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Abstract
In this paper, we propose the Mixed-Scaling-Rotation 

CORDIC (MSR-CORDIC) algorithm which merges 
micro-rotation operation and scaling operation in conventional 
CORDIC algorithms to eliminate the overhead of the scaling 
operation. At the system architecture level, we propose the
Data-Path-Selection (DPS) strategy for the tradeoff between 
hardware complexity and quantization error performance. In 
general, the CORDIC algorithms will suffer from the roundoff 
noise in fixed-wordlength implementations. We propose two 
schemes to control and reduce the impairment. Our simulation 
results show that MSR-CORDIC enhances the SQNR 
performance, computing speed (reducing the iteration number), 
and reduces the hardware complexity when compared with the 
newly proposed EEAS-CORDIC [4] Algorithm.  

1. Introduction

The COordinate Rotational Digital Computer (CORDIC)

algorithm is a well-known hardware-efficient iterative algorithm 

for the computation of elementary arithmetic functions such as 

trigonometric, hyperbolic, exponential, and logarithmic 

operations [1]. The CORDIC algorithm can be also applied to the 

rotation-based arithmetic functions, for example fast Fourier 

transformation (FFT), QRD-RLS filtering, EigenValue 

Decomposition (EVD), and Singular Value Decomposition 

(SVD). 

In this paper, we propose a new scheme to enhance the 

CORDIC at both algorithmic and architectural levels. The 

proposed generalized MSR-CORDIC with N = 3 (total iteration 

number) and Nspt = 3 (Number of Signed of Power Two terms) 

design has 21.98 dB improvements compared with 

EEAS-CORDIC with RT = 3 (total iteration number) [4]. 

Furthermore, we can save up 33.3% hardware complexity and 

speed up the computation by 1.5 times than the EEAS-CORDIC, 

while with better error performance. 

The rest of the paper is organized as follows. We propose 

the MSR-CORDIC algorithm in Section 2 and show its system 

architecture in Section 3. The Data-Path-Selection strategy is 

applied to tradeoff between the hardware consumption and 

SQNR performance. Then, in Section 4, we make some 

simulations and compare system performance. Finally, Section 5 

concludes our work. 

2. The Proposed MSR-CORDIC Algorithm 

In conventional CORDIC algorithms, the scaling factor is 

always greater than 1. Therefore, it is necessary to scale down 

the norm of the input vector to its initial value (say, unit circle), 

after the rotation mode is finished. Furthermore, the SQNR will 

be reduced due to the growth of the scaling factor. To alleviate 

the disadvantage of the SQNR reduction, the input vector has to 

keep as close as to unit circle in each iteration. Additionally, to 

avoid the overhead of the scaling operation, the product of the 

scaling factors must be equal to 1; equivalently, 1np . To 

overcome these problems, the range of the scaling factors must 

be greater and less than 1. Based on the idea, we reformulate the 

iterative arithmetic as 
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Accumulation angle 
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II. Scaling phase 
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Where 1,0,1, ji
; I and J denote the number of SPT 

terms of nx  and ny , referred to as the Extending Factor.

Nspt is the sum of I and J;
n

 is the elementary angle and the 

initial value. 
1np  denotes the product of the scaling factors in 

the n-th iteration. The initial value of 
1p  is 1. N denotes the 

total number of iteration. Ssn ,...,1,0 , and S denotes the 

number of maximum shift. 

The proposed modified CORDIC algorithm is called 

Mixed-Scaling-Rotation CORDIC (MSR-CORDIC). The reason 

is that we now need not to perform the micro-rotation operation 

and scaling operations separately. Eqs. (1-5) show that the x(n+1)

and y(n+1) are rotated and scaled simultaneously in one iteration. 

In the conventional CORDIC and EEAS-CORDIC algorithms, 

the norms of both schemes are enlarged after the micro-rotation 

operations. On the contrary, in the proposed MSR-CORIDC 

algorithm, the factor Pn can be either greater or less than 1. By 

taking the advantage of the property of Pn, two schemes are 

proposed to control the dynamic range efficiently. Some other 

interesting features of the proposed scheme are discussed below: 

1. According to Eq. (2), the angles in MSR-CORDIC is 

much denser than conventional CORDIC and EEAS-CORDIC, 

hence, the MSR-CORDIC can reach the target angle with fewer 

iteration. We illustrate in Fig. 1(d) by using two iterations. 

Furthermore, if we design the parameters, si, i, appropriately 

so that both the quantization error of rotation angles and norms 

meet the system performance requirement at the same time; then 

the scaling operation can be avoid. Since we do not need the 

extra scaling operations, the MSR-CORDIC is faster in 

computational speed and the corresponding hardware cost is 

reduced. 

2. In some applications, the rotation angles are larger than 

/4, such as the twiddle factors in FFT. It is difficult for the 

conventional CORDIC to perform such the rotation angle. In 

MVR-CORDIC [2], the authors utilize the pre-rotation strategy 

to overcome the problem and have the improvement of error 

performance. However, extra hardware costs and also the  

computing speed decreases. On the contrary, in the proposed 

MSR-CORDIC algorithm, the reachable angles are distributed 

from 0 to 2 .

3. VLSI Architecture of MSR-CORDIC  

In this section, we will illustrate the generalized structure 

for the MSR-CORDIC algorithm and proposed the idea of 

Data-Path-Selection schemes to enhance the SQNR performance 

by using switches. 

3.1 Normal MSR-CORDIC Structure 

Firstly, we reformulate the Iteration Equations of (1) as 
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Both of x(n+1) and y(n+1) are linear combination of their prior 

x(n) and y(n). All the coefficients of x(n) and y(n) are power of 

two numbers with the sign i  and j, respectively. Hence, 

two Barrel Shifter Arrays (BSAs) are used to perform shifting 

operations. The number of the output signal is Nspt in each BSA. 

To sum the outputs, 2(Nspt-1) add/subtract operations must be 

performed. Take Nspt = 3 for example, all cases are listed in Table 

1. The architecture of Case 2 are shown in Fiq. 2(a). 

(c) (d) 

Fig. 1  Constellation of reachable points under the rotation process. (a) 

Conventional CORDIC with N = Rm = 4. (b) EEAS-CORDIC with 

maximum shift range S = 4 and Rm = 2. (c) MSR-CORDIC with I = 2, J = 

1, and N = 1. (d) MSR-CORDIC with I = 2, J = 1, and N = 2 for 1/3 Pn

3 with maximum shift range S = 4. 
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TABLE 1  Four Cases in MSR-CORDIC with Nspt = I + J = 3

Case I J Equation 

I

(Scaling Type)
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3.2 Generalized MSR-CORDIC Structure 

Next, we will introduce the Data-Path-Selection Strategy 

to generalize the MSR-CORDIC structure. By using the 

approach, the Generalized MSR-CORDIC structure has the better 

SQNR performance than any normal one. 

In all the normal of MSR-CORDIC structures, all the 

output signals of two BSAs are fixed. If we employ the switches 

to control the output signals, then x(n+1) and y(n+1) can be 

linear combination of the shifted version of x(n) and y(n) with 

arbitrary I and J, which satisfies I + J = Nspt. The generalized 

MSR-CORDIC structures are illustrated by Fig. 2(a), in which 

the Control Unit is in charge of controlling BSAs, switches, and 

adders/subtractors. Three switches are used to control the output 

signal of two BSAs based on the signal from the controller. Fig. 

2 (b) shows the complete data-paths in Case II, and Fig. 2 (c) 

depicts the operation of switches. 

In summary, the MSR-CORDIC architecture is very regular 

and modular. It is very VLSI-friendly, and can be easily 

implemented in pipeline and parallel. For a very high 

computational speed requirement, each rotation operation can 

employ one copy of the MSR-CORDIC rotation circuit to 

accelerate the computing speed. For example, in a 

CORDIC-based orthogonal IIR digital filters design, the 

MSR-CORDIC is appropriately applied. Moreover, due to the 

fixed rotation angles, the BASs, switches, Control Unit, and 

ROM can be eliminated in the normal type MSR-CORDIC. 

Therefore, we only need few adders/subtractors to implement 

this design. 

(a)

1/0
1 00 12x2

switch
1/0

(c)

2x2
switch

(b)

ROM and
Control Unit

Barrel Shifter Array

Adder / Subtrator

x(n) y(n)

x(n+1) y(n+1)
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Adder / Subtrator

Adder / SubtratorAdder / Subtrator
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Adder / Subtrator

Adder / SubtratorAdder / Subtrator

Fig. 2 (a) Normal type MSR-CORDIC with I=2, J=1. (b) Generalized 

MSR-CORDIC structure with Nspt = 3. Data-Path of the output signals 

of BSAs in case II. (c) Operation of the 2x2 switching box. 

4. Simulation Comparisons and Results 

In this section, we will conduct computer simulations to 

show the effectiveness of the proposed schemes. The 

measurement of error performance is the averaged SNQR, which 

is obtained based on the ensemble average of 512 angles from  

/2048 to /4 with equal space. The optimal design 

parameters are obtained by employing exhaustive searching 

method for all design cases. 

A. SQNR Performance of MSR-CORDIC and EEAS-CORDIC. 

The simulation is used to shows SQNR performance 

among two kinds of the proposed general type MSR-CORDIC 

and EEAS-CORDIC. 

Based on averaging the SQNR from S = 3 to 8, the 

MSR-CORDIC with Nspt = 3 has 21.98 dB improvements over 

EEAS-CORDIC. Meanwhile, in the case of Nspt = 4, 

MSR-CORDIC has better SQNR improvements of 18.20 dB than 

EEAS-CORDIC, as shown in Fiq. 3. 

B. Hardware Cost and Computational Speed 

We use the generalized MSR-CORDIC with Nspt = 3, 4 

and EEAS-CORDIC to compare the hardware cost and 

computational speed aiming at obtaining the similar SQNR 

performance. The hardware cost ratio of EEAS and 

MSR-CORDIC is equal to the ratio of each iteration number in 

Case (a) and (b). Fig. 4 shows that the hardware cost of the 

EEAS-CODIC is 1.5 times of MSR-CODIC to achieve the 

similar SQNR performance. In the cases (c) and (d), the ratio 

must be multiplied by 1.5. The simulation results that 
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EEAS-CORDIC need hardware cost more 4/3 times than 

MSR-CORDIC. In other words, our design has less iteration 

number so as that the computing speed of the MSR-CORDIC is 

faster than EEAS-CORDIC.  

C. SQNR Performance Analysis among the MSR-CORDIC 

Family with Nspt = 4 

In this simulation, we compare the generalized and normal 

MSR-CORDIC with Nspt = 4. As expected (see Fiq. 5), the 

generalized MSR-CORDIC has best error performance at the 

penalty of the extra 4 switches. In normal MSR-CORDIC, the 

guidelines below will lead better SQNR performance. 

a. Take both I and J are equal to Nspt / 2, when Nspt is even. 

b. Take I = (Nspt+1) / 2, and J = I – 1, when Nspt is old. 

D. Variance Comparison 

We investigate the 2nd-order statistical property, the variance 

of SQNR, in our analysis. The variance are normalized as 

SQNRmean

SQNRVar
SQNR

2 .
(8)

The simulation result shows that the error distribution is more 

compact as the mean of SQNR becomes higher. Furthermore, 

MSR-CORDIC algorithm is less sensitive to the kinds of 

MSR-CORDIC architecture with the similar SQNR performance,

illustrated by Fiq. 6. 

5. Conclusions

In this paper, we proposed a novel CORDIC scheme, 

MSR-CORDIC algorithm. The key idea in this algorithm is to 

merge two operation modes to eliminate the scaling operation 

(scaling-free). In practical implementation, the proposed 

MSR-CORDIC can be appropriately applied to various DSP 

systems, which require the high computational speed and angles 

are known in advance. In summary, based on our proposed 

algorithm, Data-Path-Selection strategy, and two searching 

schemes, our design can enhance SQNR performance of either 

1st-order or 2nd-order statistical properties. 
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Fig. 3 The SQNR performance comparison among two types of 

MSR-CORDIC and EEAS-CORDIC. 

Fig. 4 The hardware consumption and computational speed comparison 

between the MSR-CORDIC and EEAS-CORDIC 

Fig. 5 The SQNR performance comparison among the MSR-CORDIC 

family 

Fig. 6 The analysis of the SQNR variance among EEAS and 

MSR-CORDIC 
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