
IMPLEMENTATION OF A DIGITAL COPIER USING TMS320C6414 VLIW
DSP PROCESSOR

Taeksang Hwang

Sindoricoh Co., Ltd.

277-22, 2Ka, Sungsu-dong, Sungdong-gu,
Seoul, KOREA 133-705

E-mail: taeksanghwang@sr.sindo.com

Wonyong Sung

School of Electrical Engineering
Seoul National University

San 56-1 Shilim-dong, Gwanak-gu,
Seoul, KOREA 151-742

E-mail: wysung@dsp.snu.ac.kr

ABSTRACT

In this paper, we developed real-time image processing programs
for a digital copier using TMS320C6414 CPU. The CPU is
good for real-time image processing because of multiple and
packed-data processing functional units. However, it needs
careful programming to exploit deep pipelining, multiple
functional units and packed-data instructions. All the critical
functions for the implementation of a digital copier, which
include shading correction, X-zoom, 2D filtering, and halftoning,
are implemented through assembly programming.
Programs using linear assembly programming followed by
the assembly optimization in software are compared with the
manual assembly coded versions. The results show that explicit
disambiguation of memory dependency is most critical for the
assembly optimization. The cache miss effects are also evaluated.

1. INTRODUCTION

Digital copiers are now becoming popular due to its versatile
ability to edit, enhance, store and transmit scanned images.
Currently, digital copiers are mostly implemented using
hardwired image processing circuits because of the demand for
high throughput. However, the hardware based circuits are
disadvantageous for implementing complex functions, such as
editing and compression. The Texas Instruments’ digital signal
processor TMS320C6414 can achieve a very high processing
rate due to its VLIW architecture and packed data processing
support [1]. The CPU can process up to 8 instructions at each
clock because of its pipelined and VLIW characteristics. It can
also process up to four pixels of 8-bit data at each instruction
because of the packed data processing capability. The prototype
digital copier developed performs the basic image processing
steps depicted in Fig. 1 [2].

2D FIR
Filter

Shading
Correction

HalftoningX-zoom

Image Data
from Scanner

to LSU
(Laser Scanning Unit)

Fig. 1. Image processing flow for a digital copier

2. TMS320C6414 ARCHITECTURE AND PROGRAM
DEVELOPMENT ENVIRONMENTS

2.1. TMS320C6414 Architecture

The C6000 family employs a very long word instruction (VLIW)
set architecture to increase the performance while providing the
flexibility in programming. We can also expect fairly good high-
level language oriented development environments since the
advance of VLIW compiler is quite dramatic in recent years [3].
The C64x architecture supports packed data processing (sub-
word parallelism) so that four 8-bit operations can be conducted
using one 32-bit ALU. It also supports double word (64 bit)
load and store from non-aligned memory, contains more number
of registers, and allows the access of any registers at the other
data-path as operands. For example, the dotpsu4 instruction can
perform the dot-product of four 8-bit data using M1 or M2
functional unit. Besides this instruction, the C64x architecture
supports ADD, SUB, MPY, PACK, and UNPK of four 8-bit data
using a functional unit in the data-paths.

2.2. Program Development Environments

There are basically three different application development
methods using C6x architecture. A direct way is to conduct
manual assembly programming. Obviously, this is a very
difficult method to apply for the C64x architecture because of
the deep pipeline, multiple functional units and the need of
packed data processing. The second method is using the VLIW
compiler. This is the most convenient method to a programmer.
However, the performance for time-critical operations is yet to
be satisfactory in many cases. Especially, the compiler can
hardly choose instructions using packed data processing. The
third approach is using the “ assembly optimizer.” A
programmer develops an application code using C6x instructions
in a serial manner. The, so called, linear assembly programming
is much easier since a programmer does not have to consider the
pipelining fill or utilization of multiple functional units. The
assembly optimizer produces an optimized, in other words
parallelized and pipelined, version from this linear assembly
code.

II - 6210-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

3. IMPLEMENTATION OF IMAGE PROCESSING
ALGORITHMS

3.1. Shading Correction

The shading correction process compensates for the non-
constant intensity of the light source of the scanning device
along a line. This is rather a simple step and just needs to
multiply the correction coefficients to the scanned line data.
Note that the coefficients and the line data are all represented in
8-bit. In the non packed-data linear assembly coding for the
shading correction, one pixel data represented in 8-bit is loaded
by the ldbu (load byte unsigned) instruction and only one pixel
is executed for each loop. However, in the packed-data linear
assembly version, four pixels are loaded and executed at each
loop. The results are saved to a pair of registers in 16-bit format.
Note that mpyu4 (multiply unsigned by unsigned packed 8-bit)
instruction is used for the multiplication with the coefficients.
However, there are some other extra works, such as shru2 for
the shift of packed data, cmpgt2 for clamping and packl4 for
packing to four 8-bit data. Figure 2-(a) shows the initially
optimized linear assembly code with packed-data for shading
correction. This code requires 17 cycles for each loop, which
translates 4.25 cycles for each pixel.

loop: ; PIPED LOOP KERNEL

 LDW .D2T2 *B5++,B7 ; ̂|23|
|| LDW .D1T1 *A3++,A4 ; ̂|24|

 NOP 4
 MPYU4 .M1X B7,A4,A5:A4 ; ̂|25|
 NOP 3
 SHRU2 .S1 A4,0x7,A4 ; ̂|29|

 SHRU2 .S2X A5,0x7,B7 ; ̂|28|
|| CMPGT2 .S1 A4,A8,A9 ; ̂|33|

 MV .D1 A4,A5 ; |31|
|| [A1] BDEC .S1 loop,A1 ;
|| AND .L1 0x1,A9,A0 ; ̂|36|
|| CMPGT2 .S2 B7,B6,B8 ; ̂|32|

 AND .D2 0x2,B8,B1 ; |35|
	MV .S2 B7,B8 ;	30
	AND .D1 0x2,A9,A0 ;	37
	AND .L2 0x1,B8,B0 ; ̂	34
	[A0] OR .S1 A4,A7,A5 ; ̂	40

 [B0] OR .D2X B7,A7,B8 ; ̂|38|
|| [A0] OR .D1 A4,A6,A5 ; ̂|41|

 [B1] OR .D2X B7,A6,B8 ; ̂|39|
 PACKL4 .L2X B8,A5,B7 ; ̂|42|
 STW .D2T2 B7,*B4++ ; ̂|60|

Fig. 2-(a). Optimized linear assembly code with packed-data

 for shading correction without a dependency directive.

Here we can find that there are 7 nop cycles inside of the loop,
which is due to the dependency problem incurred by the load
and store instructions. However, there is no dependency among
the memory accesses in this algorithm. So, we add an optimizer
directive of no_mdep to indicate that there is no memory

dependency in this code, which results in the program shown in
Fig. 2-(b). This code requires 5 cycles for each loop, which
translates 1.25 cycles for each pixel. We also tried manual
assembly programming, which results in 4 cycles for each loop.
We also developed a program that does not utilize packed-data
instructions. The results are summarized in Table 1.

loop: ; PIPED LOOP KERNEL

 AND .D2 0x2,B9,B0 ; |35|
|| [A0] OR .D1 A4,A6,A3 ; ^ |41|

|| [B0] OR .S2X B7,A7,B8 ; ^ |38|

 [B0] OR .D2X B7,A6,B8 ; ^ |39|
|| SHRU2 .S1 A4,0x7,A4 ; @ ^ |29|

 CMPGT2 .S1 A4,A8,A5 ; @ ^ |33|
|| SHRU2 .S2X A5,0x7,B7 ; @ ^ |28|

|| MPYU4 .M1X B7,A16,A5:A4 ; @@|25|
|| LDW .D1T1 *A9++,A16 ; @@@|24|

|| LDW .D2T2 *B4++,B7 ; @@@|23|

 [A2] MPYSU .M1 2,A2,A2 ;

|| PACKL4 .L2X B8,A3,B8 ; |42|

	MV .D1 A4,A3 ; @	31
	AND .S1 0x1,A5,A0 ; @ ^	36
	CMPGT2 .S2 B7,B6,B9 ; @ ^	32

 [!A2] STW .D2T2 B8,*B5++ ; |60|

|| [A1] BDEC .S1 loop,A1 ; @
|| MV .S2 B7,B8 ; @|30|
|| AND .D1 0x2,A5,A0 ; @|37|

|| AND .L2 0x1,B9,B0 ; @ ^ |34|
|| [A0] OR .L1 A4,A7,A3 ; @ ^ |40|

Fig. 2-(b). Optimized linear assembly code with packed-data

 for shading correction with a dependency directive.

Table 1. The number of operations for shading correction

Linear assembly
without

packed-data

Linear assembly
with

packed-data

Manually
optimized
assembly

without
opt.

with
opt.

without
opt.

with
opt.

-

Cycles
/pixel

21 4.25 7.75 1.25 1

3.2. 2D FIR Filter

The 2-dimensional filter has a size of 7*5, and is used for image
enhancement and noise suppression. This is the most computa-
tion intensive step in the real-time implementation of a digital
copier. The input data are dot-producted with the signed 8-bit
filter coefficients and the result is shifted for scaling, and
clamped to 8-bit unsigned value.
The non packed-data version of code can utilize the symmetry of
the filter coefficients for reducing the number of multiplications.
In the packed-data version of the code, the non-aligned double
word load instruction, ldndw, is used for loading 8 pixels of data,
and dotpsu4 instruction is used intensively, which conducts
multiply and add operations for 4 taps.

II - 622

➡ ➡

The experimental results show that the assembly-optimized non
packed-data linear assembly code for 2D filter requires about 22
cycles, and the assembly-optimized packed-data linear assembly
version, whose code is shown in Fig. 3, needs 6 cycles. Note
that the manually optimized version also requires 6 cycles.

loop: ; PIPED LOOP KERNEL

 [B0] BDEC .S2 loop,B0 ;
	ADD .S1X B16,A8,A5 ;	70
	DOTPSU4 .M2X B8,A6,B17 ; @@	41
	DOTPSU4 .M1 A26,A5,A28 ; @@	46
	LDNDW .D1T1 *A16,A7:A6 ; @@@ ^	34

 SHR .S1 A5,0x3,A5 ; |73| divide 8
	ADD .D2X B16,A28,B5 ; @	63
	ADD .L1X B5,A7,A30 ; @	64
	DOTPSU4 .M1 A25,A8,A27 ; @@	54
	LDNDW .D1T1 *+A16[A20],A5:A4 ; @@@ ^	35

 CMPLT .L1 A5,A21,A0 ; |75|
	ADD .S1 A27,A29,A29 ; @	66
	ADD .D2 B5,B4,B18 ; @	65
	DOTPSU4 .M1 A17,A7,A7 ; @@	51
	DOTPSU4 .M2X B6,A6,B5 ; @@	50
	LDNDW .D1T1 *+A16[A3],A9:A8 ; @@@ ̂	37

 CMPGT .L1 A5,A23,A0 ; |76|
|| [A0] MV .S1 A21,A5 ; |80|
|| ADD .D2 B16,B17,B16 ; @|68|

	DOTPSU4 .M1 A26,A9,A29 ; @@	55
	DOTPSU4 .M2X B9,A4,B16 ; @@	45
	LDNDW .D1T1 *+A16[A24],A7:A6 ; @@@ ^	36

 [A1] MPYSU .M1 2,A1,A1 ;
|| [A0] MV .S1 A23,A5 ; |81|

	ADD .L1X A30,B18,A4 ; @	67
	DOTPSU4 .M2 B8,B4,B16 ; @@	58
	LDNDW .D1T2 *+A16[A18],B5:B4 ; @@@ ̂	38

 [!A1] STB .D1T1 A5,*A22++ ; |85|

	ADD .S1 A29,A4,A8 ; @	69
	DOTPSU4 .M2 B7,B5,B17 ; @@	59
	ADD .D2X B17,A8,B4 ; @@	62

|| ADD .L1 0x1,A16,A16 ; @@@ ^ |78|
|| DOTPSU4 .M1 A19,A7,A8 ; @@@|42|

Fig. 3. Optimized packed-data linear assembly code for

2D FIR filter.

3.3. X-zoom

A digital copier independently zooms original image in X-Y
directions. The zooming ratio of 25% to 400% in 1% step is
usually needed. The X-zoom is the scaling of the original image
along a scanned line and is performed by digital processing,
while the Y-zoom is conducted by changing the scanning speed.
We employed the interpolation based method for X-zoom, and
an 8-tap FIR filter is employed. Since a wide range of zooming
ratio is needed, it is necessary to find out the value of the
hypothetical pixel point. Note that this location is pre-computed
according to the zooming ratio to reduce the overhead of real-
time processing [2]. The packed-data version code utilized
ldndw instruction and dotpsu4 instruction intensively. The
results are summarized in Table 2.

3.4. Halftoning

The halftoning is a very important step in a digital copier
because most printing units only support bi-level or a few levels
for each pixel while the scanned image is represented in 8-bit
data. We use the error diffusion method with the 8*3 kernel
shown in Fig 4. Although the original Floyd and Steinberg
kernel employs a very small order of the error diffusion filter, a
higher order filter is employed mainly because of the increase in
the resolution of image (600 dpi) [4]. When the filter order is
lower than the order of parallelism supported by the architecture,
some multiple output parallel computation methods can yield
better results [5]. However, in this study, we just try to compute
the filter kernel in parallel because the order of the filter is quite
large. Note that it is very complex to compute multiple pixels at
a time since the quantization error of the current pixel is used as
the input of the next pixel in the error diffusion method.
The packed-data version code utilized ldndw and dotpsu4
instructions repeatedly. The error values of the previous pixels
are stored in the registers, thus they need not be loaded inside of
the loop. The assembly-optimized packed-data linear assembly
version code is shown in Fig. 5. The non-packed-data optimized
linear assembly code for halftoning requires about 15 cycles, and
the optimized packed-data linear assembly code needs about 7
cycles, and the manually optimized version needs 7 cycles.

e00 e01 e02 e03 e04 e05 e06 e07

e10 e11 e12 e13 e14 e15 e16 e17

e20 e21 e22 *

Fig. 4. Error diffusion filter kernel.

4. IMPLEMENTATION RESULTS AND THE EFFECTS
OF CACHE MISSES

Table 2 summarizes the implementation results of the functional
steps shown in Fig. 1. As shown in this table, the quality, in
terms of the number of cycles, of the optimized linear assembly
version is almost similar to that of the manually optimized
assembly codes. Note that the version with the packed-data
instructions is about 100% to 267 % more efficient than the non
packed-data version.
We also need to consider the cache miss effects. TMS320C6414
contains two separate L1 caches of 16 KB, one for program and
the other for data. There is also 1 MB of L2 cache, which is
configured as a RAM block. Since the size of codes shown
above are all very small, there is no need to worry about the
program cache misses. This is a very typical data intensive
application. Since the 2D filtering and error diffusion halftoning
require multiple input lines, a small block of input data is stored
in the L1 cache memory, instead of holding a line data. The
cache evaluation results are shown in Table 3. Note that when
the input data is stored as an array of 32*256, where 256 is the
number of lines, the cache misses are substantial. However, for
the other cases, the miss effects are not noticeable due to the
large size of L1 cache and the block processing of image data.

II - 623

➡ ➡

loop: ; PIPED LOOP KERNEL

 ADD .S2X B17,A16,B4 ; |59|
	DOTPSU4 .M2 B4,B22,B5 ; @	48
	DOTPSU4 .M1 A4,A7,A9 ; @	52
	LDNDW .D2T1 *+B9[B20],A5:A4 ; @@	43

 [A0] BDEC .S1 loop,A0 ;
	ADD .S2 B17,B4,B5 ; ̂	60
	DOTPSU4 .M2 B5,B8,B4 ; @	49
	LDNW .D2T1 *+B9[B16],A4 ; @@	44

 SHR .S2 B5,0x3,B5 ; ̂|61|
|| LDNDW .D2T2 *B9,B5:B4 ; @@|39|

 MV .D2 B23,B24 ;
|| ADD .S2 B4,B5,B17 ; ̂|63|
|| ADD .D1 A4,A5,A16 ; @|57|

 ADD .D1 1,A8,A8 ; |65|
|| CMPGT .L2 B17,B21,B0 ; ̂|65|
|| MV .S2 B9,B23 ;
|| LDBU .D2T2 *B18++,B4 ; @|45|

 [B0] STB .D1T1 A18,*-A8(1) ; |66|
	[B0] SUB .S2 B17,B7,B17 ; ̂	67
	ADD .L2 B5,B4,B4 ; @	56
	ADD .D2 0x1,B9,B9 ; @@	72
	DOTPSU4 .M1 A4,A6,A4 ; @@	50

 [!B0] STB .D1T1 A17,*-A8(1) ; |68|
|| MV .S2 B24,B6 ;
	STB .D2T2 B17,*+B6[B19] ;	70
	ADD .L2X A9,B4,B17 ; @	58
	MPY .M2 0x2,B17,B17 ; @ ̂	53
	DOTPSU4 .M1 A5,A3,A5 ; @@	51

Fig. 5. Optimized packed-data linear assembly code for

halftoning.

Table 2. Implementation results (cycles/pixel).

 Optimized
linear

assembly
without

packed-data

Optimized
linear

assembly
with

packed-data

Manually
optimized
assembly

Min.
cycles

Shading
Correction

4.25 1.25 1 0.375

7*5 2D
Filter

22 6 6 6

X-zoom 10 5 5 4
Halftoning 15 7 7 5

5. CONCLUDING REMARKS

The linear assembly programming followed by the assembly
optimization in software results in a quite good quality of code,
which is comparable to that of the manually optimized version,
when the dependencies among memory accesses are properly
suggested in terms of the directives. The packed-data processing
instructions also bring about 100% to 267% of speedup. The
developed code requires about 19 cycles for each pixel, which

translates that a 600MHz C6414 CPU can perform all the real-
time processing needed for a 30 ppm, 600 dpi, A4 size
copier. The programmable CPU based architecture not only can
support real-time image processing but is much better for
implementing complex off-line functions, such as image
compression. Thus, the DSP-based hardware and programs
seem quite attractive for the implementation of next generation
multi-function digital copiers.

Table 3. Data access statistics (stall/read hit/read miss).

128*64 64*128 32*256

Shading
Correction

115/
4722/20

103/
5863/18

103/
6643/18

7*5 2D
Filter

263/
79578/45

290/
82388/50

985/
87904/166

X-zoom
241/

41379/35
199/

42857/29
937/

45695/135

Halftoning
889/

55026/150
848/

57082/141
1628/

60919/272

6. ACKNOWLEDGMENTS

This study was supported by the Brain Korea 21 Project (0019-
19990027) and the National Research Laboratory program
(2000-X-7155) supported by the Ministry of Science and
Technology in KOREA.

7. REFERENCES

[1] TMS320C6414 Data Sheet, Aug. 2002, Texas Instruments.
[2] J. W. Ahn and W. Sung, “ Pentium-MMX based
implementation of a digital copier,” in Proc. 1998 IEEE
Workshop on Signal Processing Systems(SiPS98), Oct. 1998, pp.
142-151.
[3] TMS320C6000 Optimizing C Compiler User’ s Guide,
Literature number SPRU187I, Apr. 2001, Texas Instruments.
[4] R. W. Floyd and L. Steinberg, “ An adaptive algorithm for
spatial grayscale,” in Proceedings for SID, vol. 17, no. 2, 1976,
pp. 75-77.
[5] Jae-Woo Ahn and Wonyong Sung, “ Multimedia processor-
based implementation of an error-diffusion halftoning algorithm
exploiting subword parallelism,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 16, no. 2, pp. 129-138, Feb.
2001.
[6] TMS320C6000 Programmer’ s Guide, Literature number
SPRU198F, Feb. 2001, Texas Instruments.

II - 624

➡ ➠

