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ABSTRACT 
In this paper, the family of fastest ternary Linearly Independent 
Arithmetic transforms, which possesses forward and inverse 
butterfly diagrams with lowest computational complexity have 
been identified. This family is recursively defined and has 
consistent formulas relating forward and inverse transform 
matrices. Computational costs of the calculation for presented 
transforms are also discussed.  

1. INTRODUCTION 
There are different strategies in the analysis and design of 
nonlinear filtering methods [1]. One of them is to combine 
spectral techniques based on Walsh and other transforms with 
theory of logic functions using known concepts like Chow 
parameters, Boolean derivatives to obtain new tools [3]. 
Arithmetic transform [1, 5, 8] that is an example of more general 
class of Linearly Independent Arithmetic (LIA) transforms [7] is 
frequently used to represent probabilistic and stochastic 
properties of logic functions. Two fastest binary Linearly 
Independent Arithmetic (LIA) transforms having most efficient 
computational complexity among arithmetic transforms, have 
been identified recently [4].  Before these transforms have been 
introduced, Arithmetic transform was known as the most 
computationally efficient transform in standard algebra. While 
LIA transforms are useful for binary case, due to increased 
interests in multiple-valued transforms and their various 
applications [5], these transforms can be modified to such a case 
as well. The simplest type of such a generalization is ternary case 
where the transforms are based on Galois Field (3). In this article 
we propose new classes of fastest ternary Linearly Independent 
Arithmetic transforms over GF(3) and corresponding ternary 
polynomial expansions that are generated through recursive 
matrices. Relations, properties, butterfly diagrams and 
computational costs of such transforms are also discussed.  
Similarly to the binary case these new expansions can have 
applications to describe probabilistic and stochastic behavior of 
ternary logic functions as well as in statistical analysis of 
nonlinear filters providing more flexibility than the current 
methods based on binary case. 

2. BASIC DEFINITIONS OF TERNARY LIA 
TRANSFORMS 

Definition 1: Let 
nM  be an NN ×  )3( nN =  matrix with rows 

corresponding to minterms and columns corresponding to some 
switching ternary functions of n variables. If the sets of rows are 
linearly independent with respect to Ternary Galois Field, then 

nM  has only one inverse in GF(3) and is said to be ternary 

 

 

 linearly independent. If 
nM  is linearly independent in GF(3), 

then 
nM  is a non-singular square matrix with respect to standard 

arithmetic and has a unique inverse 1−
nM . 

Definition 2: The ternary LIA expansion for any n-variable 
ternary function ( )nxf  is given by 
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where 
jg  is any set of n-variable ternary logic functions such 

that the matrix [ ]
1310 ,..., −= ngggM n

, 
jg  represents the truth vector 

of the ternary functions, 130 −≤≤ nj , 
jA  is the  respective 

coefficient for the particular transform matrix 
nM  with arithmetic 

inverse 1−
nM , in 

nx  the Most Significant Bit corresponds to 
nx , 

and the symbol ∑  is the standard arithmetic addition. 

Definition 3: Let [ ]TnFFFF
1310 ,...,,

−
= represent a column vector 

defining the truth vector of a ternary logic function ( )nxf  in a 
natural ternary ordering, and 

nM  is a ternary LIA transform 
defined by Definitions 1 and 2, then   

 AMF n= ,       ( )2  
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FMA n
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where [ ]TnAAAA
1310 ,...,

−
=  is the spectral coefficient column vector 

for the particular ternary LIA transform matrix 
nM  with 

arithmetic inverse 1−
nM . 

Definition 4: Let 
nM be a nn 33 ×  square matrix as specified in 

Definition 1. Then 
nM  can be recursively defined by  
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where each submatrix ( )j
nM 1−

, }5,4,3,2,1{=j , has a dimension of 
11 33 −− × nn , and 

1−nO  is a 11 33 −− × nn submatrix with all its elements 
equal to 0. 
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3. FASTEST TERNARY LIA LOGIC 
TRANSFORMATION 

In this section, two basic classes of ternary LIA logic 
transformations with fastest and most efficient computational 
complexity have been found. 

The basic forward transformation matrices are constructed from 
the recursive submatrices 

1−nO , 
1−nM , 

1−nX  and ( )III
nY 1−

 where 
1−nO  

is a 11 33 −− × nn submatrix with all it’s elements 0, 
11 −− = nn IX  or 

1−nJ , 
1−nI  is a 11 33 −− × nn  identity submatrix and 

1−nJ  is a 11 33 −− × nn  
reverse-identity submatrix, ( )III

nY 1−
 is a 11 33 −− × nn submatrix with all 

its elements 0 except one element located at one corner of each 
submatrix depending on the location of ( )III

nY 1−
, and the value of 

the non-zero element is either 1 or 2 denoted by the superscript 
of  Y  being I or II , respectively. 

Then the first class transforms under this category is defined by 
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The inverse transformation matrix of the first class of ternary LIA 
transform is given by 
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where 
11 −− = nn IX  or 

1−nJ , and this submatrix is the same in both 
forward and inverse matrices. ( )III

nZ 1−
 is a 11 33 −− × nn  submatrix with 

all its elements 0 except one element located at one corner of 
each submatrix depending on the location of ( )III

nZ 1−
, and the value 

of the non-zero element is either -1 or -2 denoted by the 
superscript of Z  being I or II , respectively. 

In what follows the properties for the transform from Equations 
(5) and (7) will be analyzed when 

11 −− = nn IX , I
nn YY 11 −− =  and 

I
nn ZZ 11 −− = . Similar properties can also be derived from 

Equations (6) and (8) by changing 
1−nX  and 

1−nY  or 
1−nZ . 
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for n=3, nnnn ABCM ••=−1 . 1=
nM  can be defined in a similar 

manner for higher n and for forward transform. 

Figures 1 and 2 show the forward and inverse butterfly diagrams 
of the LIA transformation matrices based on Equations (5) and (7)  
for n=3. 

 
Figure 1. Forward butterfly diagram. 

 
Figure 2. Inverse butterfly diagram. 
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The solid and broken lines in Figures 1 and 2 represent addition 
and subtraction respectively. 

The computational complexity of a transform depends on the way 
of the construction of the higher matrices from the basic 
submatrices. With the introduction of 

1−nY  and 
1−nZ  in the 

recursive construction, the introduced matrices are the fastest and 
most efficient ternary LIA transformation matrices. The number 
of arithmetic additions/subtractions required to compute the 
transform for any n-variable ternary logic function is 12 −n . The 
list of all ternary LIA transform matrices that are faster than the 
known Arithmetic transform for ternary case belonging to the 
first Class Z1 is shown in the upper part of Table 1. 

An example of the forward transformation matrix of the second 
class of fastest ternary LIA transforms is  
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Equations (9) and (10) can be obtained from Equations (5) and 
(6), respectively, by grouping the recursive equations in the 
submatrices vertically and interchanging them in the submatrices 
horizontally. Similarly, the inverse transformation matrices for 
Equations (9) and (10) can be derived from Equations (7) and (8), 
respectively, by grouping the recursive equations in the 
submatrices horizontally and interchanging them in the 
submatrices vertically, as shown below: 
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where the meaning of the submatrices 
1−nX , 

1−nY  and 
1−nZ  is the 

same as explained before. 

Example: Let 
nM  be defined by Equation (9), where 

11 −− = nn JX  
and I

nn YY 11 −− = . Then 1−
nM  is defined by Equation (11), where 

11 −− = nn JX , I
nn ZZ 11 −− =  and the corresponding forward and 

inverse butterfly diagrams are shown in Figure 3 for n=2. The 
first part of the butterfly diagram is a vertical-flipping part. It can 
be presented as 

nJ . Then for n=2, 
nnnn JABM ••= ** , where the 

*
nB  and *

nA  are the same as earlier defined matrices 
nB  and 

nA  
with the only difference that all the elements 1−  become 1 . 
These ternary LIA transforms also belong to the fastest ternary 
LIA transforms called Class Z2 and have the same lowest 
computation cost as Class Z1. The list of all ternary LIA 
transform matrices belonging to the second fastest Class Z2 is 

shown in the lower part of Table 1. The price of hardware 
overhead for Class Z2 consists only of the circuitry for 
permutation of input data. For some ternary logic functions, the 
Class Z2 can have simpler ternary polynomial expansion based 
on Definition 2 than the corresponding ones to the Class Z1. 
Hence it is worthwhile to calculate all the fastest transforms 
shown in Table 1 for a given ternary function in order to find the 
spectral coefficient vector with biggest number of zeros that 
simplifies the final polynomial expansion for such a function. 

     
Figure 3. Forward and inverse butterfly diagrams. 

 

4. CONCLUSION 

The suitability of a ternary LIA transform in a given application 
depends not only on the choice of its basis function but also on 
the existence of efficient ways of its calculation as well as the 
complexity of its final polynomial expansion. Two classes of 
transforms discussed in this paper have the least computational 
complexity among all the ternary LIA transforms. Recursive 
equations defining the ternary LIA transforms and their 
corresponding butterfly diagrams are also shown. Similarly to 
known polynomial expansions based on binary and multiple-
valued logic [1, 3, 5, 8], the new expansions can have 
applications in spectral representations of ternary logic functions, 
and calculation of their probabilistic and stochastic behavior. 
They can also be the bases of new ternary word decision 
diagrams in a manner similar to the ones developed for Linearly 
Independent Decision Diagrams in [6]. The unified approach to 
butterfly creation presented here allowed the identification of 
fastest class for ternary LIA transforms and it may have 
applications also to other types of transforms [1-3, 5, 8]. 
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Table 1. List of All Fastest Ternary LIA Transformation Matrices 
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