
Fastest Linearly Independent Arithmetic Transforms over GF(3)
Bogdan J. Falkowski and Cheng Fu

School of Electrical and Electronic Engineering
Block S1, Nanyang Technological University

50 Nanyang Avenue, Singapore 639798

ABSTRACT
In this paper, the family of fastest ternary Linearly Independent
Arithmetic transforms, which possesses forward and inverse
butterfly diagrams with lowest computational complexity have
been identified. This family is recursively defined and has
consistent formulas relating forward and inverse transform
matrices. Computational costs of the calculation for presented
transforms are also discussed.

1. INTRODUCTION
There are different strategies in the analysis and design of
nonlinear filtering methods [1]. One of them is to combine
spectral techniques based on Walsh and other transforms with
theory of logic functions using known concepts like Chow
parameters, Boolean derivatives to obtain new tools [3].
Arithmetic transform [1, 5, 8] that is an example of more general
class of Linearly Independent Arithmetic (LIA) transforms [7] is
frequently used to represent probabilistic and stochastic
properties of logic functions. Two fastest binary Linearly
Independent Arithmetic (LIA) transforms having most efficient
computational complexity among arithmetic transforms, have
been identified recently [4]. Before these transforms have been
introduced, Arithmetic transform was known as the most
computationally efficient transform in standard algebra. While
LIA transforms are useful for binary case, due to increased
interests in multiple-valued transforms and their various
applications [5], these transforms can be modified to such a case
as well. The simplest type of such a generalization is ternary case
where the transforms are based on Galois Field (3). In this article
we propose new classes of fastest ternary Linearly Independent
Arithmetic transforms over GF(3) and corresponding ternary
polynomial expansions that are generated through recursive
matrices. Relations, properties, butterfly diagrams and
computational costs of such transforms are also discussed.
Similarly to the binary case these new expansions can have
applications to describe probabilistic and stochastic behavior of
ternary logic functions as well as in statistical analysis of
nonlinear filters providing more flexibility than the current
methods based on binary case.

2. BASIC DEFINITIONS OF TERNARY LIA
TRANSFORMS

Definition 1: Let
nM be an NN ×)3(nN = matrix with rows

corresponding to minterms and columns corresponding to some
switching ternary functions of n variables. If the sets of rows are
linearly independent with respect to Ternary Galois Field, then

nM has only one inverse in GF(3) and is said to be ternary

 linearly independent. If
nM is linearly independent in GF(3),

then
nM is a non-singular square matrix with respect to standard

arithmetic and has a unique inverse 1−
nM .

Definition 2: The ternary LIA expansion for any n-variable
ternary function ()nxf is given by

 () ∑
−

=

=
13

0

n

j
jjn gAxf , ()1

where
jg is any set of n-variable ternary logic functions such

that the matrix []
1310 ,..., −= ngggM n

,
jg represents the truth vector

of the ternary functions, 130 −≤≤ nj ,
jA is the respective

coefficient for the particular transform matrix
nM with arithmetic

inverse 1−
nM , in

nx the Most Significant Bit corresponds to
nx ,

and the symbol ∑ is the standard arithmetic addition.

Definition 3: Let []TnFFFF
1310 ,...,,

−
= represent a column vector

defining the truth vector of a ternary logic function ()nxf in a
natural ternary ordering, and

nM is a ternary LIA transform
defined by Definitions 1 and 2, then

 AMF n= , ()2

and

FMA n
1−= , ()3

where []TnAAAA
1310 ,...,

−
= is the spectral coefficient column vector

for the particular ternary LIA transform matrix
nM with

arithmetic inverse 1−
nM .

Definition 4: Let
nM be a nn 33 × square matrix as specified in

Definition 1. Then
nM can be recursively defined by

() ()

()

() () 















=

−−−

−−−

−−−

4
11

3
1

1
5

11

2
11

1
1

nnn

nnn

nnn

n

MOM
OMO
MOM

M
, ()4

where each submatrix ()j
nM 1−

, }5,4,3,2,1{=j , has a dimension of
11 33 −− × nn , and

1−nO is a 11 33 −− × nn submatrix with all its elements
equal to 0.

II - 6690-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

3. FASTEST TERNARY LIA LOGIC
TRANSFORMATION

In this section, two basic classes of ternary LIA logic
transformations with fastest and most efficient computational
complexity have been found.

The basic forward transformation matrices are constructed from
the recursive submatrices

1−nO ,
1−nM ,

1−nX and ()III
nY 1−

 where
1−nO

is a 11 33 −− × nn submatrix with all it’s elements 0,
11 −− = nn IX or

1−nJ ,
1−nI is a 11 33 −− × nn identity submatrix and

1−nJ is a 11 33 −− × nn
reverse-identity submatrix, ()III

nY 1−
 is a 11 33 −− × nn submatrix with all

its elements 0 except one element located at one corner of each
submatrix depending on the location of ()III

nY 1−
, and the value of

the non-zero element is either 1 or 2 denoted by the superscript
of Y being I or II , respectively.

Then the first class transforms under this category is defined by

() 















=

−−−

−−−

−−−

111

111

111

nn
III

n

nnn

nnn

n

MOY
OXO
OOM

M
or ()5

()

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

III
nnn

n

MOO
OXO
YOM

M
 . ()6

The inverse transformation matrix of the first class of ternary LIA
transform is given by

() 















=

−−−

−−−

−−−
−

111

111

111
1

nn
III

n

nnn

nnn

n

MOZ
OXO
OOM

M
or ()7

()

















=

−−−

−−−

−−−
−

111

111

111
1

nnn

nnn

III
nnn

n

MOO
OXO
ZOM

M
 ()8

where
11 −− = nn IX or

1−nJ , and this submatrix is the same in both
forward and inverse matrices. ()III

nZ 1−
 is a 11 33 −− × nn submatrix with

all its elements 0 except one element located at one corner of
each submatrix depending on the location of ()III

nZ 1−
, and the value

of the non-zero element is either -1 or -2 denoted by the
superscript of Z being I or II , respectively.

In what follows the properties for the transform from Equations
(5) and (7) will be analyzed when

11 −− = nn IX , I
nn YY 11 −− = and

I
nn ZZ 11 −− = . Similar properties can also be derived from

Equations (6) and (8) by changing
1−nX and

1−nY or
1−nZ .

















−
=

101
010
001

1A
,

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

nnn

n

AOO
OIO
OOA

A
,



































−

=

100000001
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

2B

,

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

nnn

n

BOO
OIO
OOB

B
,

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

nnn

n

IOZ
OIO
OOI

C ,

for n=3, nnnn ABCM ••=−1 . 1=
nM can be defined in a similar

manner for higher n and for forward transform.

Figures 1 and 2 show the forward and inverse butterfly diagrams
of the LIA transformation matrices based on Equations (5) and (7)
for n=3.

Figure 1. Forward butterfly diagram.

Figure 2. Inverse butterfly diagram.

II - 670

➡ ➡

The solid and broken lines in Figures 1 and 2 represent addition
and subtraction respectively.

The computational complexity of a transform depends on the way
of the construction of the higher matrices from the basic
submatrices. With the introduction of

1−nY and
1−nZ in the

recursive construction, the introduced matrices are the fastest and
most efficient ternary LIA transformation matrices. The number
of arithmetic additions/subtractions required to compute the
transform for any n-variable ternary logic function is 12 −n . The
list of all ternary LIA transform matrices that are faster than the
known Arithmetic transform for ternary case belonging to the
first Class Z1 is shown in the upper part of Table 1.

An example of the forward transformation matrix of the second
class of fastest ternary LIA transforms is

() 















=

−−−

−−−

−−−

III
nnn

nnn

nnn

n

YOM
OXO
MOO

M

111

111

111 or ()9

()

















=

−−−

−−−

−−−

111

111

111

nnn

nnn

nn
III

n

n

OOM
OXO
MOY

M
 ()10

Equations (9) and (10) can be obtained from Equations (5) and
(6), respectively, by grouping the recursive equations in the
submatrices vertically and interchanging them in the submatrices
horizontally. Similarly, the inverse transformation matrices for
Equations (9) and (10) can be derived from Equations (7) and (8),
respectively, by grouping the recursive equations in the
submatrices horizontally and interchanging them in the
submatrices vertically, as shown below:

()

















=

−−−

−−−

−−−
−

111

111

111
1

nnn

nnn

nn
III

n

n

OOM
OXO
MOZ

M
or ()11

() 















=

−−−

−−−

−−−
−

III
nnn

nnn

nnn

n

ZOM
OXO
MOO

M

111

111

111
1 ()12

where the meaning of the submatrices
1−nX ,

1−nY and
1−nZ is the

same as explained before.

Example: Let
nM be defined by Equation (9), where

11 −− = nn JX
and I

nn YY 11 −− = . Then 1−
nM is defined by Equation (11), where

11 −− = nn JX , I
nn ZZ 11 −− = and the corresponding forward and

inverse butterfly diagrams are shown in Figure 3 for n=2. The
first part of the butterfly diagram is a vertical-flipping part. It can
be presented as

nJ . Then for n=2,
nnnn JABM ••= ** , where the

*
nB and *

nA are the same as earlier defined matrices
nB and

nA
with the only difference that all the elements 1− become 1 .
These ternary LIA transforms also belong to the fastest ternary
LIA transforms called Class Z2 and have the same lowest
computation cost as Class Z1. The list of all ternary LIA
transform matrices belonging to the second fastest Class Z2 is

shown in the lower part of Table 1. The price of hardware
overhead for Class Z2 consists only of the circuitry for
permutation of input data. For some ternary logic functions, the
Class Z2 can have simpler ternary polynomial expansion based
on Definition 2 than the corresponding ones to the Class Z1.
Hence it is worthwhile to calculate all the fastest transforms
shown in Table 1 for a given ternary function in order to find the
spectral coefficient vector with biggest number of zeros that
simplifies the final polynomial expansion for such a function.

Figure 3. Forward and inverse butterfly diagrams.

4. CONCLUSION

The suitability of a ternary LIA transform in a given application
depends not only on the choice of its basis function but also on
the existence of efficient ways of its calculation as well as the
complexity of its final polynomial expansion. Two classes of
transforms discussed in this paper have the least computational
complexity among all the ternary LIA transforms. Recursive
equations defining the ternary LIA transforms and their
corresponding butterfly diagrams are also shown. Similarly to
known polynomial expansions based on binary and multiple-
valued logic [1, 3, 5, 8], the new expansions can have
applications in spectral representations of ternary logic functions,
and calculation of their probabilistic and stochastic behavior.
They can also be the bases of new ternary word decision
diagrams in a manner similar to the ones developed for Linearly
Independent Decision Diagrams in [6]. The unified approach to
butterfly creation presented here allowed the identification of
fastest class for ternary LIA transforms and it may have
applications also to other types of transforms [1-3, 5, 8].

5. REFERENCES
[1] S. Agaian, J. Astola, and K. Egiazarian, Binary Polynomial

Transforms and Nonlinear Digital Filters. New York:
Marcel Dekker, 1995.

[2] A. Drygajlo, “Butterfly orthogonal structure for fast
transforms, filter banks and wavelets”, Proc. IEEE Int.
Conf. Acoustic, Speech, Signal Processing, San Francisco,
California, Vol. 5, pp. 81-84, March 1992.

[3] K. Egiazarian, P. Kuosmanen, and J. Astola, “Boolean
derivatives, weighted Chow parameters and selection of
stack filters”, IEEE Trans. on Signal Processing, Vol. 44,
No. 7, pp. 1634-1641, July 1996.

[4] B.J. Falkowski and S. Rahardja, “Boolean verification with
fastest LIA transforms”, Proc. 35th IEEE International
Symposium on Circuits and Systems, Scottsdale, Arizona,
Vol. 5, pp. 321-324, May 2002.

II - 671

➡ ➡

[5] G. A. Kukharev, V. P. Shmerko, and E.N. Zaitseva,
Multiple-Valued Data Processing Algorithms and Systolic
Processors. Minsk: Science and Engineering, 1990.

[6] M.A. Perkowski, B.J. Falkowski, M. Chrzanowska-Jeske,
and R. Drechsler, “Efficient algorithms for creation of
Linearly-Independent Decision Diagrams and their mapping
to regular layouts”, VLSI Design, Vol. 14, No. 1, pp. 35-52,
Feb. 2002.

[7] S. Rahardja and B.J. Falkowski, “Fast linearly independent
arithmetic expansions”, IEEE Trans. on Computers, Vol. 48,
No. 9, pp. 991-999, Sept. 1999.

[8] R.S. Stankovic, M. Stankovic, and D. Jankovic, Spectral
Transforms in Switching Theory, Definitions and
Calculations. Belgrade: IP Nauka, 1998.

Table 1. List of All Fastest Ternary LIA Transformation Matrices

Class No Forward 1−⇔ nn MM Inverse No Forward 1−⇔ nn MM Inverse

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nn
I
n

nnn

nnn

nn
I

n

nnn

nnn

MOZ
OIO
OOM

MOY
OIO
OOM

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nn
II
n

nnn

nnn

nn
II

n

nnn

nnn

MOZ
OIO
OOM

MOY
OIO
OOM

1

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

I
nnn

nnn

nnn

I
nnn

MOO
OIO
ZOM

MOO
OIO
YOM

3

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

II
nnn

nnn

nnn

II
nnn

MOO
OIO
ZOM

MOO
OIO
YOM

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nn
I
n

nnn

nnn

nn
I

n

nnn

nnn

MOZ
OJO
OOM

MOY
OJO
OOM

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nn
II
n

nnn

nnn

nn
II

n

nnn

nnn

MOZ
OJO
OOM

MOY
OJO
OOM

Z1

2

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

I
nnn

nnn

nnn

I
nnn

MOO
OJO
ZOM

MOO
OJO
YOM

4

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

II
nnn

nnn

nnn

II
nnn

MOO
OJO
ZOM

MOO
OJO
YOM

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

I
nnn

nnn

nnn

nnn

nnn

nn
I

n

ZOM
OJO
MOO

OOM
OJO
MOY

111

111

111

111

111

111

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

II
nnn

nnn

nnn

nnn

nnn

nn
II

n

ZOM
OJO
MOO

OOM
OJO
MOY

111

111

111

111

111

111

1

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

nn
I
n

I
nnn

nnn

nnn

OOM
OJO
MOZ

YOM
OJO
MOO

3

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

nn
II
n

II
nnn

nnn

nnn

OOM
OJO
MOZ

YOM
OJO
MOO

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

I
nnn

nnn

nnn

nnn

nnn

nn
I

n

ZOM
OIO
MOO

OOM
OIO
MOY

111

111

111

111

111

111

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

II
nnn

nnn

nnn

nnn

nnn

nn
II

n

ZOM
OIO
MOO

OOM
OIO
MOY

111

111

111

111

111

111

Z2

2

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

nn
I
n

I
nnn

nnn

nnn

OOM
OIO
MOZ

YOM
OIO
MOO

4

















⇔
















−−−

−−−

−−−

−−−

−−−

−−−

111

111

111

111

111

111

nnn

nnn

nn
II
n

II
nnn

nnn

nnn

OOM
OIO
MOZ

YOM
OIO
MOO

II - 672

➡ ➠

