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ABSTRACT

A new GF(p) cryptographic processor architecture for elliptic
curve encryption/decryption is proposed in this paper. The
architecture takes advantage of projective coordinates to convert
GF(p) inversion needed in elliptic point operations into several
multiplication steps. Unlike existing sequential designs, we show
that projecting into (X/Z,Y/Z) leads to a much better improved
performance than conventional choice of projecting into the
current (X/Z2,Y/Z?). We also propose to use high radix modulo
multipliers which give a wide range of area-time trade-offs. The
proposed architecture is a significant challenger for
implementing data security systems based on elliptic curve

cryptography.

1. INTRODUCTION

Elliptic Curve Cryptosystem (ECC) was proposed by Niel
Koblitz and Victor Miller in 1985 [1,2,3,4,5,6,7,8,9]. Although
critics are still skeptical as to the reliability of this method, to
date, no significant breakthroughs have been made in
determining weaknesses in the algorithm, which is based on the
discrete logarithm problem over points on an elliptic curve. The
fact that the problem appears so difficult to crack means that key
sizes can be reduced in size considerably, even exponentially
[2,5.8], especially when compared to the key size used by other
cryptosystems. This made ECC become a challenge to the RSA,
one of the most popular public key methods known. ECC is
showing to offer equal security to RSA but with much smaller
key size (128-256bits) [2].

Several ECC processors have been proposed in the literature
recently for GF(p) including GF(2¥) [4,7.16]. The design of these
processors is based on representing the elliptic curve points as
projective coordinate points [1,4,7,9,16] in order to eliminate
division, hence inversion, operations. It is well known that
adding two points over an elliptic curve would require a division
operation, which is the most expensive operation over GF(p).
There are several projective coordinates systems candidates. The
choice thus far has been based on selecting the system that has
the least number of multiplication steps, since multiplication
over GF(p) is next most time consuming and common operation
in ECC.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-625

In this paper we propose that the choice of the projective
coordinates system should also depend on its inherent
parallelism. High-speed crypto processors are now crucial for
multimedia applications. It is clear that parallelism is one
solution for meeting this requirement. We also propose to use
high radix GF(p) multipliers reported in [15] since they have
better AT characteristics than conventional radix-2 GF(p)
multipliers, and they can lead to wide range of trade-offs
between area and time. They can also be implemented in digit
serial fashion which is more efficient than both unpipelined and
pipelined parallel multipliers for algorithms with repeated
multiplications such that found in ECC. It is worth noting that
using pipelined parallel multipliers is not efficient for ECC
where the multiplication of an iteration cannot commence before
the multiplication operation of the previous iteration is finished.

2. ENCRIPTION AND DECRYPTION

It will be assumed that the reader is familiar with the arithmetic
over elliptic curve. For a good review the reader is referred to
[9]. There are many ways to apply elliptic curves for
encryption/decryption purposes. In it most basic form, users
randomly chose a base point (x, y), lying on the elliptic curve E.
The plaintext (the original message to be encrypted) is coded
into an elliptic curve point (x,, y,). Each user selects a private
key ‘n’ and computes his public key P = n(x, y). For example,
user A’s private key is n, and his public key is P, = ny(x, y).

For any one to encrypt and send the message point (x,, ¥,
to user A, he/she needs to choose a random integer k£ and
generate the ciphertext C,, = {k(x, ¥) , (Xm Vu)+ kP4 }. The
ciphertext pair of points uses A’s public key, where only user A
can decrypt the plaintext using his private key.

To decrypt the ciphertext C,,, the first point in the pair of
C,.» k(x, ), is multiplied by A’s private key to get the point:
ny (k(x, y)). Then this point is subtracted from the second point
of C,, the result will be the plaintext point (x,, 3,). The
complete decryption operations are:

(G Ym) ThkP4) = 0a(k(x,3)) =X, V) T k(14(%,3) )14k (%, 1) )= X )

The most time consuming operation in the encryption and
decryption procedure is finding the multiples of the base
point, (x,y). The algorithm used to implement this is discussed in
the next section.
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3. POINT OPERATION ALGORITHM

The ECC algorithm used for calculating #nP from P is based on
the binary method, since it is known to be efficient and practical
to implement in hardware [2,5,7.9,10]. This binary method
algorithm is shown below:

Define  k: number of bits in # and #;: the i bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. ifn,;=1, then O:=P else O:=0;
2. fori= k-2 down to 0,

3. {Q:=0+0;

4. ifn;=1then Q:= O+P;}
5. return Q;

Basically, the binary method algorithm scans the bits of » and
doubles the point O k-times. Whenever, a particular bit of 7 is
found to be one, an extra operation is needed. This extra
operation is Q+P.

As can be seen from the description of the above binary
algorithm, adding and doubling elliptic curve points are the most
basic operations in each iteration. As mentioned earlier, the
points operations over elliptic curve requires inversion [9]. As in
the crypto processor in [6,16], inversion is eliminated using
projective coordinates as elaborated in the next section.

4 PROJECTIVE COORDINATES IN GF(P)

The projective coordinates are used to eliminate the need for
performing inversion. For elliptic curve defined over GF(p), two
different forms of formulas are found [1,9] for point addition and
doubling. One form projections (x,y)=(X/Z, Y/Z°) [9], while the
second projects (x,v)=(X/Z,Y/Z) [1].

The two forms procedures for projective point addition of
P+Q (two elliptic curve points) is shown below:

P=(X,Y,Z);0=(X,,Y,,2Z,); P+Q=(X3Y37Z;3); where P #4Q
(x))=(X/Z",Y/Z’) D(X,Y,Z) (x))=(X/Z,Y/Z) ?(X,Y,Z)

A =X7) M A =X7, M
Qo= X2/ M A= X7, IM
As=2A1- 4 As=A2- 4

A=YZ’ XM A, =Y,7, IM
As = Y2213 M As = Y22, M
A=Ay~ A5 As = As- Ay

171114’12 17111‘5’12

Ag = Ay + As s =26 21225 27 5M
VARNAVAYE) M Zs= 2122133 M
X; = A5 - 22T M Xy = Agds IM
Ao = A A58 = 2X; Ao = AF X172, - g M

Y3 = (ﬁglg - lgﬂgj)/z 3M Y_g = 2916 - 2/33 Y]Z_) 2M

Similarly, the two forms of formulas for projective point
doubling is shown below:

P=(X,Y,Z); P+P = (X5Y373)

(xW)=(X/Z}, V) D (X,V,2)  (x3) = (XZ, V/Z) D (X,V,2)

A =3X7+az} AM A, =3X7 +aZf 2M
Zy=2Y,Z, IM  1,=Y,Z IM
A =4X, Y/ M A =X YA, 2M
X;=A/-24, IM A= A7 -85 IM
A; =87, M X;=22,, M
A= Ay-2X; Ys=A(425-2)-8(Y,2,)° 3M
Yy =025 IM  Z;=821) 2M
10M »m

The squaring calculation over GF(p) is very similar to the
multiplication computation. They both are noted as M
(multiplication). It is worth noting that any EC crypto processor
must implement the procedures of projective coordinates
efficiently since they are the core steps of the point operation
algorithm of ECC.

5. PROPOSED ARCHETICTURE

The architecture of the new processor is shown in Figure 5. This
architecture can be used to implement ECC based on either of
the two projective coordinate forms discussed in section 4.
Unlike existing designs, which use a single multiplier, the new
architecture has four multipliers to meet the high data rate
demands of applications such as multimedia.

As will be explained now, four multipliers are sufficient to
exploit the full parallelism inherent in projective coordinates. As
can be seen from Figures 1 and 2, the corresponding critical path
of each dataflow diagram is effectively of 4 GF(p)
multiplications and of 3 GF(p) multiplications, respectively.
Here the time of GF(p) addition and subtraction is ignored since
it is very small compared to multiplication. Therefore, the lower
bound of the minimum computation time to perform one elliptic
point operation in the calculation of »P is 7 GF(p)
multiplications. It can be easily seen from Figures 1 and 2 that
performing four multiplications in parallel will meet this lower
bound. Furthermore the utilization of the four multipliers is very
high. As can be seen from Figures 1 and 2, all the four
multipliers will be used in all of the steps. Similar comments can
be made to the data flow in Figures 3 and 4.

6. COMPARSION WITH EXSITING DESIGN

In existing designs, a single multiplier is used to perform all the
multiplications needed. The reason is that using more than one
single multiplier is perceived to be too expensive.

Comparing the two projective forms, projecting (x,y) to
(X/Z°,Y/Z?) requires a less number of multiplications than
projecting into (X/Z,Y/Z). The later uses one less multiplication
operation in adding two different elliptic points, however, it uses
two more multiplication operations in doubling an elliptic point.
For sequential implementation, i.e. using a single multiplier,
projecting (x,y) into (X/Z°, Y/7°) has always been the candidate of
choice for implementing ECC since it has the minimum number
of multiplication operations. The crypto processor proposed in
[16] is based on such a choice.
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Although the proposed architecture can implement the
procedures of both projective coordinate forms, the above
analysis of the critical paths of both projective coordinates in
section 5 indicates that for parallel implementation, projecting
(x,y) to (X/Z,Y/Z) requires less number of cycles and hence it is
faster than projecting (x.») to (X/Z°.Y/Z°). As can be observed
from Table 1, using our proposed architecture with projection of
xy) to (X/ZY/Z) is compared with two different
implementations adopting the projection (x,y) to (X/Z°Y/Z°),
using a single multiplier hardware (existing design [16]), and the
proposed architecture in Figure 5. The time required by our
design in projecting (x,y) to (X/Z,Y/Z) is less than one third the
time of the sequential implementation in [16] and 23% faster
than using projection (x,y) to (X/Z°.Y/Z°). What is more
significant observation from Table 1 is that the using the
proposed architecture with projections (x,y) to (X/Z,Y/Z) is not
only faster for parallel impregnation but it also leads to a better
AT? performance than both alternatives.

Table 1. Comparison between the different designs

Procedure Avg. Number of
of Hardware Number of | Multiplication | AT?
Projecting Design Multipliers Cycles
(x.y) to A M
XZY/Z) E_Xlslmg [16] 1 18 324
Figures 3, 4 4 6.5 169
X/Z,Y/Z) Proposed 4 5 100

A final comment about the implementation of our
proposed architecture is that we propose to use digit serial
implementation of the high radix multiplication algorithms
proposed in [15] in our architecture. Digit serial computation
is more suitable for the elliptic curve crypto algorithm discussed
above since the computation of elliptic point doubling, addition
and the algorithm of computing multiples of the base point is
such that the multiplication of one stage must be completed
before starting the multiplication of the subsequent stage.
Therefore even if a pipelined bit-parallel multipliers is used, the
throughput of such a multiplier can not be exploited since the
next multiplication operation can not commence until the
multiplication operations in the previous stage has completed.
As with regard to the GF(p) modulo adder, it is to be
implemented in bit parallel fashion since the area is not
significant compared to the multiplier and minimizing the
addition time will reduce the overall multiply-add cycle time.

7. CONCLUSION

A novel GF(p) elliptic curve cryptographic processor is proposed
in this paper. It does not need a GF(p) inverse module, because
the inverse operation is converted into consecutive
multiplication steps using a method known as projective
coordinates. It is also shown that for parallel implementation
projection of (x,y) to (X/Z,Y/Z) leads to a better implementation
than the usually selected projection (x,y) to (X/Z°, ¥/7%).
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Fig 4. Projecting (x,y) to (X/Z°,Y/Z°) doubling a point data flow

- Controller

Control

ot

Y3 73 X3 1 t

P

Registers

Adder

(Moo - A3°hg)/2

. . . 2 3 . .
Fig 3. Projecting (x.y) to (Y/Z",1/Z°) adding points data flow Fig 5. Proposed elliptic curve processor architecture

— Multiplier
=+ Multiplier =
— Multiplier +—
=+ Multiplier

Il-628




