IMPLEMENTATION OF A DIGITAL COPIER USING TM S320C6414 VLIW
DSP PROCESSOR

Taeksang Hwang

Sindoricoh Co., Ltd.
277-22, 2Ka, Sungsu-dong, Sungdong-gu,
Seoul, KOREA 133-705
E-mail: taeksanghwang@sr.sindo.com

ABSTRACT

In this paper, we devel oped real-time image processing programs
for a digital copier using TMS320C6414 CPU. The CPU is
good for real-time image processing because of multiple and
packed-data processing functional units. However, it needs
careful programming to exploit deep pipelining, multiple
functional units and packed-data instructions. All the critical
functions for the implementation of a digital copier, which
include shading correction, X-zoom, 2D filtering, and halftoning,
are implemented through assembly programming.
Programsusing linear assembly programming followed by
the assembly optimizationin software are compared with the
manual assembly coded versions. The results show that explicit
disambiguation of memory dependency is most critical for the
assembly optimization. The cache miss effects are also evaluated.

1. INTRODUCTION

Digital copiers are now becoming popular due to its versatile
ability to edit, enhance, store and transmit scanned images.
Currently, digital copiers are mostly implemented using
hardwired image processing circuits because of the demand for
high throughput. However, the hardware based circuits are
disadvantageous for implementing complex functions, such as
editing and compression. The Texas Instruments’ digital signal
processor TMS320C6414 can achieve a very high processing
rate due to its VLIW architecture and packed data processing
support [1]. The CPU can process up to 8 ingtructions at each
clock because of its pipelined and VLIW characteristics. It can
also process up to four pixels of 8-bit data at each instruction
because of the packed data processing capability. The prototype
digital copier developed performs the basic image processing
steps depicted in Fig. 1 [2].

Image Data toLSU
from Scanner (Laser Scanning Unit)
| Swdng | Jf DFR | |l Halftoning ——»
Correction Filter -zoom "9

Fig. 1. Image processing flow for adigital copier

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-621

Wonyong Sung

School of Electrical Engineering
Seoul National University
San 56-1 Shilim-dong, Gwanak-gu,
Seoul, KOREA 151-742
E-mail: wysung@dsp.snu.ac.kr

2. TMS320C6414 ARCHITECTURE AND PROGRAM
DEVELOPMENT ENVIRONMENTS

2.1. TM S320C6414 Ar chitecture

The C6000 family employs a very long word instruction (VLIW)
set architecture to increase the performance while providing the
flexibility in programming. We can also expect fairly good high-
level language oriented development environments since the
advance of VLIW compiler is quite dramatic in recent years [3].
The C64x architecture supports packed data processing (sub-
word parallelism) so that four 8-bit operations can be conducted
using one 32-bit ALU. It also supports double word (64 bit)
load and store from non-aligned memory, contains more number
of registers, and allows the access of any registers at the other
data-path as operands. For example, the dotpsu4 instruction can
perform the dot-product of four 8-bit data using M1 or M2
functiona unit. Besides this instruction, the C64x architecture
supports ADD, SUB, MPY, PACK, and UNPK of four 8-bit data
using afunctional unit in the data-paths.

2.2. Program Development Environments

There are basically three different application development
methods using C6x architecture. A direct way is to conduct
manual assembly programming. Obviously, this is a very
difficult method to apply for the C64x architecture because of
the deep pipeling, multiple functional units and the need of
packed data processing. The second method is using the VLIW
compiler. This is the most convenient method to a programmer.
However, the performance for time-critical operations is yet to
be satisfactory in many cases. Especialy, the compiler can
hardly choose instructions using packed data processing. The
third approach is using the “ assembly optimizer.” A
programmer devel ops an application code using C6x instructions
in aserial manner. The, so called, linear assembly programming
is much easier since a programmer does not have to consider the
pipelining fill or utilization of multiple functional units. The
assembly optimizer produces an optimized, in other words
paralelized and pipelined, version from this linear assembly
code.

ICASSP 2003

3. IMPLEMENTATION OF IMAGE PROCESSING
ALGORITHMS

3.1. Shading Correction

The shading correction process compensates for the non-
constant intensity of the light source of the scanning device

dependency in this code, which results in the program shown in
Fig. 2-(b). This code requires 5 cycles for each loop, which
trandates 1.25 cycles for each pixel. We also tried manual
assembly programming, which results in 4 cycles for each loop.
We aso developed a program that does not utilize packed-data

instructions. Theresults are summarized in Table 1.

along a line. This is rather a simple step and just needs to loop: ; PIPED LOOP KERNEL
multiply the correction coefficients to the scanned line data.
Note that the coefficients and the line data are all represented in AND D2 0x2.B9.80 ;|35
8-bit. In the non packed-data linear assembly coding for the H %gg% 8'; 'g;x BA?'/:?'/B*S DA ||§é13||
shading correction, one pixel data represented in 8-bit is loaded ’ T '
by the Idbu (load byte unsigned) instruction and only one pixel [B0] OR D2X B7.A6.B8 ;7 139]
is executed for each loop. However, in the packed-data linear [SHRU2 .81 A4,0x7.A4 ;@ [29]
assembly version, four pixels are loaded and executed at each
loop. The results are saved to a pair of registersin 16-bit format. CMPGT2 .81 A4,A8A5 F@" |33
Note that mpyu4 (multiply unsigned by unsigned packed 8-hbit) I I I\S/I':’T(Ldi 512; Qg‘%gigm jg @||2258||
ingtruction is used for the multiplication with the coefficients. I LOW .DITI *AGHAIS - @@@)|24]
However, there are some other extra works, such as shru2 for I LDW D2T2 #Bd++ B7 : @@@) 23]
the shift of packed data, cmpgt2 for clamping and packl4 for
packing to four 8-bit data. Figure 2-(a) shows the initialy [A2] MPYSU M1 2A2A2 ;
optimized linear assembly code with packed-data for shading [PACKL4 .L2X BB,A3,B8 ;42|
correction. This code requires 17 cycles for each loop, which H m’D 211 (/)%41,AAS5 20 ':glf}:lsel
: . X1, s s
trandates 4.25 cycles for each pixel. I CMPGT? S2 B7.86.89 L@~ |32
loop: 5 PIPED LOOP KERNEL [1A2] STW .D2T2 B8,*B5++ ;1601
. [[A1] BDEC .81 loop,Al ;@
LOW D212 *B5++,B7 . | 23] [MV S2 B7.B8 ; @30
) LOW .DIT1 +A3+A4 1241 I AND DI O0x2,A5A0 L @37
NOP 4 [AND L2 0x1,89,B80 ;@ |34]
MPYU4 M1X B7,A4A5:A4 ~ 25| 101 OR L1 AATAS +@” 1401
NOP 3
SHRU2 .St A4,0x7 A4 ~29] Fig. 2-(b). Optimized linear assembly code with packed-data
for shading correction with a dependency directive.
SHRU2 .82X A5,0x7,B7 ~ 28|
I CMPGT2 .St A4,A8,A9 ~133]
MV Dl AAAS D131 Table 1. The number of operations for shading correction
[l [A1l BDEC .St loop.AT ;
[AND U 0x1,A9,A0 ™ 1361 Linear assembly | Linear assembly | Manualy
I CMPGT2 .S2 B7,86,88 ~132] without with optimized
AND D2 0x2.B8.B1 |35 packed-gaa packed-deta | ascembly
[MV 32 B7.88 ;30| without | with without | with)
[l AND .D1 0x2,A9,A0 ;1371 opt. opt. opt. opt.
I AND L2 0x1,B8B0 134 Cycles
[[A0] OR S1 A4,AT A5 ~ 40| Jpixel 21 4.25 7.75 125 1
[BO] OR .02xX B7,A7,88 ~138]
[1 TAO] OR D1 A4,A6,A5 ~141]
3.2. 2D FIR Filter
[B1] OR .D2X B7.A6,88 ~ 1391
gﬁ\?vKM "LDZ;;Z g?fgfl A ||g§ || The 2-dimensional filter has asize of 7*5, and is used for image

Fig. 2-(a). Optimized linear assembly code with packed-data
for shading correction without a dependency directive.

Here we can find that there are 7 nop cycles inside of the loop,
which is due to the dependency problem incurred by the load
and store instructions. However, there is no dependency among
the memory accesses in this algorithm. So, we add an optimizer
directive of no_mdep to indicate that there is no memory

enhancement and noise suppression. Thisisthe most computa-
tion intensive step in the real-time implementation of a digital
copier. The input data are dot-producted with the signed 8-bit
filter coefficients and the result is shifted for scaling, and
clamped to 8-bit unsigned value.

The non packed-data version of code can utilize the symmetry of
the filter coefficients for reducing the number of multiplications.
In the packed-data version of the code, the non-aligned double
word load instruction, ldndw, is used for loading 8 pixels of data,
and dotpsu4 instruction is used intensively, which conducts
multiply and add operations for 4 taps.

Il-622

The experimental results show that the assembly-optimized non
packed-data linear assembly code for 2D filter requires about 22
cycles, and the assembly-optimized packed-data linear assembly
version, whose code is shown in Fig. 3, needs 6 cycles. Note
that the manually optimized version also requires 6 cycles.

loop: ; PIPED LOOP KERNEL

[B0l BDEC 82 loop,B0 :

[ADD S1X B16.A8,A5 2 1701

[DOTPSU4 .M2X B8.A6,B817 ; @@)41]

I DOTPSU4 M1 A26,A5,A28 ; @@ 461

[LDNDW .DIT1 *A16,A7:A6 ; @@@ " |34]
SHR 81 A5,0x3,A5 ; 1731 divide 8

I ADD .D2x B16.A28,B5 ; @63

[ADD L1X B5,A7,A30 ; @64

I DOTPSU4 M1 A25,A8,A27 ; @@|54]

I LDNDW D1T1 *+A16[A20],A5:A4 ; @@@ " |35]
CMPLT L1 A5,A21,A0 2 1751

I ADD .51 A27.A29,A29 ; @|66|

[ADD .02 B5,B4,818 ; @165]

I DOTPSU4 M1 A17,A7 A7 ; @@|51]

[DOTPSU4 .M2X B6.A6,B5 ; @@]50]

I LDNDW DIT1 «+A16[A3].,A9:A8 ; @@@ ™ |37]
CMPGT L1 A5,A23, A0 5 1761

[TA0] mv .81 A21,A5 ;180

[ADD D2 B16,817,816 ; @]68]

[DOTPSU4 M1 A26,A9,A29 ; @@]55]

I DOTPSU4 .M2X B9,A4,B16 ; @@|45]

[

LDNDW DIT1 *+A16[A24] A7T:A6 ; @@@ " | 36|

[A1] MPYSU M1 2.A1.A1 ;

[[A0] MV .81 A23,A5 81l

[ADD LIX A30,B18,A4 ; @167]

[DOTPSU4 M2 B8,B4,B16 ; @@|58|

I LDNDW .DIT2 *+A16[A18],B5:B4 ;: @@@ " |38|
['A1] STB DIT1 A5 *A22++ ;|85]

I ADD 51 A29.A4,A8 ; @691

I DOTPSU4 M2 B7.B5,B17 ; @@|59]

[ADD .D2X B17,A8,B4 ; @@(62]

[ADD L 0x1,A16,A16 ; @@@ " |78]

[DOTPSU4 M1 A19,A7 A8 ; @@@|42]

Fig. 3. Optimized packed-data linear assembly code for
2D FIRfilter.

3.3. X-zoom

A digita copier independently zooms original image in X-Y
directions. The zooming ratio of 25% to 400% in 1% step is
usually needed. The X-zoom is the scaling of the original image
along a scanned line and is performed by digital processing,
while the Y-zoom is conducted by changing the scanning speed.
We employed the interpolation based method for X-zoom, and
an 8-tap FIR filter is employed. Since awide range of zooming
ratio is needed, it is necessary to find out the value of the
hypothetical pixel point. Note that thislocation is pre-computed
according to the zooming ratio to reduce the overhead of real-
time processing [2]. The packed-data version code utilized
Idndw instruction and dotpsu4 instruction intensively. The
results are summarized in Table 2.

3.4. Halftoning

The halftoning is a very important step in a digita copier
because most printing units only support bi-level or afew levels
for each pixel while the scanned image is represented in 8-bit
data We use the error diffusion method with the 8*3 kernel
shown in Fig 4. Although the original Floyd and Steinberg
kernel employs a very small order of the error diffusion filter, a
higher order filter is employed mainly because of the increase in
the resolution of image (600 dpi) [4]. When the filter order is
lower than the order of parallelism supported by the architecture,
some multiple output parallel computation methods can yield
better results [5]. However, in this study, we just try to compute
the filter kernel in parallel because the order of the filter is quite
large. Note that it is very complex to compute multiple pixels at
atime since the quantization error of the current pixel isused as
the input of the next pixel in the error diffusion method.

The packed-data version code utilized ldndw and dotpsu4
instructions repeatedly. The error values of the previous pixels
are stored in the registers, thus they need not be loaded inside of
the loop. The assembly-optimized packed-data linear assembly
version codeis shown in Fig. 5. The non-packed-data optimized
linear assembly code for halftoning requires about 15 cycles, and
the optimized packed-data linear assembly code needs about 7
cycles, and the manually optimized version needs 7 cycles.

€00 | €01 | €02 | €03 | €04 | €05 | €06 | €07
el0 | ell | el2 | €13 | el4 | €15 | el6 | el7
€20 [e2l | e22 | *

Fig. 4. Error diffusion filter kernel.

4. IMPLEMENTATION RESULTSAND THE EFFECTS
OF CACHE MISSES

Table 2 summarizes the implementation results of the functional
steps shown in Fig. 1. As shown in this table, the quality, in
terms of the number of cycles, of the optimized linear assembly
version is amost similar to that of the manually optimized
assembly codes. Note that the version with the packed-data
instructions is about 100% to 267 % more efficient than the non
packed-data version.

We aso need to consider the cache miss effects. TMS320C6414
contains two separate L1 caches of 16 KB, one for program and
the other for data. There is dso 1 MB of L2 cache, which is
configured as a RAM block. Since the size of codes shown
above are dl very smal, there is no need to worry about the
program cache misses. This is a very typica data intensive
application. Since the 2D filtering and error diffusion halftoning
require multiple input lines, a small block of input data is stored
in the L1 cache memory, instead of holding a line data. The
cache evaluation results are shown in Table 3. Note that when
the input data is stored as an array of 32*256, where 256 is the
number of lines, the cache misses are substantial. However, for
the other cases, the miss effects are not noticeable due to the
large size of L1 cache and the block processing of image data.

Il-623

trandates that a 600MHz C6414 CPU can perform al the red-
time processing needed for a 30 ppm, 600 dpi, A4 size
copier. The programmable CPU based architecture not only can
support real-time image processing butis much better for
implementing complex off-line functions, such as image
compression. Thus, the DSP-based hardware and programs
seem quite attractive for the implementation of next generation
multi-function digital copiers.

Table 3. Data access statistics (stall/read hit/read miss).

128*64 64*128 32*256
Shading 115/ 103/ 103/
Correction 4722/20 5863/18 6643/18
752D 263/ 290/ 985/
Filter 79578/45 82388/50 87904/166
X-200m 241/ 199/ 937/
41379/35 42857/29 45695/135
Halftoning 889/ 848/ 1628/
55026/150 | 57082/141 | 60919/272

loop: : PIPED LOOP KERNEL
ADD .82X B17.A16,B4 ;159
[DOTPSU4 M2 B4,822,85 ; @148
[DOTPSU4 M1 A4,AT,A9 ; @152]
[LONDW .D2T1 *+B9[B20] . A5:A4 : @@]43|
[A0] BDEC .S1 loop,AQ ;
[ADD .82 B17.84,85 ;™ 60|
[DOTPSU4 M2 B5,88,B4 ; @149
I LDNW .D2T1 *+B9[B16],A4 ; @@|44]
SHR .82 B5,0x3,85 ;6|
[LONDW .D2T2 *B9,B5:84 ; @@139]
MV .02 B23,824 ;
I ADD .82 B4,B85,817 ; " 163|
[ADD .D1 A4,A5,A16 ; @1571
ADD .D1 1,A8,A8 ; 165]
I CMPGT L2 B17.821,B0 ; 165l
[MV .82 B9,823 ;
[LDBU D212 *B18++,B4 ; @145]
[BO] STB DIT1 A18,x-A8(1) ; 166]
[| [BO] SuB .S2 B17,87,817 ; "~ 167
I ADD L2 B5,B4,B4 ; @|56|
I ADD .02 0x1,89,B9 ;@@ 72|
I DOTPSU4 M1 A4.AB.A4 ; @@150]
[!B0] sTB .D1T1 A7 x-A8(1) ;68|
[MV 82 B24,86 ;
I STB .D2T2 B17,x+B6[B19] ; |70|
[ADD L2X A9,B4,B17 ; @]58]
[MPY M2 0x2,B17,B17 ;@ " |53|
[DOTPSU4 M1 A5,A3,A5 ; @@151]
Fig. 5. Optimized packed-data linear assembly code for
halftoning.
Table 2. Implementation results (cycles/pixel).
Optimized Optimized
linear linear Manually .
. Min.
assembly assembly | optimized cles
without with assembly ey
packed-data | packed-data
Shading
Correction 4.25 1.25 1 0.375
7*5 2D
Filter 22 6 6
X-zoom 10 5 5 4
Halftoning 15 7 7 5

5. CONCLUDING REMARKS

The linear assembly programming followed by the assembly
optimization in software results in a quite good quality of code,
which is comparable to that of the manually optimized version,
when the dependencies among memory accesses are properly
suggested in terms of the directives. The packed-data processing
instructions also bring about 100% to 267% of speedup. The
developed code requires about 19 cycles for each pixel, which

6. ACKNOWLEDGMENTS

This study was supported by the Brain Korea 21 Project (0019-
19990027) and the National Research Laboratory program
(2000-X-7155) supported by the Ministry of Science and
Technology in KOREA.

7. REFERENCES

[1] TMS320C6414 Data Sheset, Aug. 2002, Texas Instruments.
[2] J W. Ahn and W. Sung, “ Pentium-MMX based
implementation of a digital copier,” in Proc. 1998 |IEEE
Workshop on Signal Processing Systems(SPS08), Oct. 1998, pp.
142-151.

[3] TMS320C6000 Optimizing C Compiler User s Guide,
Literature number SPRU187I, Apr. 2001, Texas |nstruments.

[4] R. W. Floyd and L. Steinberg, “ An adaptive algorithm for
spatial grayscale,” in Proceedings for SID, vol. 17, no. 2, 1976,
pp. 75-77.

[5] Jae-Woo Ahn and Wonyong Sung, “ Multimedia processor-
based implementation of an error-diffusion halftoning algorithm
exploiting subword parallelism,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 16, no. 2, pp. 129-138, Feb.
2001.

[6] TMS320C6000 Programmer = s Guide, Literature number
SPRU198F, Feb. 2001, Texas |nstruments.

Il-624

