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ABSTRACT 
 
In this paper, we developed real-time image processing programs 
for a digital copier using TMS320C6414 CPU.  The CPU is 
good for real-time image processing because of multiple and 
packed-data processing functional units.  However, it needs 
careful programming to exploit deep pipelining, multiple 
functional units and packed-data instructions.  All the critical 
functions for the implementation of a digital copier, which 
include shading correction, X-zoom, 2D filtering, and halftoning, 
are implemented through assembly programming. 
Programs using linear assembly programming followed by 
the assembly optimization in software are compared with the 
manual assembly coded versions.  The results show that explicit 
disambiguation of memory dependency is most critical for the 
assembly optimization. The cache miss effects are also evaluated. 
 
 

1. INTRODUCTION 
 
Digital copiers are now becoming popular due to its versatile 
ability to edit, enhance, store and transmit  scanned images. 
Currently, digital copiers are mostly implemented using 
hardwired image processing circuits because of the demand for 
high throughput. However, the hardware based circuits are 
disadvantageous for implementing complex functions, such as 
editing and compression. The Texas Instruments’ digital signal 
processor TMS320C6414 can achieve a very high processing 
rate due to its VLIW architecture and packed data processing 
support [1].  The CPU can process up to 8 instructions at each 
clock because of its pipelined and VLIW characteristics.  It can 
also process up to four pixels of 8-bit data at each instruction 
because of the packed data processing capability. The prototype 
digital copier developed performs the basic image processing 
steps depicted in Fig. 1 [2]. 
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Fig. 1. Image processing flow for a digital copier 
 

2. TMS320C6414 ARCHITECTURE AND PROGRAM 
DEVELOPMENT ENVIRONMENTS 

 
2.1. TMS320C6414 Architecture 
 
The C6000 family employs a very long word instruction (VLIW) 
set architecture to increase the performance while providing the 
flexibility in programming. We can also expect fairly good high-
level language oriented development environments since the 
advance of VLIW compiler is quite dramatic in recent years [3].  
The C64x architecture supports packed data processing (sub-
word parallelism) so that four 8-bit operations can be conducted 
using one 32-bit ALU.  It also supports double word (64 bit) 
load and store from non-aligned memory, contains more number 
of registers, and allows the access of any registers at the other 
data-path as operands. For example, the dotpsu4 instruction can 
perform the dot-product of four 8-bit data using M1 or M2 
functional unit.  Besides this instruction, the C64x architecture 
supports ADD, SUB, MPY, PACK, and UNPK of four 8-bit data 
using a functional unit in the data-paths. 
 
2.2. Program Development Environments 
 
There are basically three different application development 
methods using C6x architecture. A direct way is to conduct 
manual assembly programming.  Obviously, this is a very 
difficult method to apply for the C64x architecture because of 
the deep pipeline, multiple functional units and the need of 
packed data processing.  The second method is using the VLIW 
compiler. This is the most convenient method to a programmer.  
However, the performance for time-critical operations is yet to 
be satisfactory in many cases.  Especially, the compiler can 
hardly choose instructions using packed data processing.  The 
third approach is using the “ assembly optimizer.”  A 
programmer develops an application code using C6x instructions 
in a serial manner.  The, so called, linear assembly programming 
is much easier since a programmer does not have to consider the 
pipelining fill or utilization of multiple functional units.  The 
assembly optimizer produces an optimized, in other words 
parallelized and pipelined, version from this linear assembly 
code.  
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3. IMPLEMENTATION OF IMAGE PROCESSING 
ALGORITHMS 

 
3.1. Shading Correction 
 
The shading correction process compensates for the non-
constant intensity of the light source of the scanning device 
along a line.  This is rather a simple step and just needs to 
multiply the correction coefficients to the scanned line data.  
Note that the coefficients and the line data are all represented in 
8-bit.  In the non packed-data linear assembly coding for the 
shading correction, one pixel data represented in 8-bit is loaded 
by the ldbu (load byte unsigned) instruction and only one pixel 
is executed for each loop.  However, in the packed-data linear 
assembly version, four pixels are loaded and executed at each 
loop.  The results are saved to a pair of registers in 16-bit format.  
Note that mpyu4 (multiply unsigned by unsigned packed 8-bit) 
instruction is used for the multiplication with the coefficients.  
However, there are some other extra works, such as shru2 for 
the shift of packed data, cmpgt2 for clamping and packl4 for 
packing to four 8-bit data.  Figure 2-(a) shows the initially 
optimized linear assembly code with packed-data for shading 
correction. This code requires 17 cycles for each loop, which 
translates 4.25 cycles for each pixel.  
 
loop:    ; PIPED LOOP KERNEL

               LDW       .D2T2     *B5++,B7           ;   ̂|23| 
||            LDW       .D1T1     *A3++,A4           ;   ̂|24| 

               NOP                     4
               MPYU4    .M1X      B7,A4,A5:A4       ;   ̂|25| 
               NOP                     3
               SHRU2    .S1         A4,0x7,A4          ;   ̂|29| 

               SHRU2    .S2X       A5,0x7,B7          ;   ̂|28| 
||            CMPGT2  .S1         A4,A8,A9           ;   ̂|33| 

               MV           .D1       A4,A5                 ; |31| 
|| [ A1]   BDEC       .S1        loop,A1              ; 
||            AND        .L1         0x1,A9,A0          ;   ̂|36| 
||            CMPGT2  .S2         B7,B6,B8           ;   ̂|32| 

               AND        .D2        0x2,B8,B1          ; |35| 
||            MV          .S2        B7,B8                ; |30| 
||            AND        .D1        0x2,A9,A0          ; |37| 
||            AND        .L2        0x1,B8,B0          ;   ̂|34| 
|| [ A0]   OR          .S1        A4,A7,A5            ;   ̂|40| 

    [ B0]   OR          .D2X      B7,A7,B8           ;   ̂|38| 
|| [ A0]   OR          .D1        A4,A6,A5           ;   ̂|41| 

    [ B1]   OR           .D2X      B7,A6,B8           ;   ̂|39| 
               PACKL4   .L2X       B8,A5,B7            ;   ̂|42| 
               STW        .D2T2     B7,*B4++           ;   ̂|60|  
 
Fig. 2-(a).  Optimized linear assembly code with packed-data 

 for shading correction without a dependency directive. 
 
 
Here we can find that there are 7 nop cycles inside of the loop, 
which is due to the dependency problem incurred by the load 
and store instructions.  However, there is no dependency among 
the memory accesses in this algorithm.  So, we add an optimizer 
directive of no_mdep to indicate that there is no memory  

dependency in this code, which results in the program shown in 
Fig. 2-(b).  This code requires 5 cycles for each loop, which 
translates 1.25 cycles for each pixel.   We also tried manual 
assembly programming, which results in 4 cycles for each loop.   
We also developed a program that does not utilize packed-data 
instructions.   The results are summarized in Table 1.  
 
loop:    ; PIPED LOOP KERNEL

               AND        .D2      0x2,B9,B0         ; |35| 
|| [ A0]   OR          .D1      A4,A6,A3           ;  ^ |41| 

|| [ B0]   OR          .S2X    B7,A7,B8           ;  ^ |38| 

   [ B0]    OR           .D2X    B7,A6,B8          ;  ^ |39| 
||            SHRU2     .S1      A4,0x7,A4         ; @ ^ |29| 

               CMPGT2  .S1      A4,A8,A5           ; @ ^ |33| 
||            SHRU2     .S2X    A5,0x7,B7         ; @ ^ |28| 

||            MPYU4    .M1X    B7,A16,A5:A4    ; @@|25| 
||            LDW        .D1T1   *A9++,A16        ; @@@|24| 

||            LDW        .D2T2   *B4++,B7         ; @@@|23| 

   [ A2]    MPYSU    .M1      2,A2,A2            ; 

||            PACKL4   .L2X     B8,A3,B8          ; |42| 

||            MV          .D1      A4,A3               ; @|31| 
||            AND        .S1      0x1,A5,A0         ; @ ^ |36| 
||            CMPGT2  .S2      B7,B6,B9          ; @ ^ |32| 

    [!A2]   STW         .D2T2  B8,*B5++          ; |60| 

|| [ A1]   BDEC       .S1      loop,A1             ; @
||            MV           .S2      B7,B8               ; @|30| 
||            AND         .D1      0x2,A5,A0         ; @|37| 

||            AND         .L2      0x1,B9,B0         ; @ ^ |34| 
|| [ A0]   OR           .L1      A4,A7,A3           ; @ ^ |40|  
 
Fig. 2-(b). Optimized linear assembly code with packed-data 

 for shading correction with a dependency directive. 
 
 

Table 1. The number of operations for shading correction 
 

Linear assembly 
without 

packed-data 

Linear assembly 
with 

packed-data 

Manually 
optimized  
assembly 

 

without 
opt. 

with 
opt. 

without 
opt. 

with 
opt. 

- 

Cycles 
/pixel 

21 4.25 7.75 1.25 1 

 
 
3.2. 2D FIR Filter 
 
The 2-dimensional filter has a size of 7*5, and is used for image 
enhancement and noise suppression. This is the most computa- 
tion intensive step in the real-time implementation of a digital 
copier.  The input data are dot-producted with the signed 8-bit 
filter coefficients and the result is shifted for scaling, and 
clamped to 8-bit unsigned value. 
The non packed-data version of code can utilize the symmetry of 
the filter coefficients for reducing the number of multiplications. 
In the packed-data version of the code, the non-aligned double 
word load instruction, ldndw, is used for loading 8 pixels of data, 
and dotpsu4 instruction is used intensively, which conducts 
multiply and add operations for 4 taps.   
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The experimental results show that the assembly-optimized non 
packed-data linear assembly code for 2D filter requires about 22 
cycles, and the assembly-optimized packed-data linear assembly 
version, whose code is shown in Fig. 3, needs 6 cycles.  Note 
that the manually optimized version also requires 6 cycles. 
 
loop:    ; PIPED LOOP KERNEL

    [ B0]   BDEC        .S2          loop,B0                   ; 
||           ADD           .S1X        B16,A8,A5               ; |70| 
||           DOTPSU4   .M2X        B8,A6,B17               ; @@|41| 
||           DOTPSU4   .M1          A26,A5,A28             ; @@|46| 
||           LDNDW      .D1T1      *A16,A7:A6              ; @@@ ^ |34| 

              SHR           .S1          A5,0x3,A5               ; |73|  divide 8
||           ADD           .D2X        B16,A28,B5            ; @|63| 
||           ADD           .L1X         B5,A7,A30              ; @|64| 
||           DOTPSU4    .M1         A25,A8,A27            ; @@|54| 
||           LDNDW       .D1T1      *+A16[A20],A5:A4  ; @@@ ^ |35| 

              CMPLT         .L1         A5,A21,A0              ; |75| 
||           ADD            .S1         A27,A29,A29           ; @|66| 
||           ADD            .D2         B5,B4,B18              ; @|65| 
||           DOTPSU4     .M1        A17,A7,A7              ; @@|51| 
||           DOTPSU4     .M2X      B6,A6,B5                ; @@|50| 
||           LDNDW        .D1T1     *+A16[A3],A9:A8    ; @@@  ̂|37| 

              CMPGT         .L1        A5,A23,A0              ; |76| 
|| [ A0]   MV              .S1        A21,A5                   ; |80| 
||           ADD             .D2        B16,B17,B16          ; @|68| 

||           DOTPSU4     .M1        A26,A9,A29            ; @@|55| 
||           DOTPSU4     .M2X      B9,A4,B16              ; @@|45| 
||           LDNDW        .D1T1     *+A16[A24],A7:A6  ; @@@ ^ |36| 

    [ A1]   MPYSU        .M1        2,A1,A1                  ; 
|| [ A0]   MV              .S1        A23,A5                   ; |81| 

||           ADD             .L1X      A30,B18,A4             ; @|67| 
||           DOTPSU4      .M2      B8,B4,B16               ; @@|58| 
||           LDNDW         .D1T2   *+A16[A18],B5:B4   ; @@@  ̂|38| 

   [!A1]   STB              .D1T1    A5,*A22++             ; |85| 

||           ADD             .S1        A29,A4,A8              ; @|69| 
||           DOTPSU4      .M2       B7,B5,B17             ; @@|59| 
||           ADD             .D2X      B17,A8,B4             ; @@|62| 

||           ADD             .L1        0x1,A16,A16           ; @@@ ^ |78| 
||           DOTPSU4      .M1       A19,A7,A8             ; @@@|42|  
 
 
Fig. 3. Optimized packed-data linear assembly code for 

2D FIR filter. 
 
 
3.3. X-zoom 
 
A digital copier independently zooms original image in X-Y 
directions.  The zooming ratio of 25% to 400% in 1% step is 
usually needed. The X-zoom is the scaling of the original image 
along a scanned line and is performed by digital processing, 
while the Y-zoom is conducted by changing the scanning speed.  
We employed the interpolation based method for X-zoom, and 
an 8-tap FIR filter is employed.   Since a wide range of zooming 
ratio is needed, it is necessary to find out the value of the 
hypothetical pixel point.  Note that this location is pre-computed 
according to the zooming ratio to reduce the overhead of real-
time processing [2]. The packed-data version code utilized 
ldndw instruction and dotpsu4 instruction intensively. The 
results are summarized in Table 2. 

3.4. Halftoning 
 
The halftoning is a very important step in a digital copier 
because most printing units only support bi-level or a few levels 
for each pixel while the scanned image is represented in 8-bit 
data.  We use the error diffusion method with the 8*3 kernel 
shown in Fig 4.  Although the original Floyd and Steinberg 
kernel employs a very small order of the error diffusion filter, a 
higher order filter is employed mainly because of the increase in 
the resolution of image (600 dpi) [4]. When the filter order is 
lower than the order of parallelism supported by the architecture, 
some multiple output parallel computation methods can yield 
better results [5].  However, in this study, we just try to compute 
the filter kernel in parallel because the order of the filter is quite 
large.  Note that it is very complex to compute multiple pixels at 
a time since the quantization error of the current pixel is used as 
the input of the next pixel in the error diffusion method. 
The packed-data version code utilized ldndw and dotpsu4 
instructions repeatedly.  The error values of the previous pixels 
are stored in the registers, thus they need not be loaded inside of 
the loop. The assembly-optimized packed-data linear assembly 
version code is shown in Fig. 5.  The non-packed-data optimized 
linear assembly code for halftoning requires about 15 cycles, and 
the optimized packed-data linear assembly code needs about 7 
cycles, and the manually optimized version needs 7 cycles. 
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Fig. 4. Error diffusion filter kernel. 

 
 
 

4. IMPLEMENTATION RESULTS AND THE EFFECTS 
OF CACHE MISSES 

 
Table 2 summarizes the implementation results of the functional 
steps shown in Fig. 1.  As shown in this table, the quality, in 
terms of the number of cycles, of the optimized linear assembly 
version is almost similar to that of the manually optimized 
assembly codes.  Note that the version with the packed-data 
instructions is about 100% to 267 % more efficient than the non 
packed-data version.  
We also need to consider the cache miss effects. TMS320C6414 
contains two separate L1 caches of 16 KB, one for program and 
the other for data.   There is also 1 MB of L2 cache, which is 
configured as a RAM block. Since the size of codes shown 
above are all very small, there is no need to worry about the 
program cache misses. This is a very typical data intensive 
application.  Since the 2D filtering and error diffusion halftoning 
require multiple input lines, a small block of input data is stored 
in the L1 cache memory, instead of holding a line data. The 
cache evaluation results are shown in Table 3. Note that when 
the input data is stored as an array of 32*256, where 256 is the 
number of lines, the cache misses are substantial.  However, for 
the other cases, the miss effects are not noticeable due to the 
large size of L1 cache and the block processing of image data. 
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loop:    ; PIPED LOOP KERNEL

                 ADD           .S2X           B17,A16,B4             ; |59| 
||              DOTPSU4   .M2             B4,B22,B5              ; @|48| 
||              DOTPSU4   .M1             A4,A7,A9                ; @|52| 
||              LDNDW      .D2T1          *+B9[B20],A5:A4    ; @@|43| 

   [ A0]      BDEC         .S1              loop,A0                  ; 
||              ADD           .S2             B17,B4,B5              ;   ̂|60| 
||              DOTPSU4   .M2             B5,B8,B4                ; @|49| 
||              LDNW        .D2T1          *+B9[B16],A4         ; @@|44| 

                 SHR            .S2            B5,0x3,B5               ;   ̂|61| 
||              LDNDW       .D2T2        *B9,B5:B4               ; @@|39| 

                 MV             .D2             B23,B24             ; 
||              ADD           .S2             B4,B5,B17          ;   ̂|63| 
||              ADD           .D1             A4,A5,A16          ; @|57| 

                 ADD            .D1            1,A8,A8              ; |65| 
||              CMPGT        .L2             B17,B21,B0        ;   ̂|65| 
||              MV              .S2             B9,B23              ; 
||              LDBU          .D2T2         *B18++,B4          ; @|45| 

     [ B0]    STB              .D1T1        A18,*-A8(1)       ; |66| 
||  [ B0]    SUB              .S2           B17,B7,B17        ;   ̂|67| 
||              ADD             .L2            B5,B4,B4           ; @|56| 
||              ADD             .D2           0x1,B9,B9           ; @@|72| 
||              DOTPSU4      .M1          A4,A6,A4            ; @@|50| 

     [!B0]    STB               .D1T1       A17,*-A8(1)       ; |68| 
||              MV                .S2           B24,B6              ; 
||              STB              .D2T2        B17,*+B6[B19]  ; |70| 
||              ADD              .L2X         A9,B4,B17          ; @|58| 
||              MPY              .M2           0x2,B17,B17      ; @  ̂|53| 
||              DOTPSU4      .M1           A5,A3,A5           ; @@|51|  
 
Fig. 5. Optimized packed-data linear assembly code for 

halftoning. 
 
 

Table 2. Implementation results (cycles/pixel). 
 

 Optimized 
linear 

assembly 
without 

packed-data 

Optimized 
linear 

assembly 
with 

packed-data 

Manually 
optimized 
assembly 

Min. 
cycles 

Shading 
Correction 

4.25 1.25 1 0.375 

7*5 2D 
Filter 

22 6 6 6 

X-zoom 10 5 5 4 
Halftoning 15 7 7 5 

 
 

5. CONCLUDING REMARKS 
 
The linear assembly programming followed by the assembly 
optimization in software results in a quite good quality of code, 
which is comparable to that of the manually optimized version, 
when the dependencies among memory accesses are properly 
suggested in terms of the directives. The packed-data processing 
instructions also bring about 100% to 267% of speedup. The 
developed code requires about 19 cycles for each pixel, which 

translates that a 600MHz C6414 CPU can perform all the real-
time processing needed for a 30 ppm, 600 dpi, A4 size 
copier.  The programmable CPU based architecture not only can 
support real-time image processing but is much better for 
implementing complex off-line functions, such as image 
compression.  Thus, the DSP-based hardware and programs 
seem quite attractive for the implementation of next generation 
multi-function digital copiers. 
 

 
Table 3.  Data access statistics (stall/read hit/read miss). 

 
 
 

128*64 64*128 32*256 

Shading 
Correction 

115/ 
4722/20 

103/ 
5863/18 

103/ 
6643/18 

7*5 2D 
Filter 

263/ 
79578/45 

290/ 
82388/50 

985/ 
87904/166 

X-zoom 
241/ 

41379/35 
199/ 

42857/29 
937/ 

45695/135 

Halftoning 
889/ 

55026/150 
848/ 

57082/141 
1628/ 

60919/272 
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