
A RECURSIVE IMPLEMENTATION OF THE DIMENSIONLESS FFT

Jeremy Johnson, Xu Xu

Drexel University
Department of Computer Science

3141 Chestnut Street, Philadelphia, PA 19104, USA
jjohnson@cs.drexel.edu and xx27@drexel.edu

ABSTRACT

A divide and conquer algorithm is presented for comput-
ing arbitrary multi-dimensional discrete Fourier transforms.
In contrast to standard approaches such as the row-column
algorithm, this algorithm allows an arbitrary decomposi-
tion, based solely on the size of the transform independent
of the dimension of the transform. Only minor modifica-
tions are required to compute transforms with different di-
mension. These modifications were incorporated into the
FFTW package so that the algorithm for computing one-
dimensional transforms can be used to compute arbitrary
dimensional transforms. This reduced the runtime of many
multi-dimensional transforms.

1. INTRODUCTION

The divide and conquer construction used by the fast Fourier
transform (FFT) allows a discrete Fourier transform (DFT)
of size mn to be computed using n transforms of size m
followed by m transforms of size n [1]. This construc-
tion requires that the input data be accessed at stride and
the intermediate data obtained after computing the n trans-
forms of size m be scaled by the so called “twiddle factors”.
Multi-dimensional DFTs are normally computed using one-
dimensional FFTs along each of the dimensions. For exam-
ple, let X(a, b) with 0 ≤ a < m and 0 ≤ b < n be a
function of two variable stored in an m× n array. The two-
dimensional m×n DFT of X can be calculated by applying
m one-dimensional n-point DFTs to the rows of X followed
by n one-dimensional m-point DFTs to the columns. The
one-dimensional DFTs are computed using the FFT. This
approach, called the row-column algorithm, can be general-
ized to DFTs with arbitrarily many dimensions; however, it
has the shortcoming that the divide and conquer construc-
tion used by the FFT can only be applied separately to the
number of points in each dimension. It does not allow the
use of smaller transforms of size equal to an arbitrary fac-

This work was supported by DARPA through research grant DABT63-
98-1-0004 administered by the Army Directorate of Contracting.

tor of the number of data points. The dimensionless FFT
[2] allows a multi-dimensional DFT of total size N = RS
to be computed using R multi-dimensional DFTs of size S
followed by S multi-dimensional DFTs of size R indepen-
dent of dimension. This is identical to the one-dimensional
construction except that a slightly different input permuta-
tion is required and the values of the twiddle factors are dif-
ferent. The permutation and twiddle factors depend on the
dimension. The original presentation of the dimensionless
FFT was based on an iterative algorithm for computing the
FFT and was motivated by the desire to produce FFT hard-
ware that could be used for one, two, and three dimensional
transforms [3, 4].

Recently there has been efforts to automatically opti-
mize the performance of important signal processing rou-
tines such as the FFT [5, 6, 7]. These approaches search for
a good decomposition (breakdown strategy) of the FFT in
an effort to best utilize the number of registers, cache, and
other features of the underlying hardware. A good break-
down can be far more important than saving a few arith-
metic operations. The use of the dimensionless FFT al-
lows decomposition sizes that are not available in the row-
column algorithm and can provide improved performance
for many multi-dimensional DFTs.

In this paper, we show that FFTW [5], one of the fastest
public domain FFT packages, can be modified to support a
recursive implementation of the dimensionless FFT. FFTW
can use many different recursive divide and conquer strate-
gies, and dynamic programming is used to empirically de-
termine the “best” strategy. The desired strategy is stored
in a tree data structure called a plan. The plan also stores
the necessary twiddle factors. An executor uses the plan to
compute the FFT from a collection of small FFTs, called
codelets, implemented using straight-line code. To support
the dimensionless FFT, extra information must be stored in
the plan to keep track of the dimension of the various DFTs
that arise, and a set of multi-dimensional FFT codelets must
be provided. The plan generator must be extended to pro-
duce the twiddle factors required by the dimensionless FFT,
and the executor must support one additional parameter needed

II - 6490-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



for the generalized permutations that can arise. These changes
were incorporated into FFTW and empirical data is pre-
sented showing the potential for improved performance as
compared to the row-column algorithm currently provided
in FFTW.

In the remainder of the paper, we derive a recursive for-
mulation of the dimensionless FFT, show how to modify
FFTW to implement the dimensionless FFT, and provide
empirical performance data.

2. THE DIMENSIONLESS FFT

In this section we review the row-column algorithm in the
mathematical framework best used to derive and understand
the dimensionless FFT. An example is used to show how
to derive the dimensionless FFT and the general theorem
underlying the dimensionless FFT is stated.

Let X(a), 0 ≤ a < N be a complex function of N
points. The N -point DFT of X is defined by

Y (b) =
N−1∑
a=0

ωab
N X(a)

where ωN = e2πi/N . Let X(a) and Y (b) be represented
by column vectors of size N , then the DFT is given by the
matrix-vector product Y = FNX , where FN is the N × N
matrix whose (i, j) element, 0 ≤ i, j < N , is equal to ω ij

N .
Let X(a1, . . . , at) be a function of t variables, where

0 ≤ aj < nj . The t-dimensional n1 × · · · × nt DFT of X
is

Y (b1, . . . , bt) =
∑

0≤aj<nj

ωa1b1
n1

· · ·ωatbt
nt

X(a1, . . . , at)

Since the summation indices are independent, this sum can
be written as a nested sum.

Y (b1, . . . , bt) =∑n1−1
a1=0 ωa1b1

n1

(
· · ·

(∑nt−1
at=0 ωatbt

nt
X(a1, . . . , at)

)
· · ·

)
.

The nested sum implies that the multi-dimensional DFT can
be computed by applying one-dimensional DFTs along each
dimension. A sequence of nt-point DFTs is applied to the
functions obtained by fixing the first t−1 inputs to X . Then
a sequence of nt−1-point DFTs is applied to the resulting
function with all but the (t − 1)-st variable fixed. This pro-
cess continues until finally a sequence of n1-point DFTs are
applied. In the case of two-dimensions this is called the
row-column algorithm, since, if the function X(a1, a2) is
stored lexicographically as an n1 × n2 matrix, the compu-
tation proceeds by applying n2-point DFTs to the rows of
X followed by n1-point DFTs applied to the columns of the
partially transformed matrix.

If the functions X and Y are stored lexicographically
as column vectors x and y respectively and ⊗ denotes the
tensor product (also called the Kronecker product) [8], then

y = (Fn1 ⊗ · · · ⊗ Fnt)x, (1)

and the row-column algorithm corresponds to the matrix
factorization

(Fn1 ⊗ · · · ⊗ Fnt) =
t∏

j=1

(IN(j−1) ⊗ Fnj ⊗ IN̄(j))

where N(j) = n1 · · ·nj , N̄(j) = N/N(j), N(0) = 1, and
N(t) = N .

Fast algorithms for computing Y = FNX , the FFT and
variants, can be obtained from factorizations of FN [9, 10,
8]. If N = RS,

FN = (FR ⊗ IS)T N
S (IR ⊗ FS)LN

R , (2)

where IN is the N point identity matrix, T N
S is a diagonal

matrix containing the twiddle factors and LN
R is a permuta-

tion matrix that gathers the input at stride R. More precisely,
letting ⊕ denote the direct sum of matrices,

T N
S =

R−1⊕
j=0

diag(ω0
N , . . . , ωS−1

N )j

and

LN
R : i ∗ S + j �→ j ∗ R + i for 0 ≤ i < R, 0 ≤ j < S.

A multi-dimensional DFT can be computed in exactly
the same way using the dimensionless FFT. LetFN = Fn1⊗
· · · ⊗ Fnt be an arbitrary multi-dimensional DFT of size
N = n1 · · ·nt. Independent of dimension, if N = RS,
then there exist a diagonal matrices D, a permutation ma-
trix P , and multi-dimensional DFTs FR and FS such that

FN = (FR ⊗ IS)D(IR ⊗FS)P. (3)

When N = 2k, the permutation P and diagonal D can
be calculated easily. The following example illustrates the
calculation and shows how the general theorem can be de-
rived. Applying Equation 2 to F8,

F2 ⊗ F8 = F2 ⊗ (F2 ⊗ I4)T 8
4 (I2 ⊗ F4)L8

2. (4)

Writing F2 = F2I2I2I2 and using the property AB⊗CD =
(A ⊗ C)(B ⊗ D), Equation 4 implies

F2 ⊗ F8 = (F2 ⊗ (F2 ⊗ I4))(I2 ⊗ T 8
4 )

(I2 ⊗ (I2 ⊗ F4))(I2 ⊗ L8
2).

Using associativity of the tensor product and the property
Im ⊗ In = Imn we obtain

F2 ⊗ F8 = ((F2 ⊗ F2) ⊗ I4)(I2 ⊗ T 8
4 )

(I4 ⊗ F4)(I2 ⊗ L8
2).

II - 650

➡ ➡



F4

F

F

4

4

4

F

F

4

F

F

4

4

4

0

0

0

0

0

0

0

1

2

3

2

4

6

6

3

9

F

Fig. 1. Cooley-Tukey factorization for F16

F4

F

F

F

4

4

4

F2 F2

F2 F2

F2 F2

F2 F2

0

0

0

0

0

0

0

0

6

6

2

2

0

0

4

4

Fig. 2. Cooley-Tukey factorization for F2 ⊗ F4 ⊗ F2

Since the tensor product of diagonal matrices is a diago-
nal matrix and the tensor product of permutation matrices is
a permutation matrix, this example is an instance of Equa-
tion 3 with D = (I2⊗T 8

4 ), P = (I2⊗L8
2), FR = (F2⊗F2),

and FS = F4. Figure 2 compares the flow of this com-
putation to the one-dimensional algorithm F16 = (F4 ⊗
I4)T 16

4 (I4 ⊗ F4)L16
4 in Figure 1. The computation flows

from left to right in the figures and the small boxes contain
the exponents of ω16 in the twiddle factors.

A similar derivation can be used to derive the following
theorem.

Theorem 1 (Dimensionless FFT) Let N(l) = n1n2 · · ·nl

and N(l) = N/N(l) with N(0) = 1 and N(t) = N , and
assume N = 2K with N = n1×n2×· · ·×ntandni = 2ki .
Let FN = Fn1 ⊗ · · · ⊗ Fnt , and let N = RS. If l is the
largest integer such that N(l − 1) < R and nl = ab with
R = N(l − 1)a, then

FN = (FR ⊗ Is)D(IR ⊗Fs)P (5)

FR = Fn1⊗· · ·⊗Fnl−1⊗Fa, FS = Fb⊗Fnl+1⊗· · ·⊗Fnt ,
D = IN(l−1) ⊗ T nl

b ⊗ IN(l), P = IN(l−1) ⊗ Lnl
a ⊗ IN(l).

3. IMPLEMENTATION AND PERFORMANCE

The factorization required by the dimensionless FFT in The-
orem 1 is very similar to the factorization required by the
one-dimensional FFT in Equation 2. The only difference

20

5 15

13

2 11

2

5 4

2

9

6,6,8

5 1,6,8

1,1 5,8

2 3,8

2 1,8

1,4 4

Fig. 3. Plans for F220 and F64 ⊗ F64 ⊗ F256

is that the twiddle factor T N
S is replaced by a twiddle fac-

tor of the form IN1 ⊗ T n
b ⊗ IN̄1

and the stride permutation
LN

R is replaced by a permutation of the form IN1 ⊗ Ln
a ⊗

IN̄1
, where N = N1nN̄1 and n = ab. This suggests that

a recursive one-dimensional FFT implementation could be
modified slightly to obtain an implementation of an arbi-
trary multi-dimensional DFT. In this section we show how
to modify FFTW’s one-dimensional FFT implementation to
obtain a multi-dimensional dimensionless FFT.

FFTW recursively applies Equation 2 to compute the
FFT. The sequence of applications of Equation 2 are stored
in a tree data structure called a plan. The plan is precom-
puted and is chosen through a search to provide “the most
efficient plan”. The executor uses the plan to compute the
FFT with the desired algorithm. A node in the plan corre-
sponds to the computation of a DFT. A leaf node is com-
puted with highly tuned straight-line code called a codelet.
An internal node is computed with the corresponding appli-
cation of Equation 2. Plans are restricted to rightmost trees,
those trees with the property that all left children are leaf
nodes and are computed with codelets. The codelets for left
nodes incorporate twiddle factor computation with twiddles
stored in the plan data structure. The addressing required
by the stride permutations is incorporated into the address-
ing of the rightmost leaf node. The strides are combined
in each recursion step. Figure 3 shows a plan for comput-
ing F220 with the corresponding plan for F64 ⊗F64 ⊗F256.
Nodes are labeled with the exponents of the transforms.

In order to modify FFTW to support the dimensionless
FFT, the plan must include the dimension of the DFT at each
node, and must store the generalized twiddle factors. Since
the twiddle factors are precomputed this only requires mod-
ifying the plan generator to compute the necessary twiddle
factors. Second, the addressing parameters used by the ex-
ecutor must be extended to support permutation by IN1 ⊗
Ln

a ⊗ IN̄2
rather than just stride permutations. Finally since

the leaf nodes can correspond to multi-dimensional DFTs,
a library of multi-dimensional DFTs must be provided. We
used the SPIRAL system [7] to generate the necessary codelets.

The addressing required by the computation of FS in
(IR ⊗FS)P can be determined by a stride parameter and a

II - 651

➡ ➡



0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

ra
tio

 o
f r

un
tim

e

Multi-dimensional FFTs

Fig. 4. The runtime ratio of 1D to MD FFT

block parameter. The input to FS starting at x with stride
parameter s and block parameter m is equal to x(�j/m�sm+
j mod m) for j = 0, . . . , S − 1. If P = IN1 ⊗ Ln

a ⊗ IN̄1
,

then s = a and m = N̄1. If FS is recursively split with
S = R′S′ and S = N ′

1a
′b′N̄ ′

1, then s = a′ and m = N̄ ′
1

if S′ divides N̄1, and s = aa′ and m = N̄ ′
1 = N̄1 if S′

does not divide N̄1. This shows that the addressing param-
eters can be recursively combined as was the case for stride
permutations. The source code is available upon request.

To determine the potential performance improvement
we compared the runtime, using FFTW, of the one-dimensional
and multi-dimensional FFT using the row-column algorithm.
Experiments were performed on a 550 MHz Pentium III
processor with 16K L1 cache, 512 K L2 cache and 12MB
memory running Mandrake 8.0 Linux. Figure 4 shows the
ratio of selected two and three dimensional FFTs of size 220

versus a 220 one-dimensional FFT.

Points above the line equal to one indicate that the 1D
FFT is faster and hence a dimensionless FFT using the 1D
plan, shown in Figure 3, should be faster than the row-
column algorithm. This was verified using our modification
to FFTW. For example, the dimensionless FFT for a two-
dimensional 215 × 25 transform is 1.24 times faster than
the row-column algorithm used by FFTW. This algorithm
was slightly faster than the 1D FFT due to slightly faster
codelets.

In summary we have presented a divide and conquer al-
gorithm for computing multi-dimensional DFTs that works
independent of the dimension. The benefit is that the de-
composition is not constrained by the number of points in
each dimension as is the case for the standard row-column
algorithm. The dimensionless algorithm can be implemented
with minor modifications to existing one-dimensional FFT
programs. This approach was carried out using FFTW and
led to performance gains for many multi-dimensional FFTs.

4. REFERENCES

[1] James W. Cooley and J.W. Tukey, “An algorithm for
the machine calculation of complex series,” Math.
Comput., vol. 19, pp. 297–301, 1965.

[2] L. Auslander and J. R. Johnson and R. W. Johnson,
“Dimensionless fast Fourier transform method and ap-
paratus,” Patent #US6003056, 1999.

[3] L. Auslander and J. R. Johnson and R. W. John-
son, “Dimensionless fast Fourier transforms,”
Tech. Rep. DU-MCS-97-01, Drexel University, 1997,
http://www.cs.drexel.edu.

[4] P. Kumhom, J. R. Johnson, and P. Nagvajara, “De-
sign, optimization, and implementation of a univer-
sal FFT processor,” in Proc. 13th IEEE International
ASIC/SOC Conference, Washington, DC, Sept. 2000.

[5] M. Frigo and S.G. Johnson, “FFTW: An Adaptive
Software Architecture for the FFT,” in ICASSP Con-
ference Proceedings, 1998, vol. 3, p. 1381.

[6] D. Mirković and S. L. Johnsson, “Automatic Perfor-
mance Tuning in the UHFFT Library,” in Proc. ICCS.
2001, LNCS 2073, pp. 71–80, Springer.

[7] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, M. Püschel, and M. M. Veloso, “SPI-
RAL: Portable Library of Optimized SP Algorithms,”
1998, http://www.ece.cmu.edu/∼spiral/.

[8] C. Van Loan, Computational Framework for the Fast
Fourier Transform, SIAM, Philadelphia, PA, 1992.

[9] J.R. Johnson, R.W. Johnson, D. Rodriguez, and
R. Tolimieri, “A methodology for designing, modi-
fying, and implementing fourier transform algorithms
on various architecture,” Circuit, Systems, and Signal
Processing, vol. 9, no. 4, pp. 249–500, 1990.

[10] R. Tolimieri, M. An, and C. Lu, Algorithms for dis-
crete Fourier transforms and convolution, Springer,
2nd edition, 1997.

II - 652

➡ ➠


