
EFFICIENT INTERLEAVER MEMORY ARCHITECTURES FOR SERIAL TURBO
DECODING

Zhongfeng Wang1* and Keshab Parhi2

1. Nation Semiconductor Corporation
1351 South Sunset Street

Longmont, CO 80501
Tel: 303-774-5316

 Email: zwang@ia.nsc.com

2. Dept. of Electrical and Computer Engineering
University of Minnesota

Tel: 612-626-4116
Email: parhi@ece.umn.edu

ABSTRACT

A practical turbo decoder is usually implemented with a
serial decoding architecture for low complexity, where
the extrinsic information symbols are stored in the so-
called interleaver memory for the next decoding. Either
a dual-port (or two ping-pong memories) or a single-port
memory can be employed for this memory. The first
approach achieves twice the throughput as the second
one while spending approximately twice the hardware on
the interleaver memory. In this work, two novel
architectures are proposed for the interleaver memory
design. Both proposed architectures work for any type of
random interleavers. Compared with the traditional
single-port approach, twice the throughput can be
obtained with less than 1% area overhead when applied
in third generation CDMA systems. On the other hand,
more than 25% area of an entire turbo decoder can be
saved compared with the traditional dual-port solution.

 Keywords: VLSI, serial architecture, low
complexity, turbo code, interleaver, memory.

1. INTRODUCTION

Turbo code [1], since its invention, has found many
applications. Especially, it has been decided to use turbo
code in the third generation (3G) CDMA (code division
multiple accesses) systems [2][3]. Turbo code usually
works with large block sizes. It is generally true that the
larger block size, the better the performance. For 3G

* Partial work was completed when the author was with
Morphics Technology Inc., California.

CDMA systems, the maximum turbo block size is more
than 20,000 (bits) [3]. Due to the requirement of large
memory, serial decoding architectures are widely used in
practice for turbo decoders, especially in wireless
applications. For example, the turbo decoder products
provided by Texas Instrument (C6416), Altera, Icoding,
Small World Comm., Amphion, Adlante Technology, et
al, all used serial decoding architectures. A typical serial
turbo decoder architecture is shown in Figure 1. It has
only one soft-input soft-output (SISO) decoder, which
works in a time-multiplexed way. Each iteration consists
of two decoding phases, i.e., the sequential decoding
phase (or simply Phase A), in which the data are
processed in sequential order, and the interleaved
decoding phase (or Phase B), in which data are
processed in an interleaved order. Both maximum a
posterior probability (MAP) algorithm and soft output
Viterbi algorithm (SOVA) can be adopted for the SISO
decoder [5].

SISO

Intlv
memory

Input
buffer

Address
Generator

Load Wtbk

1
py

2
py

sy)(kLR

)(kLex

Figure 1, A serial turbo decoder architecture

As can been seen from Figure 1, a serial turbo decoder
consists of two memories: one is used to store the
received soft symbols, namely the input buffer, the other
is used to store the extrinsic information [1], denoted as
the inter-leaver memory. The SISO decoder takes soft

inputs (including the received systematic bit sy and the

II - 6290-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

received parity bit 1
py or 2

py) from the input buffer and

the a priori information from the interleaver memory. It

outputs the log likelihood ratio,)(kLR , and the extrinsic

information,)(kLex , for the k-th information bit in the

decoding sequence. The extrinsic information is sent
back as the new a priori information for next decoding.
The interleaving and de-interleaving processes are
completed in an efficient way. Basically the data are
loaded according to the current decoding sequence. After
processing, the data are written back to the original
places. For example, in Phase B, we load the data from
the interleaver memory in an interleaved order. After
processing, we write them back to the original places in
the same order.

The input buffer is generally indispensable. Regarding
the interleaver memory, two approaches have been used
in the past. With the first approach, a dual-port memory
or two ping-pong memories are employed to complete
one Read and one Write operations required to process
each information bit within one cycle. In the second
approach, one single-port memory is used while
spending two clock cycles to complete the required two
operations. Due to the less complexity, the latter
approach is more popular in practice. In this work, two
novel architectures are proposed for the interleaver
memory design. Either proposed architecture can
complete the two operations within one cycle while
using almost the same hardware as the case of using one
single-port memory. Compared with traditional designs,
the proposed approaches can either save more than 25%
area of an entire turbo decoder or achieve twice the
throughput with less than 1% area overhead when
applied in 3G CDMA systems.

2. EFFICIENT INTERLEAVER
ARCHITECTURES

The basic idea is to partition one single-port memory
into N (2≥N) segments and use M (2≥M) small
buffers to assist writing the output of extrinsic
information into the inter-leaver memory, where N does
not have to be the same as M. For design simplicity, both
N and M are normally chosen to be a power of 2. N is
better chosen to be a multiple of M. In this work, we will
consider only two cases (a) N=2, M=2 and (b) N=4,
M=2.

Memory can be partitioned in various ways. An easy and
effective way is to partition the memory according to a
number of least significant bits (lsb’s) of the memory
address. In case of N=2, a piece of memory can be
partitioned into two segments according to the least

significant bit. For the resultant two memory segments,
one contains data with even addresses and the other
contains data with odd addresses.

For the two memory segments, it is possible, in
principle, to support two data accesses within one cycle.
However, in practice, it is generally impossible to find a
partitioning scheme which ensures that the target data
(for Read and Write operations) are always located in
two different segments at each cycle because of
interleaving. In fact, practical systems are usually
required to support a variety of turbo block sizes. In
those cases, the interleave patterns vary significantly.

The problem of data access conflicts can be solved in
two different ways. One is to design specialized
interleavers. The other is to employ memory arbitration
techniques. Readers interested in designing special
interleaver structures to avoid the data access conflict are
referred to [6][7][8]. The details, however, are not
presented in this paper.

In practice, turbo interleaver structures are often fixed,
e.g., in 3G CDMA systems, turbo interleave patterns are
specified in the standards. It is impractical to change the
standards. In these cases, to solve the problem of data
access conflicts, we propose to use efficient memory
arbitration schemes. The key point of the memory
arbitration is to give a high priority to Read operations
while giving a low priority to Write operations. For
convenience of later discussion, we consider a typical
partitioning scheme. We partition an inter-leaver
memory into two segments, one contains even addressed
data, denoted as Seg-1 and the other one contains data
with odd addresses, denoted as Seg-2. We use two small
data & address buffers, denoted as Buf-1 and Buf-2. We
propose two kinds of architectures as shown in Figure 2
and Figure 3 respectively, where control states {0, +1}
and {0, -1} denote the data flow to/from the memory
segment. In other words, {0, +1} means that one or zero
datum may be written into the memory segment at each
cycle. {0, -1} represents that the memory segment
outputs either one or zero datum at each cycle.

At each cycle, the SISO decoder obtains the required
datum (the a priori information), which could be located
in either interleaver memory segment. Without loss of
generality, we assume the SISO decoder obtains the
required a priori information from Seg-1 at time index k.
At the same cycle, the SISO decoder outputs the
extrinsic information for an information bit, whose
corresponding soft inputs were loaded at time index k-D,
where D denotes the sliding window length. Here we
assume the sliding window approach [10] is employed in
turbo decoding.

II - 630

➡ ➡

The detailed functions for both types of architectures in
various cases are described in Table 1. The small buffers
in Type-A architecture work as FIFOs (first-in first-out).
There are four different cases: (1) no data coming in or
out, (2) only data coming in while no data out, (3) only
data coming out while no data coming in and (4) there
are data coming in and data coming out. The VLSI
implementation for these FIFOs is trivial. In general a
dual-port memory can be used to synthesize a FIFO.

With regard to Type-B architecture, the small buffers
work as simplified FIFOs because there is no Case 4
discussed above. So one single-port memory can be used
to implement each simplified FIFO. Compared with
Type-A architecture, Type-B architecture requires some
extra MUXes (multiplexer) while saving a significant
amount of area in buffers. Thus Type-B architecture is
more efficient in area. It should also be mentioned that,
when there is no read operations being performed (when
all branch metrics are computed), the remaining data in
Buf-1 and Buf-2 can be written into Seg-1 and Seg-2
simultaneously once the buffers are not empty, which
reduces the overall decoding latency.

Table 1, the function details of both
architectures (assuming the datum to be

loaded is located in Seg-1)

Functions of
Type-A
architecture

Functions of
Type-B
architecture

Case I:

The
datum is
t o b e
written
into
Seg-1.

(1), Lex and
associated address
are sent to Buf-1.
(2), If Buf-2 is not
empty, the stored
extrinsic
information at the
top of the buffer is
sent to Seg-2 by
using its associated
address.

(1), Lex and
associated
address are sent
to Buf-1.
(2), If Buf-2 is
not empty, the
stored extrinsic
information at
the top of the
buffer is sent to
Seg-2 by using
its associated
address.

Case II:

The
datum is
t o b e
written
into
Seg-2.

(1), Lex and
associated address
are sent to Buf-2.
(2), If Buf-2 is not
empty, the stored
extrinsic
information at the
top of the buffer is
sent to Seg-2 by
using its associated
address.

(1), Lex is sent
to Seg-2 by
using its
associated
address.

3. SIMULATION RESULTS

If the interleaver memory is partitioned into the even
addressed segment and the odd addressed segment and
the Type-B architecture is used for the memory
arbitration, from cycle-accurate simulations we find that
the smallest size for both buffers is 42 words when
applied in CDMA2000 systems (the turbo block size
ranges from 378 to 20730)[3], where the MAP algorithm
and the sliding window approach are adopted for turbo
decoding and the sliding window size is chosen to be 32.

Figure 2, Type-A architecture for the efficient interleaver
memory design

Figure 3, Type-B architecture for the efficient interleaver
memory design

II - 631

➡ ➡

In the worst case we need one extra clock cycle to finish
the write operations compared with using a dual-port
memory to store the extrinsic information. For WCDMA
(3GPP) systems, the turbo block size ranges from 40 to
5114. From cycle accurate simulations we find the
smallest sizes for Buf-1 and Buf-2 are respectively 40
and 42. A few extra processing cycles are introduced in
some cases. However, the overall decoding latency is
increased by less than 1% for any turbo block size. If the
memory is partitioned into four segments and two small
buffers are used as before, the requirement for the buffer
size will be reduced by 50%.

Next we compute the net savings. Assume the soft inputs
are quantized as 4 bits/symbol and the extrinsic
information is quantized as 6bits/sumbol as in [9]. For
CDMA2000 systems, the maximal block size is
approximately 20K, the lowest code rate is _. The input
buffer requires 4*4*20K=320K bits, and the interleaver
memory consumes 6*20K=120K bits. The memory
requirement for the two small buffers is
21*2*(6+14)=840bits< 1Kbits, where 14 bits are used to
record the memory address as the lsb is not required to
store because of the specific memory partitioning. It can
be seen that the overhead of the small buffers is less than
0.5 % of the total area of a single-port interleaver
memory. The net saving compared with using the dual-
port memory is approximately 120K/ (120K+320K) =
27%. The similar computation can be performed with
WCDMA systems. The net saving is about 6*5K
/(6*5K+3*4*5K) = 30K/90K = 30%. In summary, the
net saving with the proposed architecture is significant in
3G CDMA systems. Compared with the traditional
single-port approach, the proposed architectures can
achieve twice the throughput with an overhead of less
than 0.5% of the total hardware of an entire turbo
decoder when applied in 3G CDMA systems.

It should be mentioned that the control circuitry with
either proposed architecture is trivial. Only the lsb of the
memory address for the datum to be loaded and that for
the datum to be written are required to control the data
flow.

Although the above examples are focused on 3G
wireless communication systems, the proposed
interleaver architectures are clearly applicable to generic
turbo decoders. The basic reason is that it is always
possible to find an efficient memory partition scheme to
ensure the data load to each memory segment is
balanced on average so that the length of each buffer can
be very small.

4. CONCLUSIONS

The proposed efficient interleaver architectures can
either save a significant amount of memory compared
with using a dual-port memory or achieve twice the
throughput with negligible overhead compared with
using a single-port memory. The proposed architectures
are applicable to any turbo decoders once the block size
is relatively large (e.g., >200). If the interleave pattern is
specially designed, there could be no overhead.

REFERENCES

[1] C. Berrou, A. Clavieux and P. Thitimajshia, “Near
Shannon limit error correcting coding and decoding:
turbo codes”, ICC’93, pp 1064-70.

[2] 3rd Generation Partnership Project (3GPP),
“Technical specification group radio access
network, multiplexing and channel coding (TS
25.212 version 3.0.0)”, http://www.3gpp.org.

[3] 3rd Generation Partnership Project 2 (3GPP2),
http://www.3gpp2.org.

[4] H. Suzuki, Z. Wang and K. K. Parhi, “A K=3, 2Mbps
Low Power Turbo Decoder for 3rd Generation W-
CDMA Systems”, IEEE Custom Integrated Circuits
Conference (CICC), 2000, pp 39-42.

[5] P. Robertson, E. Villeburn and P. Hoeher, “A
comparison of optimal and sub-optimal MAP
decoding algorithms in the log domain”, in IEEE
ICC’95, vol. 2, pp 1009-1013, Seattle, 1995.

[6] Z. Wang, “Low complexity, high performance turbo
decoder design”, Ph.D. dissertation, Chapter 5, Univ.
of Minnesota, Aug. 2000.

[7] A. Giulietti, L. Perre and M. strum, “Parallel turbo
coding interleavers: avoiding collisions in accesses to
storage elements”, Electronics Letters, Feb. 2002, vol.
38, No. 5, pp 232-34.

[8] M. Thul, N. When and L. P. Rao, “Enabling high-
speed turbo-decoding through concurrent
interleaving”, ISCAS 2002, pp I- 897~890, vol 1.

[9] Z. Wang, H. Suzuki and K. K. Parhi, “VLSI
implementation issues of Turbo decoder design for
wireless applications”, IEEE Workshop on Signal
Processing Systems, Design and Implementation
(SiPS’99), pp. 503-512, Oct. 1999.

 [10] A. J. Viterbi, “An intuitive justification of the MAP
decoder for convolutional codes”, IEEE Journal on
Selected Areas in Communications, vol.16, pp. 260-
264, February 1998.

II - 632

➡ ➠

