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Abstract

In this paper, we propose the Mixed-Scaling-Rotation
CORDIC ~ (MSR-CORDIC)  algorithm  which  merges
micro-rotation operation and scaling operation in conventional
CORDIC algorithms to eliminate the overhead of the scaling
operation. At the system architecture level, we propose the
Data-Path-Selection (DPS) strategy for the tradeoff between
hardware complexity and quantization error performance. In
general, the CORDIC algorithms will suffer from the roundoff
noise in fixed-wordlength implementations. We propose two
schemes to control and reduce the impairment. Our simulation
results show that MSR-CORDIC enhances the SQNR
performance, computing speed (reducing the iteration number),
and reduces the hardware complexity when compared with the
newly proposed EEAS-CORDIC [4] Algorithm.

1. Introduction

The COordinate Rotational Digital Computer (CORDIC)
algorithm is a well-known hardware-efficient iterative algorithm
for the computation of elementary arithmetic functions such as
trigonometric, hyperbolic, exponential, and logarithmic
operations [1]. The CORDIC algorithm can be also applied to the
rotation-based arithmetic functions, for example fast Fourier
(FFT), QRD-RLS
Decomposition (EVD), and Singular Value Decomposition
(SVD).

In this paper, we propose a new scheme to enhance the
CORDIC at both algorithmic and architectural levels. The
proposed generalized MSR-CORDIC with N = 3 (total iteration
number) and N, = 3 (Number of Signed of Power Two terms)
design has 2198 dB improvements compared with
EEAS-CORDIC with RT = 3 (total iteration number) [4].
Furthermore, we can save up 33.3% hardware complexity and

speed up the computation by 1.5 times than the EEAS-CORDIC,

transformation filtering, EigenValue

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-653

while with better error performance.

The rest of the paper is organized as follows. We propose
the MSR-CORDIC algorithm in Section 2 and show its system
architecture in Section 3. The Data-Path-Selection strategy is
applied to tradeoff between the hardware consumption and
SQNR performance. Then, in Section 4, we make some
simulations and compare system performance. Finally, Section 5
concludes our work.

2. The Proposed MSR-CORDIC Algorithm

In conventional CORDIC algorithms, the scaling factor is
always greater than 1. Therefore, it is necessary to scale down
the norm of the input vector to its initial value (say, unit circle),
after the rotation mode is finished. Furthermore, the SQNR will
be reduced due to the growth of the scaling factor. To alleviate
the disadvantage of the SQNR reduction, the input vector has to
keep as close as to unit circle in each iteration. Additionally, to
avoid the overhead of the scaling operation, the product of the
scaling factors must be equal to 1; equivalently, [1». =1 To
overcome these problems, the range of the scaling factors must
be greater and less than 1. Based on the idea, we reformulate the
iterative arithmetic as
Forn=0,1,..,N
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Where 11,41 e {_ 1’0,1}; I and J denote the number of SPT
terms of x(n) and y(n), referred to as the Extending Factor.
Ny is the sum of 7 and J; @ is the elementary angle and the
initial value. a denotes the product of the scaling factors in
the n-th iteration. The initial value of p, is 1. N denotes the
total number of iteration. s, € {0,],,._,5‘}, and S denotes the
number of maximum shift.

The proposed modified CORDIC algorithm is called
Mixed-Scaling-Rotation CORDIC (MSR-CORDIC). The reason
is that we now need not to perform the micro-rotation operation
and scaling operations separately. Egs. (1-5) show that the x(n+1)
and y(n+1) are rotated and scaled simultaneously in one iteration.
In the conventional CORDIC and EEAS-CORDIC algorithms,
the norms of both schemes are enlarged after the micro-rotation
operations. On the contrary, in the proposed MSR-CORIDC
algorithm, the factor P, can be either greater or less than 1. By
taking the advantage of the property of P,, two schemes are
proposed to control the dynamic range efficiently. Some other
interesting features of the proposed scheme are discussed below:

1. According to Eq. (2), the angles in MSR-CORDIC is
much denser than conventional CORDIC and EEAS-CORDIC,
hence, the MSR-CORDIC can reach the target angle with fewer
iteration. We illustrate in Fig. 1(d) by using two iterations.
Furthermore, if we design the parameters, s;, (£;, appropriately
so that both the quantization error of rotation angles and norms
meet the system performance requirement at the same time; then
the scaling operation can be avoid. Since we do not need the
extra scaling operations, the MSR-CORDIC is faster in
computational speed and the corresponding hardware cost is
reduced.

2. In some applications, the rotation angles are larger than
7 /4, such as the twiddle factors in FFT. It is difficult for the
conventional CORDIC to perform such the rotation angle. In
MVR-CORDIC [2], the authors utilize the pre-rotation strategy
to overcome the problem and have the improvement of error
performance. However, extra hardware costs and also the

Fig. 1
Conventional CORDIC with N = R, = 4. (b) EEAS-CORDIC with
maximum shift range S =4 and R,, = 2. (¢) MSR-CORDIC with /=2, J =
1, and N = 1. (d) MSR-CORDIC with /=2,J=1,and N=2 for 1/3=P,

=3 with maximum shift range S = 4.

Constellation of reachable points under the rotation process. (a)

computing speed decreases. On the contrary, in the proposed
MSR-CORDIC algorithm, the reachable angles are distributed
fromOto2 7.

3. VLSI Architecture of MSR-CORDIC
In this section, we will illustrate the generalized structure
for the MSR-CORDIC algorithm and proposed the idea of
Data-Path-Selection schemes to enhance the SQNR performance
by using switches.

3.1 Normal MSR-CORDIC Structure
Firstly, we reformulate the Iteration Equations of (1) as
J I

)= 30,2 o)~ 32 (0)> ©

Jj=1 i=1

I J
y(n+1)=§;ﬂ,-2""X(n)+ Z;u,-f“’ y(n)’ (7

= =
Both of x(n+1) and y(n+1) are linear combination of their prior
x(n) and y(n). All the coefficients of x(n) and y(n) are power of
two numbers with the sign ; and g;, respectively. Hence,
two Barrel Shifter Arrays (BSAs) are used to perform shifting
operations. The number of the output signal is Ny, in each BSA.
To sum the outputs, 2(N,,-1) add/subtract operations must be
performed. Take N, = 3 for example, all cases are listed in Table

1. The architecture of Case 2 are shown in Fiq. 2(a).
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TABLE 1 Four Cases in MSR-CORDIC with Ny, =I+J=3

Case I\J Equation

I 3] of A= xln) b2 )+ 1,27 x(n)

(Scaling Type) y(n+1)= 127 y(n)+ 0,27 y(n)+ 1,27 y(n)

I 201 x(n+1):/J‘,Zi’\"x(n)+lu127\‘ x(n)+/122"3 y(n)

(Normal type) p(n+1)= 127 p(n)+ 11,27 yn)+ 1,27 x(n)

111 1l 2 x(n+1)= 11,27 x(n) + 44,27 y(n)+ 1,27 y(n)

(Normal type) y(n+1)= 1,27 p(n) + 1,27 x(n) + 11,27 x(n)
v

x(" + 1) =127 y(”)"’ 2 Y(n)+ 127" y(n)

E. - 0] 3 . y »
(Exchange W +1)= 127 3{0)+ 41,27 x(n) + 1,27 ()

Scaling Type)

3.2 Generalized MSR-CORDIC Structure

Next, we will introduce the Data-Path-Selection Strategy
to generalize the MSR-CORDIC structure. By using the
approach, the Generalized MSR-CORDIC structure has the better
SQNR performance than any normal one.

In all the normal of MSR-CORDIC structures, all the
output signals of two BSAs are fixed. If we employ the switches
to control the output signals, then xm+1) and y(n+1) can be
linear combination of the shifted version of x(#) and y(n) with
arbitrary / and J, which satisfies I + J = N,,. The generalized
MSR-CORDIC structures are illustrated by Fig. 2(a), in which
the Control Unit is in charge of controlling BSAs, switches, and
adders/subtractors. Three switches are used to control the output
signal of two BSAs based on the signal from the controller. Fig.
2 (b) shows the complete data-paths in Case II, and Fig. 2 (c)
depicts the operation of switches.

In summary, the MSR-CORDIC architecture is very regular
and modular. It is very VLSI-friendly, and can be easily
implemented in pipeline and parallel. For a very high
computational speed requirement, each rotation operation can
employ one copy of the MSR-CORDIC rotation circuit to
accelerate the computing speed. For example, in a
CORDIC-based orthogonal IIR digital filters design, the
MSR-CORDIC is appropriately applied. Moreover, due to the
fixed rotation angles, the BASs, switches, Control Unit, and
ROM can be eliminated in the normal type MSR-CORDIC.
Therefore, we only need few adders/subtractors to implement
this design.

xCn> Yo
| |

Fig. 2 (a) Normal type MSR-CORDIC with I=2, J=I. (b) Generalized
MSR-CORDIC structure with Ny, = 3. Data-Path of the output signals
of BSAs in case II. (c) Operation of the 2x2 switching box.

4. Simulation Comparisons and Results

In this section, we will conduct computer simulations to
show the effectiveness of the proposed schemes. The
measurement of error performance is the averaged SNQR, which
is obtained based on the ensemble average of 512 angles from
7w /2048 to 7 /4 with equal space. The optimal design
parameters are obtained by employing exhaustive searching
method for all design cases.

A. SONR Performance of MSR-CORDIC and EEAS-CORDIC.

The simulation is used to shows SQNR performance
among two kinds of the proposed general type MSR-CORDIC
and EEAS-CORDIC.

Based on averaging the SQNR from § = 3 to 8, the
MSR-CORDIC with Ny, = 3 has 21.98 dB improvements over
EEAS-CORDIC. Meanwhile, in the case of N, 4,
MSR-CORDIC has better SQNR improvements of 18.20 dB than
EEAS-CORDIC, as shown in Fiq. 3.

B. Hardware Cost and Computational Speed

We use the generalized MSR-CORDIC with Ny, = 3, 4
and EEAS-CORDIC to compare the hardware cost and
computational speed aiming at obtaining the similar SQNR
performance. The hardware cost ratio of EEAS and
MSR-CORDIC is equal to the ratio of each iteration number in
Case (a) and (b). Fig. 4 shows that the hardware cost of the
EEAS-CODIC is 1.5 times of MSR-CODIC to achieve the
similar SQNR performance. In the cases (c¢) and (d), the ratio
must be multiplied by 1.5. The simulation results that
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EEAS-CORDIC need hardware cost more 4/3 times than
MSR-CORDIC. In other words, our design has less iteration
number so as that the computing speed of the MSR-CORDIC is
faster than EEAS-CORDIC.

C. SONR Performance Analysis among the MSR-CORDIC
Family with Nspt = 4
In this simulation, we compare the generalized and normal
MSR-CORDIC with Ny, = 4. As expected (see Fiq. 5), the
generalized MSR-CORDIC has best error performance at the
penalty of the extra 4 switches. In normal MSR-CORDIC, the
guidelines below will lead better SQNR performance.
a. Take both [ and J are equal to N,/ 2, when N, is even.
b. Take I=(Ny+1)/2,andJ = I— I, when N, is old.

D. Variance Comparison
We investigate the 2"-order statistical property, the variance
of SQNR, in our analysis. The variance are normalized as

Var(SONR) .
mean(SQONR)

osovk = ®)
The simulation result shows that the error distribution is more
compact as the mean of SQNR becomes higher. Furthermore,
MSR-CORDIC algorithm is less senmsitive to the kinds of
MSR-CORDIC architecture with the similar SONR performance,
illustrated by Fiq. 6.
5. Conclusions

In this paper, we proposed a novel CORDIC scheme,
MSR-CORDIC algorithm. The key idea in this algorithm is to
merge two operation modes to eliminate the scaling operation
(scaling-free). In practical implementation, the proposed
MSR-CORDIC can be appropriately applied to various DSP
systems, which require the high computational speed and angles
are known in advance. In summary, based on our proposed
algorithm, Data-Path-Selection strategy, and two searching
schemes, our design can enhance SQNR performance of either
1%-order or 2™-order statistical properties.
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