
A GENERAL DSP PROCESSOR AT THE COST OF 23K GATES AND 1/2 A MAN-YEAR
DESIGN TIME

Eric Tell, Mikael Olausson, Dake Liu

Department of Electrical Engineering, Link¨oping University, 581 83 Link¨oping, Sweden
erite@isy.liu.se

ABSTRACT

This paper describes the design and implementation of a 16-
bit fixed point DSP processor. The processor is intended as
a platform for hardware accelerators and allows additional
computational units and assembler instructions to be added.
The I/O facilities can also be customized to the needs of a
specific application.

Benchmarking has shown that the processor, without
any hardware accelerators, has a performance comparable
to single MAC commercial DSP processors. The architec-
ture has been successfully synthesized in a 0.13�m process,
resulting in a net-list of about 23000 gates, and a clock fre-
quency of 195 MHz, making the performance/gate count ra-
tio very competitive. It is also small enough to integrate 100
heterogeneous processors on a chip for example for commu-
nication infrastructure applications. The complete design
time, including architecture and instruction set planning, as-
sembler, debugger, instruction set simulator, RTL code and
complete verification was about half a person-year.

1. INTRODUCTION

The processor described was designed due to the need for
a platform for hardware accelerators. Application specific
hardware accelerators as well as I/O and other peripheral
units can easily be added either by connecting them to a
memory mapped register file interface or by extending the
instruction set with specialized instructions. Half the in-
struction space has been reserved for this purpose. How-
ever the processor should also be able to work without any
accelerators as a small and efficient general purpose DSP
processor for system on chip integration.

A number of benchmarking algorithms, such as those
included in the BDTI DSP benchmarking suite [1] have been
used to test the performance. Figure 1 describes an appli-
cation specific processor design flow, that was used in this
project.

Based on a requirement analysis an instruction set is de-
signed. Concurrently the top level architecture is planned
to make sure the instructions set can be implemented. The
next step is to build a bit true, cycle true behavioral model or

Behavioral model

Benchmarking

Architecture design

Verification

Release RTL Implementation

Requirement analysis

architecture planning
Instruction set design/

RTL Implementation

Fig. 1. The design flow

instruction set simulator (ISS). Using the ISS, benchmark-
ing is performed to verify that performance requirements
are fulfilled, if they are not, the instruction set is modi-
fied. The ISS is also used later in the flow for verifying the
RTL implementation and for software development. When
benchmarking results are satisfactory, top-down design of
the complete processor is carried out, followed by HDL im-
plementation.

2. INSTRUCTION SET

The processor uses a 32-bit instruction word, which is quite
long considering the rather small instruction set (about 75
instructions). A smaller instruction word could have been
sufficient, but the longer instructions give a number of ad-
vantages such as better orthogonality which leads to simpler
decoding, possibility to address many (32) source and des-
tination registers, possibility to use 16-bit immediate data
and plenty of space for accelerator instructions and future
improvements.

In addition all computational operations, except those
using 16-bit immediate data, can be used in one of two

II - 6570-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Mux Op Program Address (16)Condition (5)

Mux Op Sreg

Mux Op S/Dreg

Mux Op

3:

4:

2:

1: Op (6) Sreg(5)

Offset (8)

Constant/Address (16)

Ad1(3) Ad2(3)

Ad1 Ad2

Ad1

A(1)

Mux (5 bits) Mem/cond (5) S/Dreg (5)

S/Dreg

Mem/cond Sreg(4)

5:

Mem

Field: Function:
Mux Multiplexer switching between different instruction
groups Op Operation code choosing the actual instruction
Mem/Cond If the first bit of this field is zero, the rest of the bits

specify what memory accesses are made in the
instruction. If the first bit is one, conditional execution
is enabled, and the rest of the bits specifies a condition
for executing the instruction.

Ad1/Ad2 Pointers to address register for data memory addressing
Sreg Pointer to source register (operands for instructions)
Dreg Pointer to destination register
A One bit selecting what accumulator register to use
Offset Offset for offset addressing
Condition Conditional execution, same as above

Fig. 2. Instruction word examples

modes: If conditional execution is enabled a condition is
specified with the instruction and if the condition is not true,
the instruction is replaced by a nop instruction. The alterna-
tive mode allows one or two memory access operations to
be executed in parallel with a computation.

Figure 2 gives examples of instruction formats. The first
one is used for most computational instructions with two
registered operands. The second is used for example for
multiply and multiply-accumulate instructions. Both these
formats allows one or two parallel memory operations or
conditional execution. The third format is used by memory
operations using offset addressing, the fourth is for instruc-
tions with immediate 16-bit data or immediate data memory
address and the last format is used by (most) program flow
instructions.

3. DATA PATH

The processor has a 16-bit fixed point data path with the
following computational units:Arithmetic unitfor addition,
subtraction and other arithmetical operations. All arithmetic
unit operations are executed with or without saturation. The
mode is determined by a bit in the control register.Logic
unit for bitwise ’and’, ’or’, ’xor’ and ’not, and bit test op-
erations.Shift unitfor arithmetic shift, logic shift and rota-
tion operations.MAC unit for multiplication and multiply-
accumulate (MAC) operations.

Data is stored in two data memories and a register file

I

II

Data
memory

Data

40

16

memory

16

16

16

RB

40

16

16AA

AB

DA

DB

RA

gen
Addr

MAC

Arith

Shift

Logic

Reg

Fig. 3. Data path architecture

with 32 general purpose registers of which 8 are also used
as data address registers. Four of the registers also make up
two accumulator registers for storing 40-bit results of mac-
unit operations (one register in each pair is extended with
eight guard bits).

All computations use only operands from registers, mak-
ing this a real RISC architecture. The fact that address regis-
ters are also general registers improves orthogonality. Both
these facts simplifies debugging.

3.1. The MAC Unit

The MAC unit has a 17x17-bit multiplier, a 40-bit adder
and a 40-bit barrel shifter. It can execute multiplications
and MAC operations on either integer or fractional num-
bers, 16- and 32-bit additions, 40-bit shift up to 32 steps,
rounding and saturation. For MAC and 32-bit add opera-
tions, eight guard bits are used. MAC and multiply opera-
tions are pipelined in two stages.

3.2. Parallel Operations and Data Hazard Management

The data path allows up to one mac unit operation and two
memory operations or one mac operation, one arithmetic,
logic or shift operation and one memory operation to be ex-
ecuted every clock cycle. The instruction set however, im-
poses restrictions on which combinations of operations can
actually be executed in parallel.

The risk of parallel instructions trying to write to the
same register in the register file is in most cases eliminated

II - 658

➡ ➡

by restrictions in the instruction set. When this is not the
case, result bus B (RB; see figure 3) has priority over the
MAC result bus, and result bus A (RA) has priority over
both RB and the MAC bus in determining what value is
written. Whenever a memory write conflict occurs, an er-
ror flag is set in the status register.

4. DATA ADDRESSING

All eight address registers support direct addressing, offset
addressing and post incremental addressing. For post in-
cremental addressing one of the registers has the step size
programmable to any size and four of the registers has step
sizes programmable to between 0 and 15. The remaining
three registers always uses step size one. Two of the regis-
ters support modulo (circular) addressing and one supports
bit-reversed addressing for efficient implementation of FFT
algorithms. Some instructions use an immediate 16-bit ad-
dress from the instruction word.

Step sizes for post incremental addressing and modulo
addressing ranges are programmed via registers. Modulo
and bit-reversed addressing is enabled via bits in the control
register.

64 kWords can be addressed for each data memory.
Using three bits of the machine code for address reg-

ister selection, and hence eight address registers, has been
sufficient for all DSP kernel algorithms that has been im-
plemented. It is also enough to implement a CELP CODEC
as in [5]. When it comes to modulo addressing possibili-
ties, which are typically used for implementing circular data
buffers, it is also believed that providing this for two of the
address registers is enough for most applications. For ef-
ficient FFT implementation it is necessary to allow post-
incremental address register update with an arbitrary step
size for the address register supporting bit-reversal. For
most other applications however, only small step sizes are
useful, one being the dominating step size.

The design decisions regarding these features are all trade-
offs between instruction word length, hardware size and
programming complexity.

5. CONTROL PATH

5.1. Pipeline

The architecture has a variable pipeline depth with three or
four stages (instruction fetch, instruction decode and one
or two execution stages). The four stage pipeline is used
by multiply and MAC operations only. Using only one cy-
cle for execution and result saving eliminates data hazards.
However, a four stage instruction followed by a three stage
instruction may still cause data hazard. This is handled au-
tomatically by halting the pipeline if a four step instruction

PM

PFC

data
path

ct
rl

2

pi
pe

4
ct

rl

in
st

r

co
ns

t

PC

nop

status

ID

ID: Instruction decoder
PM: Program memory
PFC: Program flow control
PC: Program counter

Conditional

Control
ExecutionPipeline control

(loop ctrl, pc stack, interrupt ctrl)

Fig. 4. Control path

is followed by an “incompatible” three stage instruction us-
ing some of the same registers. Since the destination of mac
unit operations are limited to one of the two accumulator
registers this is a quite simple check to implement.

Delayed jumps are used for both conditional and un-
conditional jumps, subroutine call and subroutine return in-
structions.

5.2. Hardware Looping

The instruction set includes two instructions for zero over-
head hardware looping. Therepeatinstruction repeats only
one instruction a number of times while theloop instruction
handles larger loops, and also allows loop nesting. The rea-
son for having two instructions is that the pipeline makes it
difficult to handle very short loops (one or two instructions)
in the same way as longer loops.

5.3. Interrupts

The Processor handles 16 different interrupts. Two of these
are reserved for the two DMA channels. The other 14 can
either be used as external interrupt pins or be associated
with I/O devices, timers, hardware accelerators and other
units connected to the expansion interface (as described in
7 below).

Interrupt vectors are programmable via memory mapped
registers and interrupts are software nestable (interrupt can
be explicitly reenabled in interrupt routines to allow up to
four nested interrupts).

6. PERIPHERALS

The processor has twoDMA channelsthat can be used to
transfer blocks of data between memories or between mem-
ory and I/O devices. Optionally DMA transfers can be trigged
by interrupt signals. For example data arriving at an input

II - 659

➡ ➡

port could trigger a DMA controller to move the incoming
data to a data buffer area in memory. The DMA controllers
are programmed via memory mapped registers

Via ahost portthe entire (data and program) memory of
the DSP can be accessed for example by a host processor.
This includes the memory mapped registers, which means
that for example DMA transfers can be set up by the host.

An arbiter determines which of the two DMA channels,
the host port and the cpu has access to each of the two mem-
ories. Each of these four units can be given either high or
low priority. All units with high priority are always granted
access before any unit with low priority.

7. EXPANSION INTERFACE

Up to 128 addresses in “data memory I” are mapped to reg-
isters. Some of these registers are used to set up interrupts,
DMA etc, but for example the 32 general purpose registers
are also memory mapped and can therefore be accessed via
the host port, for example for debugging purposes.

The remaining 64 registers are intended as an interface
for communication with application specific peripherals for
example different kinds of ports, timers and hardware ac-
celerators. In this case the registers are configured as either
input (read only) or output registers. As mentioned above
these peripherals can also easily be connected to one (or
more) of the 14 general interrupt signals.

8. RESULTS

In addition to RTL code, an assembler and a cycle-true in-
struction set simulator has been developed. Using the sim-
ulator a number of kernel benchmark algorithms have been
executed. The results are shown in table 1.

The results where compared to results from benchmarks
performed by BDTI [1] where equivalent benchmarks ex-
ists. The approximate average cycle count from these bench-
marks are also shown in the table. For all these benchmarks
there are some processors that are better and some that are
worse than this one. It should be noted that some of the pro-
cessors are high-end processors with dual-mac units which
gives a significant advantage in many benchmarks.

The DSP was synthesized using Cadence Physically Knowl-
edgeable Synthesizer (PKS) resulting in a netlist of about
23000 gates of which 12600 corresponds to the register file
(including decoding and address generation logic) and 3300
to peripherals (including 2700 for the two DMA controllers).
The maximum clock frequency was estimated to 195 MHz
in a 0.13�m process.

Function Cycles BDTI avg.
64-Point Discrete Cosine Transform 863
256-Point Fast Fourier Transform 18763 10000
Division, 16/8 bits 60
Real Block FIR Filter, 16 taps, 40 samples 882 900
Real Single Sample FIR Filter, 16 taps 22 22
Complex Block FIR, 16 taps, 40 samples 3644 3000
16-bit Integer to Floating Point 14
Floating Point to Integer Conversion 14
IIR Filter, 40 samples, 8 biquads 2435
LMS Adaptive FIR Filter, single sample 87 65
LMS Adaptive FIR Filter, 16 taps 40 samples 3692
Vector Add, 40 samples 102 85
Vector Dot Product 45 45
Vector Max, 40 samples 50 123
Block Transfer, 40 samples 80

Table 1. Benchmarking results

9. CONCLUSIONS

A 16-bit fixed point DSP processor has been designed. The
processor is intended as a platform for hardware accelera-
tors and is prepared for this by means of the memory mapped
register file and by reserving half the instruction space for
adding acceleration related instructions.

It has also been shown that a DSP Processor IP core can
be small enough to allow for up to at least 100 heteroge-
neous processors to be integrated on a chip for communica-
tion infrastructure applications.

Without accelerators the performance is still quite good.
The performance/gate count ratio is very good. Very few
comparable processors seem to have a gate count below
30000.

Furthermore the employed design methodology has proven
to support high quality processor design using a short design
time.

10. REFERENCES

[1] Berkeley Design Technology, Inc,Buyer’s guide to
DSP Processors, 1999.

[2] Eric Tell, master’s thesis,A Domain Specific DSP pro-
cessor, Linköping University, 2001.

[3] David A. Patterson, John L. Hennessy,Computer Or-
ganization & Design - the hardware/software interface
(second edition), Morgan Kaufman, 1998.

[4] Phil Lapsley, Jeff Bier, Amit Shoham, Edward A. Lee,
DSP Processor Fundamentals, IEEE Press, 1995.

[5] Mikael Olausson, Dake Liu,Instruction and Hardware
Acceleration for MP-MLQ in G.723.1, SIPS’02, San
Diego, CA, USA, 2002

II - 660

➡ ➠

