Y.S. Jehng, L.G. Chen, and T.D. Chiueh, “An Efficient and
Simple VLSI Tree Architecture for Motion Estimation
Algorithms,” IEEE TRANSACTIONS ON SIGNAL PROCESSING,
VOL 41, NO. 2, FEB. 1993.
[6] E. Touradj, C. Horne, “MPEG-4 Natural Video Coding - An
Overview,” Signal Processing: Image communication, Vol. 15,
pp.365-385, 2000.

II - 692

➡ ➠

