A RECURSIVE IMPLEMENTATION OF THE DIMENSIONLESS FFT

Jeremy Johnson, Xu Xu

Drexel University
Department of Computer Science
3141 Chestnut Street, Philadelphia, PA 19104, USA
jjohnson@cs.drexel .edu and xx27@drexel .edu

ABSTRACT

A divide and conquer algorithm is presented for comput-
ing arbitrary multi-dimensional discrete Fourier transforms.
In contrast to standard approaches such as the row-column
algorithm, this algorithm allows an arbitrary decomposi-
tion, based solely on the size of the transform independent
of the dimension of the transform. Only minor modifica-
tions are required to compute transforms with different di-
mension. These modifications were incorporated into the
FFTW package so that the algorithm for computing one-
dimensiona transforms can be used to compute arbitrary
dimensional transforms. This reduced the runtime of many
multi-dimensional transforms.

1. INTRODUCTION

Thedivideand conquer construction used by thefast Fourier
transform (FFT) allows a discrete Fourier transform (DFT)
of size mn to be computed using n transforms of size m
followed by m transforms of size n [1]. This construc-
tion requires that the input data be accessed at stride and
the intermediate data obtained after computing the n trans-
formsof size m be scaled by the so called “twiddle factors’.
Multi-dimensional DFTs are normally computed using one-
dimensional FFTs along each of the dimensions. For exam-
ple, let X (a,b) with0 < a < mand0 < b < n bea
function of two variable stored in anm x n array. The two-
dimensional m x n DFT of X can be calculated by applying
m one-dimensional n-point DFTstotherowsof X followed
by n one-dimensional m-point DFTs to the columns. The
one-dimensional DFTs are computed using the FFT. This
approach, called the row-column algorithm, can be general-
ized to DFTs with arbitrarily many dimensions; however, it
has the shortcoming that the divide and conquer construc-
tion used by the FFT can only be applied separately to the
number of pointsin each dimension. It does not alow the
use of smaller transforms of size equal to an arbitrary fac-

Thiswork was supported by DARPA through research grant DABT63-
98-1-0004 administered by the Army Directorate of Contracting.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-649

tor of the number of data points. The dimensionless FFT
[2] alows a multi-dimensional DFT of total size N = RS
to be computed using R multi-dimensional DFTs of size S
followed by S multi-dimensional DFTs of size R indepen-
dent of dimension. Thisis identical to the one-dimensional
construction except that a slightly different input permuta-
tionisrequired and the values of the twiddle factors are dif-
ferent. The permutation and twiddle factors depend on the
dimension. The original presentation of the dimensionless
FFT was based on an iterative algorithm for computing the
FFT and was motivated by the desire to produce FFT hard-
ware that could be used for one, two, and three dimensional
transforms|3, 4].

Recently there has been efforts to automatically opti-
mize the performance of important signal processing rou-
tines such asthe FFT [5, 6, 7]. These approaches search for
a good decomposition (breakdown strategy) of the FFT in
an effort to best utilize the number of registers, cache, and
other features of the underlying hardware. A good break-
down can be far more important than saving a few arith-
metic operations. The use of the dimensionless FFT al-
lows decomposition sizes that are not available in the row-
column algorithm and can provide improved performance
for many multi-dimensional DFTSs.

In this paper, we show that FFTW [5], one of the fastest
public domain FFT packages, can be modified to support a
recursive implementation of the dimensionless FFT. FFTW
can use many different recursive divide and conquer strate-
gies, and dynamic programming is used to empirically de-
termine the “best” strategy. The desired strategy is stored
in a tree data structure called a plan. The plan aso stores
the necessary twiddle factors. An executor uses the plan to
compute the FFT from a collection of small FFTs, called
codelets, implemented using straight-line code. To support
the dimensionless FFT, extra information must be stored in
the plan to keep track of the dimension of the various DFTs
that arise, and a set of multi-dimensional FFT codelets must
be provided. The plan generator must be extended to pro-
duce the twiddle factors required by the dimensionless FFT,
and the executor must support one additional parameter needed

ICASSP 2003

for the generalized permutationsthat can arise. These changes
were incorporated into FFTW and empirical data is pre-
sented showing the potential for improved performance as
compared to the row-column algorithm currently provided
in FFTW.

In the remainder of the paper, we derive arecursive for-
mulation of the dimensionless FFT, show how to modify
FFTW to implement the dimensionless FFT, and provide
empirical performance data.

2. THE DIMENSIONLESS FFT

In this section we review the row-column algorithm in the
mathematical framework best used to derive and understand
the dimensionless FFT. An example is used to show how
to derive the dimensionless FFT and the general theorem
underlying the dimensionless FFT is stated.

Let X(a),0 < a < N be a complex function of N
points. The N-point DFT of X isdefined by

N-1
b) = Z WX (a
a=0

where wy = €>™/N. Let X(a) and Y (b) be represented
by column vectors of size IV, then the DFT is given by the
matrix-vector product Y = Fiy X, where Fiy isthe N x N
matrix whose (i, j) element, 0 < 4,5 < N, isequal tow}}

Let X (a1,...,a:) beafunction of ¢ variables, where
0 < a; < nj. Thet-dimensional ny x --- x ny DFT of X
is
Y(by,...,b Z w‘“bl---wijth(ah...,at)

0<a;<n;

Since the summation indices are independent, this sum can
be written as a nested sum.

Y(bii-. br) =
Saicown” (- (Suswn X, an)).

The nested sum impliesthat the multi-dimensional DFT can
be computed by applying one-dimensional DFTsalong each
dimension. A sequence of n-point DFTs is applied to the
functions obtained by fixing thefirst ¢ — 1 inputsto X. Then
a sequence of n;_q-point DFTs is applied to the resulting
function with all but the (¢ — 1)-st variable fixed. This pro-
cess continues until finally a sequence of n1-point DFTs are
applied. In the case of two-dimensions this is called the
row-column algorithm, since, if the function X (a1, a2) is
stored lexicographicaly as an ny x ny matrix, the compu-
tation proceeds by applying n»-point DFTSs to the rows of
X followed by n-point DFTs applied to the columns of the
partially transformed matrix.

If the functions X and Y are stored lexicographically
as column vectors x and y respectively and ® denotes the
tensor product (also called the Kronecker product) [8], then

® Fy,)x, 1)

and the row-column algorithm corresponds to the matrix
factorization

t
(Fnl H IN] 1) ®F”J ®IN(]))
j=1

where N(j) =n1---n;, N(j) =
N(t) = N.

Fast algorithms for computingY = Fy X, the FFT and
variants, can be obtained from factorizations of F'n [9, 10,

8. If N = RS,
Fy=(Fr®Is)TY (Ir ® Fs)Ly,)

where Iy isthe N point identity matrix, 7' is a diagonal
matrix containing the twiddle factorsand L% is a permuta-
tion matrix that gatherstheinput at stride R. More precisealy,
letting & denote the direct sum of matrices,

N/N(j), N(0) = 1, and

R—-1

T = GBdiag(w?\,7 cwr)
§=0

and
LN :ixS+jrmjxR+ifor0<i<R,0<j<S8.

A multi-dimensional DFT can be computed in exactly
thesameway usingthedimensionlessFFT. Let Fy = F,,, ®
- ® F,, be an arbitrary multi-dimensional DFT of size
N = ny---ny. Independent of dimension, if N = RS,
then there exist a diagonal matrices D, a permutation ma-
trix P, and multi-dimensional DFTs Fr and Fs such that

Fn=(Fr®Is)D(Ir® Fs)P. 3

When N = 2*, the permutation P and diagonal D can
be calculated easily. The following example illustrates the
calculation and shows how the general theorem can be de-
rived. Applying Equation 2 to Fg,
=R e (F @ 1)L (I, ® Fy) LS. 4)
Writing Fo = Fy 151515 and using the property ABRQCD =
(A® C)(B® D), Equation 4 implies

BRel = (FRe(FRoly)) (b ®T48)
(L ® (I, ® Fy)) (I, ® LY).
Using associativity of the tensor product and the property
L ® I, = I, Wwe obtain
(F® F)® 1) (I ®TF)
(I ® Fy) (I, ® L3).

F® Iy

Bhely =

I1-650

I o [
F, g g % F,
YAk = eV
AVAN . ; % % § EE F, LAA
I o I
Fig. 1. Cooley-Tukey factorization for Fy6
I o [

F, § % F,®F,
F. §§%§ % FOF, [V,
F. Cal FZ@ F.
Fa % F®F,
I & I

Fig. 2. Cooley-Tukey factorization for Fo ® Fy ® Fy

Since the tensor product of diagonal matrices is a diago-
nal matrix and the tensor product of permutation matricesis
a permutation matrix, this exampleis an instance of Equa-
tion3withD = (IQ@TE), P = (IQ@L%),}—R = (F2®F2),
and Fs = Fy. Figure 2 compares the flow of this com-
putation to the one-dimensiona agorithm Fi5 = (Fy ®
I)T}%(1, ® Fy)LL% in Figure 1. The computation flows
from left to right in the figures and the small boxes contain
the exponents of w1 in the twiddle factors.

A similar derivation can be used to derive the following
theorem.
Theorem 1 (Dimensionless FFT) Let N (1) = ning---m
and N(I) = N/N(l) with N(0) = 1 and N(t) = N, and
assume N = 2K with N = ny X ng X - - - X ngandn; = 2%,
LeFy = F,, ®---®F,,,andlet N = RS. If [isthe
largest integer such that N(I — 1) < R andn; = ab with
R = N(l—1)a, then

Fn = (Fr®IL)D(Ir ® Fs)P ()

]:R = F,“@' : '®Fn171 ®Faa-7:5’ = Fb®Fnl+1®' : '®Fnu

D =Inu-1) @ Ty" @ Iy P = Ing-1) ® L' © Iy

3. IMPLEMENTATION AND PERFORMANCE

Thefactorization required by the dimensionlessFFT in The-
orem 1 is very similar to the factorization required by the
one-dimensional FFT in Equation 2. The only difference

5 15
2 13 11 58
N N
2 11 2 3/8\
2/\9 2 18

5/\ 4 1,4/\ 4

Flg 3. Plansfor Fy20 and Foq ® Fga ® Fosg

is that the twiddle factor 72" is replaced by a twiddle fac-
tor of theform Iy, ® T}' ® Iy, and the stride permutation
LY is replaced by a permutation of the form Iy, ® L7 ®
Iy, , where N = NynN; and n = ab. This suggests that
arecursive one-dimensional FFT implementation could be
modified dightly to obtain an implementation of an arbi-
trary multi-dimensional DFT. In this section we show how
to modify FFTW’s one-dimensional FFT implementationto
obtain amulti-dimensional dimensionless FFT.

FFTW recursively applies Equation 2 to compute the
FFT. The sequence of applications of Equation 2 are stored
in atree data structure called a plan. The plan is precom-
puted and is chosen through a search to provide “the most
efficient plan”. The executor uses the plan to compute the
FFT with the desired algorithm. A node in the plan corre-
sponds to the computation of a DFT. A leaf node is com-
puted with highly tuned straight-line code called a codelet.
Aninternal nodeis computed with the corresponding appli-
cation of Equation 2. Plans are restricted to rightmost trees,
those trees with the property that all left children are leaf
nodes and are computed with codelets. The codelets for left
nodes incorporate twiddle factor computation with twiddles
stored in the plan data structure. The addressing required
by the stride permutations is incorporated into the address-
ing of the rightmost leaf node. The strides are combined
in each recursion step. Figure 3 shows a plan for comput-
ing Fy20 with the corresponding plan for Figy @ Fgg ® Fasg.
Nodes are labeled with the exponents of the transforms.

In order to modify FFTW to support the dimensionless
FFT, the plan must includethe dimension of the DFT at each
node, and must store the generalized twiddle factors. Since
the twiddle factors are precomputed this only requires mod-
ifying the plan generator to compute the necessary twiddle
factors. Second, the addressing parameters used by the ex-
ecutor must be extended to support permutation by Iy, ®
Ly ® Iy, rather than just stride permutations. Finally since
the leaf nodes can correspond to multi-dimensional DFTs,
alibrary of multi-dimensional DFTs must be provided. We

used the SPIRAL system [7] to generate the necessary codel ets.

The addressing required by the computation of F 5 in
(Ir ® Fs)P can be determined by a stride parameter and a

Il-651

14

12 -

ratio of runtime
=

08 | T o

0.6

0 5 10 15 20 25 30
Multi-dimensional FFTs

Fig. 4. Theruntimeratio of 1D to MD FFT

block parameter. The input to F ¢ starting at = with stride
parameter s and block parameter m isequal to (| j/m | sm+
j modm)forj=0,...,.S—1LI1fP=1In L} ®Iy,,
then s = a and m = N;. If Fg is recursively split with
S=RS adS = N{adt'Nj, thens = o’ andm = Nj
if S’ divides N1, and s = aa’ and m = Nj = Ny if &'
does not divide N;. This shows that the addressing param-
eters can be recursively combined as was the case for stride
permutations. The source code is available upon request.

To determine the potential performance improvement

we compared the runtime, using FFTW, of the one-dimensional

and multi-dimensional FFT using the row-column algorithm.
Experiments were performed on a 550 MHz Pentium 111
processor with 16K L1 cache, 512 K L2 cache and 12MB
memory running Mandrake 8.0 Linux. Figure 4 shows the
ratio of selected two and three dimensional FFTs of size 22°
versus a2’ one-dimensional FFT.

Points above the line equal to one indicate that the 1D
FFT is faster and hence a dimensionless FFT using the 1D
plan, shown in Figure 3, should be faster than the row-
column algorithm. Thiswas verified using our modification
to FFTW. For example, the dimensionless FFT for a two-
dimensional 2'° x 2° transform is 1.24 times faster than
the row-column algorithm used by FFTW. This agorithm
was dightly faster than the 1D FFT due to slightly faster
codelets.

In summary we have presented a divide and conquer al-
gorithm for computing multi-dimensional DFTs that works
independent of the dimension. The benefit is that the de-
composition is not constrained by the number of pointsin
each dimension as is the case for the standard row-column
agorithm. The dimensionlessalgorithm can beimplemented
with minor modifications to existing one-dimensional FFT
programs. This approach was carried out using FFTW and
led to performance gains for many multi-dimensional FFTs.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Il-652

4. REFERENCES

James W. Cooley and JW. Tukey, “An algorithm for
the machine calculation of complex series” Math.
Comput., vol. 19, pp. 297-301, 1965.

L. Audander and J. R. Johnson and R. W. Johnson,
“Dimensionlessfast Fourier transform method and ap-
paratus,” Patent #US6003056, 1999.

L. Auslander and J. R. Johnson and R. W. John-
son, “Dimensionless fast Fourier transforms,”
Tech. Rep. DU-MCS-97-01, Drexel University, 1997,
http://ww. cs. drexel . edu.

P. Kumhom, J. R. Johnson, and P. Nagvagjara, “De-
sign, optimization, and implementation of a univer-
sal FFT processor,” in Proc. 13th IEEE International
ASIC/SOC Conference, Washington, DC, Sept. 2000.

M. Frigo and S.G. Johnson, “FFTW: An Adaptive
Software Architecture for the FFT,” in ICASSP Con-
ference Proceedings, 1998, vol. 3, p. 1381.

D. Mirkovi¢ and S. L. Johnsson, “Automatic Perfor-
mance Tuning in the UHFFT Library,” in Proc. ICCS.
2001, LNCS 2073, pp. 71-80, Springer.

J. M. E Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, M. Pischel, and M. M. Veloso, “SPI-
RAL: Portable Library of Optimized SP Algorithms,”
1998, ht t p: / / www. ece. cnu. edu/ ~spiral /.

C. Van Loan, Computational Framework for the Fast
Fourier Transform, SIAM, Philadelphia, PA, 1992.

JR. Johnson, RW. Johnson, D. Rodriguez, and
R. Tolimieri, “A methodology for designing, modi-
fying, and implementing fourier transform algorithms
on various architecture,” Circuit, Systems, and Sgnal
Processing, vol. 9, no. 4, pp. 249-500, 1990.

R. Tolimieri, M. An, and C. Lu, Algorithms for dis-
crete Fourier transforms and convolution, Springer,
2nd edition, 1997.

