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ABSTRACT

A radix-16 fast Fourier transform (FFT) agorithm suitable for
multiply-add instruction is proposed. The proposed radix-16 FFT
algorithm requires fewer floating-point instructions than the con-
ventional radix-16 FFT algorithm on processors that have amultiply-
add instruction. Moreover, this algorithm has the advantage of
fewer loads and stores than either the radix-2,4 and 8 FFT a-
gorithms or the split-radix FFT algorithm. We use Goedecker's
method to obtain an algorithm for computing radix-16 FFT with
fewer floating-point instructions than the conventional radix-16
FFT agorithm. The number of floating-point instructions for the
proposed radix-16 FFT agorithm is compared with those of con-
ventional power-of-two FFT algorithms on processors with multiply-
add instruction.

1. INTRODUCTION

For computing an N = 2™-point FFT, radix-2,4,8 and 16 FFT
algorithms and split-radix FFT algorithms have been proposed [1,
2,3,4,5].

Until several years ago, floating-point addition was faster than
floating-point multiplication on most processors. For this reason,
FFT algorithms that reduced real multiplications, e.g., the Wino-
grad Fourier transform algorithm (WFTA) [6] and the prime factor
FFT agorithm (PFA) [7, 8], have been intensively studied. These
algorithms show an advantage over processors that require more
time for multiplication than addition. Today, floating-point multi-
plication is as fast as floating-point addition on the latest proces-
sors. Moreover, many processors have a multiply-add instruction.

As for related works, Linzer and Feig [9] have shown radix-
2,4 and 8 FFT agorithms and split-radix FFT agorithm for fused
multiply-add architectures. These FFT algorithms are based on the
Cooley-Tukey FFT algorithm[1] and the split-radix FFT algorithm
[3, 4]. On the other hand, radix-2,3,4 and 5 FFT agorithms on
computers with overlapping multiply-add instructions have been
proposed by Goedecker [10] and Karner et a. [11].

The higher radices are more efficient in terms of both mem-
ory and floating-point operations. A high ratio of floating-point
instructions to memory operations is particularly important in a
cache-based processor. In view of the high ratio of floating-point
instructions to memory operations, the radix-16 FFT is more ad-
vantageous than the radix-2, 4 and 8 FFTs. Thus the FFTW [12],
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is known as one of the fastest FFT libraries for many processors,
contains aradix-16 FFT routine.

Although higher radix FFTs require more floating-point reg-
istersto hold intermediate results, some processors have sufficient
floating-point registers (e.g., Intel Itanium processor has 128 floating-
point registers[13]).

However, efficient implementations of a radix-16 FFT algo-
rithm suitable for multiply-add instruction have not yet been pre-
sented.

In this paper, we propose a radix-16 FFT algorithm suitable
for multiply-add instruction based on Goedecker method.

Throughout this paper, we use amultiply-add instruction, which
computes d = =a =+ be, where a, b, ¢ and d are floating-point reg-
isters. Also, we assume that an addition, a multiplication, or a
multiply-add each requires one machine cycle on processors that
have a multiply-add instruction. We will call any of these compu-
tations a floating-point instruction, and assign a unit cost to each.

2. ARADIX-16 FFT ALGORITHM SUITABLE FOR
MULTIPLY-ADD INSTRUCTION

The DFT of IV pointsisgiven by
N-1
Xi= Y @WH, k=0 N-1 (1
n=0

where Wy = exp(—j2n/N), X} and z,, are sequences of com-
plex numbers.

AnFFT kernel [10, 14] calculates theinnermost part in atrans-
formation, which has the form [10]

P—-1
Zout(k) = Z Zzn(n)Qntk (2)
n=0

fork =0,1,---, P— 1. Theradix of the kernel is given by the
prime factor P which is 16 in this paper. Q" iscalled the twiddle
factor and Wp = exp(—j2n/P).

Intheradix-P FFT kernel, an input data Z;,, (n) multiplied by
the twiddle factor Q" is performed with “short DFT” [15].

The adaptability of the conventional radix-16 FFT algorithm
on processors that have amultiply-add instruction is here discussed.

The conventional radix-16 FFT (decimation-in-time) is split
into the first step and the remaining part. Thefirst step is the com-
plex multiplication of Z;, (n) x Q" (n =1, 2, ..., 15). Then15
complex multiplications are necessary. We assume that a complex
multiplication in the (1, j) plane is done with four real multipli-
cations and two real additions. In the first step, since the ratio of
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Table 1. Number of Floating-Point Instructions for FFT Algorithms of IV Points with Multiply-Add Instruction

Algorithm

Floating-point instructions

Linzer and Feig radix-4 [9]
Linzer and Feig radix-8 [9]

Conventional radix-16

11/4)Nlog, N — (13/6)N + (8/3)
11/4)N log, N — (57/28)N + (16/7)

55/16)N log, N — (241/60)N + (64/15)

(
(
Linzer and Feig split-radix [9]  (8/3)Nlogy, N — (16/9)N + 2 — (2/9)(—1)'s2 ¥
(
(

Proposed radix-16

87/32)Nlog, N — (241/120)N + (32/15)

Table 2. Number of Floating-Point Instructions for FFT Algorithms of IV Points with Multiply-Add Instruction

N Linzer and Feig Linzer and Feig Linzer and Feig Conventiona Proposed

radix-4 [9] radix-8 [9] split-radix [9] radix-16 radix-16
8 52 52

16 144 144 160 144
32 372
64 920 928 912
128 2164

256 5080 5008 6016 5056
512 11632 11380
1024 25944 25488
2048 56436

4096 126296 126832 123792 152512 125408

multiplications to additions is two to one, the addition unit cannot
be exploited on processors with multiply-add instruction. Then a
16-point DFT is performed in the remaining part. Since the con-
ventional radix-16 FFT has 24 real multiplications and 144 red
additions in the remaining part, the multiply unit also cannot be
exploited. As a result, the conventiona radix-16 FFT agorithm
has 220 floating-point instructions on processors with multiply-
add instruction.

We conclude that the conventional radix-16 FFT agorithm is
therefore not suitable for the multiply-add instruction.

As we mentioned in the above, the multiply-add unit cannot
be exploited in the conventional radix-16 FFT algorithm. We will
make full use of the multiply-add unit to transform the conven-
tional radix-16 FFT.

Goedecker’s method [10] consists of repeated transformations
of the expression:

az + by — a(z + (b/a)y) (©)]

wherea # 0.

Applying repeated transformations of (3) to the conventional
radix-16 FFT, aradix-16 FFT algorithm suitable for multiply-add
instruction is obtained.

The proposed radix-16 FFT agorithm suitable for multiply-
add instruction is shown in Fig. 1. Here, the real part of the array
Zn isdenoted by zinr, theimaginary part by zini, and correspond-
ingly for Z,,:. Therea part and imaginary part of the twiddle
factor Q™ are cry, and ci,,, respectively.

In the proposed radix-16 FFT algorithm, a table for twiddle
factors of cl1—Ct15, Cr31—Cris7, COSg1—COS8381 and Cri181—Crag2
is needed. Since these values can be computed in advance, the
overhead of making the tableis negligible.

The proposed radix-16 FFT agorithm has only 174 floating-
point instructions on processors with multiply-add instruction. We

can see that the multiply-add unit can be exploited in the proposed
radix-16 FFT agorithm from Fig. 1.

3. EVALUATION

In order to evaluate the effectiveness of power-of-two FFT algo-
rithms, we compare the number of floating-point instructions, loads,
and stores.

The number of floating-point instructions for various FFT al-
gorithms of N points with multiply-add instruction is shown in
Tables 1 and 2. The proposed radix-16 FFT agorithm asymptot-
icaly saves about 21% of the floating-point instructions over the
conventional radix-16 FFT on processors that have a multiply-add
instruction.

In comparison with the Linzer and Feig radix-4 and 8 FFT
algorithms [9], the proposed radix-16 FFT algorithm asymptoti-
caly saves about 1% of the floating-point instructions. On the
other hand, the proposed radix-16 FFT agorithm asymptotically
increases about 2% of the floating-point instructions over the Linzer
and Feig split-radix FFT algorithm [9].

The number of loads, stores, floating-point instructions used
for various FFT butterfliesis given in Table 3. In calculating the
number of loads and the number of stores, we assume that enough
registers are available to perform an entire butterfly in the registers
without using any intermediate stores or loads.

In Table 4, the asymptotic number of loads, stores, and floating-
point instructions used by each algorithm is given. The proposed
radix-16 FFT agorithm requires fewer loads and stores than the
Linzer and Feig radix-4 and 8 FFT algorithms or the Linzer and
Feig split-radix FFT agorithm. In particular, in comparison with
the Linzer and Feig radix-8 FFT algorithm, the proposed radix-16
FFT agorithm asymptotically saves 25% of the loads and stores.

Il - 666




Table 3. Number of Loads, Stores, and Floating-Point Instructions for General Butterflies Used in FFT Algorithms with Multiply-Add
Instruction. The Number of Loads Does Not Include Loading All of the Constants

Algorithm Loads Stores Floating-point
instructions
Linzer and Feig radix-4 [9] 8 8 22
Linzer and Feig radix-8 [9] 16 16 66
Linzer and Feig split-radix [9] 8 8 16
Conventional radix-16 32 32 220
Proposed radix-16 32 32 174

Table 4. Number of Loads, Stores, and Floating-Point Instructions Divided by IV log, N Used by FFT Algorithms to Compute an N Point

DFT. Lower Order Terms Have Been Omitted

. Floating-point
Algorithm Loads Stores instructions
Linzer and Feig radix-4 [9] 1 1 11/4
Linzer and Feig radix-8 [9] 2/3 2/3 11/4
Linzer and Feig split-radix [9] 4/3 4/3 8/3
Conventional radix-16 1/2 1/2 55/16
Proposed radix-16 1/2 1/2 87/32
[7] D.P Kolbaand T. W. Parks, “A prime factor FFT algorithm

4. CONCLUSION

A radix-16 FFT agorithm suitable for multiply-add instruction has
been presented. We reduced the number of floating-point instruc-
tions necessary for a radix-16 FFT algorithm by maximizing the
use of multiply-add instructions.

The proposed radix-16 FFT algorithm requires fewer floating-
point instructions than the conventional radix-16 FFT algorithm on
processors that have a multiply-add instruction.

If the FFTs are being computed on a machine that has enough
registers to perform an entire radix-16 FFT algorithm, those FFTs
will use fewer loads and stores than the radix-2, 4 and 8 FFT algo-
rithms or the split-radix FFT algorithm.
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/* twiddle factors can be
computed in advance */

ci] =
cio =
cig =
cly =
ciy =
cig =
ciy =
cig =

cig =

ci/ert
cia/cra
cig/ers
cig/ery
cis/ers
cig/cre
cir/ery
cig/ers
cig/crg

ciig = ciio/crio

ciil = cii1/erin

cit2 = ci1a/cria

ciiz = ci1z/cris

cii4 = cii4/cria
ci1s = ciis/eris
cr31 = cerg/ery

ers1 = ers/ery

cre2 = cre/cra

cres = cry/ers

cro1 = crg/ery

€ri102
Cri13
Cr124
Cr135
CT'146
Cris7
c0S81
0582
0583

= crig/cra
=crii/ers

= criz/era

= criz/ers

= cria/ecre

= cris/ery

= cos(w/8)
cos(27/8) = 1/v2
= cos(37/8)

€088381 = €0S83/C0S81

Crigl
Cri182
Cr282

= cr] * co8g1
= Cr] * COS82
= Cra * COS82

/* 15 complex multiplications

by twiddle factors */
u0 = zinr(0)
v0 = zini(0)

r = zinr(1)

s = zini(1)

ul =r—s=*ci

vl =rxciy + s

r = zinr(2)

s = zini(2)

u2 =r — S*cio

v2=rx*xcis + 8

r = zinr(3)

s = zini(3)

u3 =r —sx*cig
v3=rx*xcizg+s

r = zinr(4)

s = zini(4)

ud =r —Sx*cig
vd =rx*xciqg+8

r = zinr(5)

s = zini(5)

ub =r —s=x*ciz
vb=rx*xci5+s

r = zinr(6)

s = zini(6)

ub =r — s * cig
v6 =rx*cig+ S

r = zinr(7)

s = zini(7)

u?7 =r —sx*ciy
vi=rx*xci7 +8

r = zinr(8)

s = zini(8)

u8 =r — s * cig
v8 =rx*xcig+s

r = zinr(9)

s = zini(9)

ud =r —s=x*cig
vl =rx*xcig+s

r = zinr(10)

s = zini(10)

uld =r —sxciig
v10 =r*cijg + 8
r = zinr(11)

s = zini(11)

ull =r—sx*xeci11
vll =rx*cii1 +s
r = zinr(12)

s = zini(12)

ul2 =r —s=*ciya
vli2 =rx*cijo +s
r = zinr(13)

s = zini(13)

ul3 =r —sxcig
vl3 =rx*ciiz +8
r = zinr(14)

s = zini(14)

uld =r—sx*xctiq
vld =rx*cijg +s
r = zinr(15)

s = zini(15)
ulb=r—sx*cis

vls =rxciis + s

[* 16-point DFT */

r0 = u0 + u8 * crg

s0 = v0 + v8 x crg

rl =u0 — u8 x crg

sl =v0 — v8 xcrg

r2 =ud + ul2 * crio4
2 =v4 +v12 % cria4
r3=v4d —v12x*criag
s3 = ul2 * ¢rioq4 —ud
r4 = ul 4+ u9 * cro;

s4 = vl 4+ v9 * crg1

r5 = ul — u9 * cro1

5 = vl —v9 * crgy

r6 = ud + ul3 * cri3s
86 = vb +v13 x crizs
r7 = vh — v13 % criss
87 = ul3 % cri35 — ub
r8 = u2 + ul0 * crig2
88 = v2 4+ v10 * crig2
r9 = u2 — ul0 * crig2
89 = v2 — v10 * crio2
r10 = ub + ul4d * crise
s10 = v6 + v14 * cri46
rll =v6 — v14 * cria6
s11 = ul4d * cri46 — ub
r12 =u3 +ull * cri13
§12 = v3 + vll *crii3
r13 =u3 —ull *xcriis
s13 = v3 — vll *cri13
rl4 = u7 + ulb * cris7
8§14 = v7 + v15 % cri57
rld5 = v7 — v15 % cri57
s15 = ulb * cris7 — u7
u0 =r0+r2x*crg

v0 =80 +s2x*crg

ul =rl+r3x*crg

vl =81 +83*cry

u2 =r0—r2x*cry

v2 =80 —s2xcry

ud =rl —r3*xcry

v3 =81 —s3xcry

ud = rd + r6 x crs;

v4d = 84 4+ 86 % cr351
r=r5+4+r7x%crs

s =s8b+s7xcrs;

ud =1+ 8 * c0sg381

vb = —r * coSg3s1 + S
r=r4 —16x*crs;

s =84 —s6 % cry1

ub =r+s

v6=s—r
r=r5—r7x*crs

s =85 — 87 xcrs;

u7 = r * cosgss1 +8

v7 = —r + 8 * c058381
u8 = r8 + rl10 * crg2

v8 = 88 + 510 * crgo
r=r9 +rll *x crg2

s =89 +sll * crgo
ud=r+s

vi=s—r

ul0 = s8 — s10 * cre2
v10 = r10 * crga — r8
r=1r9 —rll *cregs

s =89 —sll *x crg2

ull = —(r—s)

vll = —(r+s)

ul2 =rl12 +rl4 * crys
v12 = 812 + 814 * cryg
r=rl3+rlbx*crys

s =513 4+ s15 % creg
ul3 = r* cosgss1 + s
v13 = —r + s * coSg381
r=rl12—rl4 xcrys

s =512 —sl4 x creg
uld = —(r—s)

vld = —(r+s)

r=rl3 —rlbx*crys

s =813 — 815 x crysg
uld = —r — S * cosg3s1
v15 = r* cosg3g1 — S
r0 = u0 + u8 x creo

s0 = v0 + v8 x ¢rs

rl = u0 — u8 *x cra

sl =v0 — v8 xcra

r2 =ud + ul2 *cra;

s2 = v4d + v12 % cr3;

r3 =v4 —v12xcr3;

83 = ul2x*crg; —ud
zoutr(0) = r0 + r2 * cry
zouti(0) = s0 + s2 * crq
zoutr(4) = rl 4+ r3 * cry
zouti(4) = sl + 83 * crq
zoutr(8) = r0 — r2 x cry
zouti(8) = s0 —s2 x cry
zoutr(12) =rl —r3 x cry
zouti(12) = sl — 83 x cry

r0 = ul + u9 * crags
80 = v1 + v9 * craga
rl = ul — u9 * crags
sl = vl — v9 * crage
r2 =ub+ ul3 *x cra;
s2 =vb+vl3 xcr3;
r3 =vb —vl3 *xcr3;
s3 = ul3d *crg; —ubd
zoutr(1) = r0 + 12 * crig:
zouti(1l) = s0 + 82 % crig1
zoutr(5) = rl + 13 * crig:
zouti(5)
zoutr(9) = r0 — r2 = crig1

sl + 83 % crig:

zouti(9) = s0 — s2 x cris1
zoutr(13) = rl — r3 x crig1
zouti(13) = s1 —s3 x crig1
r0 = u2 4+ ull * cro

s0 = v2 4 v10 x ¢crs

rl = u2 —ul0 * cro

sl =v2 —v10 % cro

r2 = ub + ul4d * cra;

82 =v6 + v14 x cr3;

r3 =v6 —vld x cr3;

83 = uld % crg; — ub
zoutr(2) = r0 + r2 * crigo
zouti(2) = s0 + 82 x criss
zoutr(6) = rl +r3 * crigo
zouti(6) = sl + 83 x criss
zoutr(10) = r0 — r2 * crigo
zouti(10) = s0 — s2 * crigo
zoutr(14) = rl — r3 * crig2
zouti(14) = sl — 83 * crige
r0 = u3 4+ ull * crags

50 = v3 + v11 * crago

rl = u3 —ull * crags

sl = v3 — vl x crago

r2 =u7 4+ ulb *x cra;

82 =v7+vlbxcrs

r3 = v7 —v15 xcr3

s3 = uld x erg; — u7
zoutr(3) = r0 + r2 x crig1
zouti(3) = s0 + s2 x cris1
zoutr(7) = rl + 13 * crig:
zouti(7) = sl + 83 * eris1

zoutr(11) = r0 — r2 * crig1
zouti(11) = s0 — s2 * erig1
zoutr(15) = rl — r3 * crig1
zouti(15) = sl — 83 * erig1

Fig. 1. Proposed radix-16 FFT agorithm suitable for multiply-add instruction.
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