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ABSTRACT

A radix-16 fast Fourier transform (FFT) algorithm suitable for
multiply-add instruction is proposed. The proposed radix-16 FFT
algorithm requires fewer floating-point instructions than the con-
ventional radix-16 FFT algorithm on processors that have a multiply-
add instruction. Moreover, this algorithm has the advantage of
fewer loads and stores than either the radix-2, 4 and 8 FFT al-
gorithms or the split-radix FFT algorithm. We use Goedecker’s
method to obtain an algorithm for computing radix-16 FFT with
fewer floating-point instructions than the conventional radix-16
FFT algorithm. The number of floating-point instructions for the
proposed radix-16 FFT algorithm is compared with those of con-
ventional power-of-two FFT algorithms on processors with multiply-
add instruction.

1. INTRODUCTION

For computing an � � ��-point FFT, radix-2, 4, 8 and 16 FFT
algorithms and split-radix FFT algorithms have been proposed [1,
2, 3, 4, 5].

Until several years ago, floating-point addition was faster than
floating-point multiplication on most processors. For this reason,
FFT algorithms that reduced real multiplications, e.g., the Wino-
grad Fourier transform algorithm (WFTA) [6] and the prime factor
FFT algorithm (PFA) [7, 8], have been intensively studied. These
algorithms show an advantage over processors that require more
time for multiplication than addition. Today, floating-point multi-
plication is as fast as floating-point addition on the latest proces-
sors. Moreover, many processors have a multiply-add instruction.

As for related works, Linzer and Feig [9] have shown radix-
2, 4 and 8 FFT algorithms and split-radix FFT algorithm for fused
multiply-add architectures. These FFT algorithms are based on the
Cooley-Tukey FFT algorithm [1] and the split-radix FFT algorithm
[3, 4]. On the other hand, radix-2, 3, 4 and 5 FFT algorithms on
computers with overlapping multiply-add instructions have been
proposed by Goedecker [10] and Karner et al. [11].

The higher radices are more efficient in terms of both mem-
ory and floating-point operations. A high ratio of floating-point
instructions to memory operations is particularly important in a
cache-based processor. In view of the high ratio of floating-point
instructions to memory operations, the radix-16 FFT is more ad-
vantageous than the radix-2, 4 and 8 FFTs. Thus the FFTW [12],
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is known as one of the fastest FFT libraries for many processors,
contains a radix-16 FFT routine.

Although higher radix FFTs require more floating-point reg-
isters to hold intermediate results, some processors have sufficient
floating-point registers (e.g., Intel Itanium processor has 128 floating-
point registers [13]).

However, efficient implementations of a radix-16 FFT algo-
rithm suitable for multiply-add instruction have not yet been pre-
sented.

In this paper, we propose a radix-16 FFT algorithm suitable
for multiply-add instruction based on Goedecker method.

Throughout this paper, we use a multiply-add instruction, which
computes � � ��� ��, where �� �� � and � are floating-point reg-
isters. Also, we assume that an addition, a multiplication, or a
multiply-add each requires one machine cycle on processors that
have a multiply-add instruction. We will call any of these compu-
tations a floating-point instruction, and assign a unit cost to each.

2. A RADIX-16 FFT ALGORITHM SUITABLE FOR
MULTIPLY-ADD INSTRUCTION

The DFT of � points is given by
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where 	� � ��������
�	, �� and �� are sequences of com-
plex numbers.

An FFT kernel [10, 14] calculates the innermost part in a trans-
formation, which has the form [10]
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for 
 � �� �� � � � � � � �. The radix of the kernel is given by the
prime factor � which is 16 in this paper. 
� is called the twiddle
factor and 	� � ��������
� 	.

In the radix-� FFT kernel, an input data �	���	 multiplied by
the twiddle factor 
� is performed with “short DFT” [15].

The adaptability of the conventional radix-16 FFT algorithm
on processors that have a multiply-add instruction is here discussed.

The conventional radix-16 FFT (decimation-in-time) is split
into the first step and the remaining part. The first step is the com-
plex multiplication of �	���	�
� �� � �� �� � � � � ��	. Then 15
complex multiplications are necessary. We assume that a complex
multiplication in the ��� �	 plane is done with four real multipli-
cations and two real additions. In the first step, since the ratio of
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Table 1. Number of Floating-Point Instructions for FFT Algorithms of � Points with Multiply-Add Instruction

Algorithm Floating-point instructions
Linzer and Feig radix-4 [9] ���
�	� 
���� � ���
�	� � ��
�	
Linzer and Feig radix-8 [9] ���
�	� 
���� � ���
��	� � ���
�	
Linzer and Feig split-radix [9] ��
�	� 
��� � � ���
�	� � �� ��
�	���	���� �

Conventional radix-16 ���
��	� 
���� � ����
��	� � ���
��	
Proposed radix-16 ���
��	� 
���� � ����
���	� � ���
��	

Table 2. Number of Floating-Point Instructions for FFT Algorithms of � Points with Multiply-Add Instruction

�
Linzer and Feig

radix-4 [9]
Linzer and Feig

radix-8 [9]
Linzer and Feig
split-radix [9]

Conventional
radix-16

Proposed
radix-16

8 52 52
16 144 144 160 144
32 372
64 920 928 912

128 2164
256 5080 5008 6016 5056
512 11632 11380

1024 25944 25488
2048 56436
4096 126296 126832 123792 152512 125408

multiplications to additions is two to one, the addition unit cannot
be exploited on processors with multiply-add instruction. Then a
16-point DFT is performed in the remaining part. Since the con-
ventional radix-16 FFT has 24 real multiplications and 144 real
additions in the remaining part, the multiply unit also cannot be
exploited. As a result, the conventional radix-16 FFT algorithm
has 220 floating-point instructions on processors with multiply-
add instruction.

We conclude that the conventional radix-16 FFT algorithm is
therefore not suitable for the multiply-add instruction.

As we mentioned in the above, the multiply-add unit cannot
be exploited in the conventional radix-16 FFT algorithm. We will
make full use of the multiply-add unit to transform the conven-
tional radix-16 FFT.

Goedecker’s method [10] consists of repeated transformations
of the expression:

��� �� � ���� ��
�	�	 (3)

where � �� �.
Applying repeated transformations of (3) to the conventional

radix-16 FFT, a radix-16 FFT algorithm suitable for multiply-add
instruction is obtained.

The proposed radix-16 FFT algorithm suitable for multiply-
add instruction is shown in Fig. 1. Here, the real part of the array
�	� is denoted by zinr, the imaginary part by zini, and correspond-
ingly for ����. The real part and imaginary part of the twiddle
factor 
� are ��� and ���, respectively.

In the proposed radix-16 FFT algorithm, a table for twiddle
factors of ���–���� , ��	�–����
 , �����–����	�� and �����–�����
is needed. Since these values can be computed in advance, the
overhead of making the table is negligible.

The proposed radix-16 FFT algorithm has only 174 floating-
point instructions on processors with multiply-add instruction. We

can see that the multiply-add unit can be exploited in the proposed
radix-16 FFT algorithm from Fig. 1.

3. EVALUATION

In order to evaluate the effectiveness of power-of-two FFT algo-
rithms, we compare the number of floating-point instructions, loads,
and stores.

The number of floating-point instructions for various FFT al-
gorithms of � points with multiply-add instruction is shown in
Tables 1 and 2. The proposed radix-16 FFT algorithm asymptot-
ically saves about 21% of the floating-point instructions over the
conventional radix-16 FFT on processors that have a multiply-add
instruction.

In comparison with the Linzer and Feig radix-4 and 8 FFT
algorithms [9], the proposed radix-16 FFT algorithm asymptoti-
cally saves about 1% of the floating-point instructions. On the
other hand, the proposed radix-16 FFT algorithm asymptotically
increases about 2% of the floating-point instructions over the Linzer
and Feig split-radix FFT algorithm [9].

The number of loads, stores, floating-point instructions used
for various FFT butterflies is given in Table 3. In calculating the
number of loads and the number of stores, we assume that enough
registers are available to perform an entire butterfly in the registers
without using any intermediate stores or loads.

In Table 4, the asymptotic number of loads, stores, and floating-
point instructions used by each algorithm is given. The proposed
radix-16 FFT algorithm requires fewer loads and stores than the
Linzer and Feig radix-4 and 8 FFT algorithms or the Linzer and
Feig split-radix FFT algorithm. In particular, in comparison with
the Linzer and Feig radix-8 FFT algorithm, the proposed radix-16
FFT algorithm asymptotically saves 25% of the loads and stores.
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Table 3. Number of Loads, Stores, and Floating-Point Instructions for General Butterflies Used in FFT Algorithms with Multiply-Add
Instruction. The Number of Loads Does Not Include Loading All of the Constants

Algorithm Loads Stores
Floating-point

instructions
Linzer and Feig radix-4 [9] 8 8 22
Linzer and Feig radix-8 [9] 16 16 66
Linzer and Feig split-radix [9] 8 8 16
Conventional radix-16 32 32 220
Proposed radix-16 32 32 174

Table 4. Number of Loads, Stores, and Floating-Point Instructions Divided by � 
���� Used by FFT Algorithms to Compute an � Point
DFT. Lower Order Terms Have Been Omitted

Algorithm Loads Stores
Floating-point

instructions
Linzer and Feig radix-4 [9] 1 1 ��
�
Linzer and Feig radix-8 [9] �
� �
� ��
�
Linzer and Feig split-radix [9] �
� �
� �
�
Conventional radix-16 �
� �
� ��
��
Proposed radix-16 �
� �
� ��
��

4. CONCLUSION

A radix-16 FFT algorithm suitable for multiply-add instruction has
been presented. We reduced the number of floating-point instruc-
tions necessary for a radix-16 FFT algorithm by maximizing the
use of multiply-add instructions.

The proposed radix-16 FFT algorithm requires fewer floating-
point instructions than the conventional radix-16 FFT algorithm on
processors that have a multiply-add instruction.

If the FFTs are being computed on a machine that has enough
registers to perform an entire radix-16 FFT algorithm, those FFTs
will use fewer loads and stores than the radix-2, 4 and 8 FFT algo-
rithms or the split-radix FFT algorithm.
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/* twiddle factors can be

computed in advance */
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Fig. 1. Proposed radix-16 FFT algorithm suitable for multiply-add instruction.
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