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ABSTRACT

In this paper, the family of fastest ternary Linearly Independent
Arithmetic transforms, which possesses forward and inverse
butterfly diagrams with lowest computational complexity have
been identified. This family is recursively defined and has
consistent formulas relating forward and inverse transform
matrices. Computational costs of the calculation for presented
transforms are also discussed.

1. INTRODUCTION

There are different strategies in the analysis and design of
nonlinear filtering methods [1]. One of them is to combine
spectral techniques based on Walsh and other transforms with
theory of logic functions using known concepts like Chow
parameters, Boolean derivatives to obtain new tools [3].
Arithmetic transform [1, 5, 8] that is an example of more general
class of Linearly Independent Arithmetic (LIA) transforms [7] is
frequently used to represent probabilistic and stochastic
properties of logic functions. Two fastest binary Linearly
Independent Arithmetic (LIA) transforms having most efficient
computational complexity among arithmetic transforms, have
been identified recently [4]. Before these transforms have been
introduced, Arithmetic transform was known as the most
computationally efficient transform in standard algebra. While
LIA transforms are useful for binary case, due to increased
interests in multiple-valued transforms and their various
applications [5], these transforms can be modified to such a case
as well. The simplest type of such a generalization is ternary case
where the transforms are based on Galois Field (3). In this article
we propose new classes of fastest ternary Linearly Independent
Arithmetic transforms over GF(3) and corresponding ternary
polynomial expansions that are generated through recursive
matrices. Relations, properties, butterfly diagrams and
computational costs of such transforms are also discussed.
Similarly to the binary case these new expansions can have
applications to describe probabilistic and stochastic behavior of
ternary logic functions as well as in statistical analysis of
nonlinear filters providing more flexibility than the current
methods based on binary case.

2. BASIC DEFINITIONS OF TERNARY LIA
TRANSFORMS
Definition 1: Let M, be an NxN (N =3 matrix with rows
corresponding to minterms and columns corresponding to some
switching ternary functions of n variables. If the sets of rows are

linearly independent with respect to Ternary Galois Field, then
M has only one inverse in GF(3) and is said to be ternary
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linearly independent. If \ is linearly independent in GF(3),
then ) is a non-singular square matrix with respect to standard
arithmetic and has a unique inverse p -.

Definition 2: The ternary LIA expansion for any n-variable
ternary function f ()Tn) is given by

E)Ens, 0

where 9, is any set of n-variable ternary logic functions such
that the matrix p_ =[gogla , QT, represents the truth vector
of the ternary functions, o< j<3"-1, A, is the respective
coefficient for the particular transform matrix p_ with arithmetic
inverse M in xT the Most Significant Bit corresponds to X,
and the symbol ¥ is the standard arithmetic addition.

Definition 3: Let F =[F0~F1'---’F3~,1]T represent a column vector
defining the truth vector of a ternary logic function f(Z) in a
natural ternary ordering, and ) _is a ternary LIA transform
defined by Definitions 1 and 2, then

F=M,A, (2)
and

A=MIF, (3)

- - -
where A = [AJ, Ap---%_l] is the spectral coefficient column vector
for the particular ternary LIA transform matrix p — with
arithmetic inverse M.

Definition 4: Let m be a 3"x3" square matrix as specified in
Definition 1. Then M can be recursively defined by

M n = Onfl M n-1 onfl
M® o, MY

where each submatrix v (), j={1,2,34,5}, has a dimension of
3" x3"1, and 0,, is a 3" x3"tsubmatrix with all its elements
equal to 0.
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3. FASTEST TERNARY LIA LOGIC
TRANSFORMATION

In this section, two basic classes of ternary LIA logic
transformations with fastest and most efficient computational
complexity have been found.

The basic forward transformation matrices are constructed from
the recursive submatrices o, m,,, x,, and y 'tV where g

is @ 3 x3"* submatrix with all it’s elements 0, x =1 , or

o 1y isa 3"*x3"* identity submatrix and j  isa 3" x3"*

reverse-identity submatrix, Ynl—(lll) is a 3" x3"*submatrix with all

its elements O except one element located at one corner of each
submatrix depending on the location of y, o, and the value of

the non-zero element is either 1 or 2 denoted by the superscript
of v being I or |1, respectively.

Then the first class transforms under this category is defined by

M, =[O0, X, O, | (5)

n

<

n-=

_M n-1 Onfl I(;l“)_

(6)

O
Onfl Onfl M n-1 |

The inverse transformation matrix of the first class of ternary LIA
transform is given by

M =0, X, O |” )

n

~ 8
M= O X Oy ()

n

where x =1, orJ ,and this submatrix is the same in both
forward and inverse matrices. z () is @ 3"* x3"* submatrix with
all its elements O except one element located at one corner of
each submatrix depending on the location of znlglll), and the value

of the non-zero element is either -1 or -2 denoted by the
superscript of zZ being | or 11, respectively.

In what follows the properties for the transform from Equations
(5) and (7) will be analyzed when x =1 ., Y4 =Y, and
z,,=z', . Similar properties can also be derived from
Equations (6) and (8) by changing X,y and Yy, orz .

100 A Opr Ony
A=l0 1 0"A=0, I, O,
-101 Oni Opy AL

1 00000000

010000000
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0 00100000
B,={0 00010000

0 00001000
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0 00000010

-1 000000 0 1]

[ anl Onfl Onfl I n-1 On—l On—l
B,=|0, I, O.|C,={0On I O

_On—l On—l Bn—l Zn—l On—l In—l

for n=3, M;*=C,+B,«A, . M;* can be defined in a similar
manner for higher n and for forward transform.
Figures 1 and 2 show the forward and inverse butterfly diagrams

of the LIA transformation matrices based on Equations (5) and (7)
for n=3.

B

Figure 2. Inverse butterfly diagram.
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The solid and broken lines in Figures 1 and 2 represent addition
and subtraction respectively.

The computational complexity of a transform depends on the way
of the construction of the higher matrices from the basic
submatrices. With the introduction of y ~and z in the

recursive construction, the introduced matrices are the fastest and
most efficient ternary LIA transformation matrices. The number
of arithmetic additions/subtractions required to compute the
transform for any n-variable ternary logic function is 2" -1. The
list of all ternary LIA transform matrices that are faster than the
known Arithmetic transform for ternary case belonging to the
first Class Z1 is shown in the upper part of Table 1.

An example of the forward transformation matrix of the second
class of fastest ternary LIA transforms is

M, =0, Xoi Oy " ©)

n

n-1 (10)

Equations (9) and (10) can be obtained from Equations (5) and
(6), respectively, by grouping the recursive equations in the
submatrices vertically and interchanging them in the submatrices
horizontally. Similarly, the inverse transformation matrices for
Equations (9) and (10) can be derived from Equations (7) and (8),
respectively, by grouping the recursive equations in the
submatrices horizontally and interchanging them in the
submatrices vertically, as shown below:

[z o, M,]
or
M =0, X, O, )
_Mn—l 0,1 Oy
I On—l On—l M n-1 i
Mi=[0, X, O, 12
M., O, Zz\W]|

where the meaning of the submatrices x ., v _ and z is the
same as explained before.

Example: Let v be defined by Equation (9), where x =7 |
and Y., =Y, Then M? is defined by Equation (11), where
anl
inverse butterfly diagrams are shown in Figure 3 for n=2. The

first part of the butterfly diagram is a vertical-flipping part. It can
be presented as j . Then for n=2, M =B« A"« J , Where the

=J,, Z,,=2), and the corresponding forward and

B, and A are the same as earlier defined matrices g and A

with the only difference that all the elements -1 become 1.
These ternary LIA transforms also belong to the fastest ternary
LIA transforms called Class Z2 and have the same lowest
computation cost as Class Z1. The list of all ternary LIA
transform matrices belonging to the second fastest Class Z2 is

shown in the lower part of Table 1. The price of hardware
overhead for Class Z2 consists only of the circuitry for
permutation of input data. For some ternary logic functions, the
Class Z2 can have simpler ternary polynomial expansion based
on Definition 2 than the corresponding ones to the Class Z1.
Hence it is worthwhile to calculate all the fastest transforms
shown in Table 1 for a given ternary function in order to find the
spectral coefficient vector with biggest number of zeros that
simplifies the final polynomial expansion for such a function.
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Figure 3. Forward and inverse butterfly diagrams.

4. CONCLUSION

The suitability of a ternary LIA transform in a given application
depends not only on the choice of its basis function but also on
the existence of efficient ways of its calculation as well as the
complexity of its final polynomial expansion. Two classes of
transforms discussed in this paper have the least computational
complexity among all the ternary LIA transforms. Recursive
equations defining the ternary LIA transforms and their
corresponding butterfly diagrams are also shown. Similarly to
known polynomial expansions based on binary and multiple-
valued logic [1, 3, 5, 8], the new expansions can have
applications in spectral representations of ternary logic functions,
and calculation of their probabilistic and stochastic behavior.
They can also be the bases of new ternary word decision
diagrams in a manner similar to the ones developed for Linearly
Independent Decision Diagrams in [6]. The unified approach to
butterfly creation presented here allowed the identification of
fastest class for ternary LIA transforms and it may have
applications also to other types of transforms [1-3, 5, 8].
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Table 1. List of All Fastest Ternary LIA Transformation Matrices
Class | No Forward M, = M Inverse No Forward M, = M Inverse
_M n-1 Onfl Onfl 1 _M n-1 Onfl Onfl 1 _M n-1 On—l On—l ] _M n-1 On—l On—l 1
On—l I n-1 On—l < On—l I n-1 On—l On—l I n-1 On—l < On—l I n-1 On—l
1 L Ynlfl Onfl M n-1_| L anfl Onfl M n-1_| 3 Ynlll On—l M n-1_| Zr:|—1 On—l M n-1_|
M n-1 On—l Ynl—l M n-1 On—l Zrll—l M n-1 On—l Ynlll M n-1 On—l Zr:l—l
On—l I n-1 On—l < On—l I n-1 On—l On—l I n-1 On—l < On—l I n-1 On—l
Zl _Onfl Onfl M n-1 | _Onfl Onfl M n-1 | _On—l On—l M n-1 | _On—l On—l M n-1 |
_M n-1 On—l On—l 1 _M n-1 On—l O 1 _M n-1 On—l On—l ] _M n-1 On—l On—l 1
Onfl ‘]nfl Onfl < Onfl ‘]nfl O On—l ‘]n—l On—l < On—l ‘]n—l On—l
2 L Ynl—l On—l M n-1 L Zrll—l On—l M 4 L Ynlll On—l M n-1_] L Zr:l—l On—l M n-1_]
M n-1 Onfl Ynlfl M n-1 Onfl Z M n-1 On—l Ynlll M n-1 On—l Zr:l—l
Onfl ‘]nfl Onfl < Onfl ‘]nfl O On—l ‘]n—l On—l < On—l ‘]n—l On—l
_on—l On—l M n—l_ _On—l On—l M B _On—l On—l M n-1 | _On—l On—l M n-1 |
Ynl—l On—l M n-1 [ On—l On—l M | Ynlll On—l M n-1 _ On—l On—l M n-1
On—l ‘]n—l On—l it On—l ‘]n—l O On—l ‘]n—l On—l < On—l Jn—l On—l
1 _M n-1 Onfl Onfl | _M n-1 Onfl Zn—l i 3 _M n-1 On—l On—l B _M n-1 On—l Zr:l—l i
[ Onfl Onfl M nfl_ [ Zr:fl Onfl M | [ On—l On—l M n—l_ i Z r:l—l On—l M n—l_
Onfl ‘]nfl Onfl < Onfl ‘]nfl O On—l ‘]n—l On—l < On—l ‘]n—l On—l
22 _M n-1 On—l Ynl—l i _M n-1 On—l O B _M n-1 On—l Ynlll i _M n-1 On—l On—l |
[ Ynl—l On—l M n—l_ [ On—l On—l M | Ynlll On—l M n—l_ _ On—l On—l M n—l_
On—l I n-1 On—l < On—l I n-1 O On—l I n-1 On—l < On—l I n-1 On—l
2 _M n-1 Onfl Onfl | _M n-1 Onfl Zr: 1 4 _M n-1 On—l On—l B _M n-1 On—l Zr:l—l i
[ Onfl Onfl M nfl_ [ Zr:fl Onfl M | [ On—l On—l M n—l_ Z r:l—l On—l M n—l_
Onfl I n-1 Onfl < Onfl I n-1 Onfl On—l I n-1 On—l < On—l I n-1 On—l
_M n-1 On—l Ynl—l B _M n-1 On—l O B _M n-1 On—l Ynlll _M n-1 On—l On—l |
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