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ABSTRACT

This paper describes ahardwareimplementation of thresh-
old network ensembles (TNE) for classification applications.
Wefirst describe the algorithm and compareits performance
with those of individual classifiers such as binary neural net-
work and support vector machine (SVM). The effect of lim-
ited precision on the performance of threshold network en-
sembles is aso investigated. The proposed multi-precision
architectureisthen mapped into ascalable systolic architec-
ture implemented first on asingle VLSI chip. The modular-
ity and the easy programability of the basic chip has made
possiblethe extension of the architectureto alow cost multi-
chip solution. We propose a 3D packaged circuit in which
12 basic chips have been integrated into avery compact vol-
ume of (2 x 2 x 0.7)em3. Successful operation of the 3D
prototype is demonstrated through experimental test results
of the chip.

1. INTRODUCTION

Classification is one of the most important tasks in pattern
recognition intelligent systems. Different classification
schemes have been proposed in the literature [1]. The ap-
propriate solution, for a given problem, is based upon the
experimental assessments of the different possible schemes.
Eventhough in such experimental assessments, one of the
classification schemes would yield the best performance,
the sets of patterns miss-classified would not necessarily
overlap. This suggests that different classifiers offer com-
plementary information about the patterns to be classified.
Consequently, combining a set of classifiers to build an en-
semble is an advanced pattern recognition technique which
has gained increasing attention within the machine learn-
ing community [2]. Creating network ensembles is real-
ized using resampling techniques, such as Bagging [3] and
Boosting, to obtain different training sets for each of the
individual classifiers. The resulting combined classifier is
generally more robust and accurate as compared to any in-
dividual classifier making up the ensemble. Unfortunately
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ensembles do suffer from anumber of shortcomings mainly
due to their large requirementsin terms of storage memory
and computational power [2]. Although all network ensem-
bles implementations reported in the literature are realized
using software simulations, only hardware realization can
fully meet the very challenging requirements of real-time
processing. However, when implementing network ensem-
bles with a dedicated hardware a number of issues need to
be addressed. These include (i) the reconfigurability of the
hardware and its programability in order to support differ-
ent classification problemsand (ii) performancedegradation
due to limited precision. In this paper, we propose a very
high density chip that we believe can address these issues
and can meet the computational requirement of Network
Ensembles. Individual classifiers are based on binary neu-
ral network and decision trees and are referred to as Thresh-
old networks. The proposed architecture is mapped into a
scalable systolic architecture implemented first on a single
VLSI chip. The modularity and the easy programability of
the basic chip has made possible the extension of the ar-
chitecture to a multi-chip solution. Section 2 of the paper
describes the architecture of the TNE and its ssmulation and
comparison with single classifiers for different precisionre-
guirements. Section 3, describes the hardware architecture
of the multiprecision 3D chip together with the experimen-
tal results and the chip performance. A conclusion is dis-
cussed in section 4.

2. ARCHITECTURE OF TNE

Figure 1 shows the block diagram of a network ensemble
for which the output is given by:

Y = Sgn(z i fi(z)) D

i=1

where n is the number of individual classifiers and f;(x)
is the 1 output of the i individual classifier within the
ensemble. sgn is the signumfunction (sgn(z) = 1if 2 > 0
and —1 otherwise) and a; - - - o, are the weights associated
with the individual classifiers. For an ensemble created by
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bagging [3], these weightings are equal, a; = + for i =
1---n, sothat the output is given by asimple majority vote.
Thus, Y=+1or-1if amgjority of individual classifiersgives
an output +1 or -1, respectively.

y f; (X)&
Wi o Y
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Fig. 1. Network Ensemble. The f;(z) are individua classifiers. X is
the input vector, W; isthe weight matrix and the o; are the weightings for
each classifier.

In such ensembles, simple individual classifiers that use
threshold logic units (TLUSs) such as binary neura networks
or decision trees are often used. They offer the advantage of
being easy to train and implement. Indeed, there exist nu-
merous constructive algorithms for simultaneously building
and training binary neural networks[4] or decision trees[5].
A binary neural network can also be represented as a deci-
sion tree and vice versa. This can be evidenced through the
example shown in Figure 2.

Fig. 2. Equivalence between decision trees and binary neural networks
(threshold networks). (A.) and (C.) are two examples of atree and athresh-
old network respectively and (B.) and (C.) are their respective partition of
the input space. Each node of a decision tree corresponds to a separator
hyperplane and the leaves of the tree correspond to a given class. Each
class can be represented by alogical function that combines a set of leaves.
In our example class4 = ab + acd.

The decision tree shown in Figure 2.A implements a
classifier that discriminates between two classes (denoted
+ and - in Figure 2.B). Each node in thetreeisa TLU im-
plementing alinear discriminant and each leaf is associated
to agiven class. Classifying aninput pattern then reducesto
a sequence of binary decisions, starting from the root node

and ending when a leaf is reached. Each class can then be
represented by alogical function F that combinesthe binary
decisions encountered at the nodes and a decision tree can
thus be considered as a binary neural network having a hid-
den layer of TLUsfollowed by alogical function as shown
in Figure 2.C and 2.D. Therefore, each individual classifier
i in Figure 1 is considered as a threshold network, i.e. a
network of TLUs followed by alogical function F’;

[i(X) = Fi(sgn(W; X)) (%)

where T; is the weight matrix for classifier ¢, X isthein-
put vector and the function sgn(x) is the signum function
that applies to every component of vector X. To evalu-
ate the performance of threshold network ensembles as de-
scribed by egs. (1) and (2), we performed 2-class discrimi-
nation experiments on three datasets : * hepatitis' and "iono-
sphere’ from the UCI repository [6] and 'odor’ from the
NOSE project [7]. The two formers have been previously
investigated by other researchers [8]. The latter has been
developed by usfor training a classifier capable of discrim-
inating between two odors (ethanol and butanol) and con-
sists of gas sensors responses recorded at various concen-
trations of the odors. Research work suggested that ensem-
bles with ten members (classifiers f;(x)) are adequate to
improve the classification performance [9]. Thus, ensem-
bles of ten threshold networks were created. We used bag-
ging [3] so that the weightingsin eq. (1) areequal, a; = £
fori = 1---n. Each individua threshold network within
the ensemble was created using the following procedure :
First, a decision tree is trained using OC1 without prun-
ing [10] and second the trained decision treeis transformed
into a network of TLUs as described by eq. (2) and repre-
sented in Figure 2C. The logical function F; was automat-
ically extracted from the tree structure. Table 1 reports the
performance of such ensembles in comparison to the one
of single threshold networks and support vector machines
(SVM) [11]. For these datasets, threshold network ensem-
bles were always more accurate than any of their individual
component classifiers, which agrees with previous findings
[9]. Moreover, they outperformed SVMs in two datasets
over three.

Single Ensembl e of
Dataset Threshold | 10 Threshold | SVM
Network Networks
hepatitis 78.75 88.75 83.75
ionosphere 89.46 93.16 89.74
odor 89.39 93.18 93.94

Table 1. Leaving-one-out accuracy (in %) for the different datasets.
For each dataset, performance of the best classifier isindicated in itdlic.
See text for explanation on the procedure used for creating individual and
ensemble of threshold networks. For SYM, polynomial kernels have been
used and the degrees of the polynomia have been adjusted separately to
get the best performance on each individua dataset.
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When implementing threshold network ensembles with
hardware of limited precision, the sensitivity to weight per-
turbation may result in performance degradation. It isthere-
fore very important to study carefully the precision require-
mentsfor the classification problem at hand. Synaptic weights
and inputs are then coded with the minimum required pre-
cision without affecting too much the classification perfor-
mance. We have evaluated the effect of weight precision
on the performance of threshold network ensembles for the
three datasets used above. After training, the weight vectors
of each individual threshold network were normalized and
uniformly quantized with b bits of precision by assigning
N = 2% uniform intervals over the range (-1, +1). Table
2 reports the performance of threshold network ensembles
with weights quantized with 16, 8 and 4 bits. In order to
maintain acceptable performance, 16 bits of precision are
sufficient for all the datasets. However, the required preci-
sion depends on the problem at hand (16 bits for * hepatitis
and ’odor’ against 8 bits only for ’ionosphere’). The use of
awordlength larger than the required precision (for example
16 bitsfor *ionosphere’) resultsin an inefficient usage of the
hardware resources (slower processing and higher power
consumption). Since the required precision depends on the
problem at hand, we have chosen to implement threshold
network ensembles in hardware with multiprecision. This
permits to exploit efficiently the hardware resources avail-
able and hence facilitate the implementation of reasonable
size network ensembles.

Dataset 16 bits | 8hits | 4 bits
hepatitis 87.50 | 73.75 | 66.25
ionosphere | 9259 | 9231 | 53.84
odor 93.18 | 90.91 | 68.94

Table 2. Leaving-one-out accuracy (in %) of ensembles of ten threshold
networks with respect to the weight precision (in number of bits). Perfor-
mance for the required precision isindicated initalic.

3. HARDWARE IMPLEMENTATION

Threshold network ensembles require only TLUs and are
very suitable for a VLS| implementation. The threshold
function is indeed easy to implement in digital and this re-
sults in significant silicon area saving as compared to sig-
moidal or radia basis functions used in multilayer percep-
trons or RBF networks and implemented through area con-
suming look-up tables. This simplification results in very
compact arithmetic units, and makes the prospect of build-
ing up VLSI chipsimplementing threshold network ensem-
bles particularly promising for real time decisions.

The basic building block chip is based on a scalable
2D systalic array architecture. This array consists of 4 x 4
Processing Elements (PE) as shown in Figure 3.A. The ar-
ray could be configured to perform either a weighted sum
(Sout) or a TLU units (Out) . The architecture can be ex-
panded horizontally in order to realize a network with more

inputs as well as vertically in order to increase the number
of TLUs. The buses Si and Sout are systolic Input/Output
buses used to interface between basic VLS chipswhen
higher number of PEsisneeded. Figure 3.B showstheinter-
nal schematic of the configurable multi-precision arithmetic
unit. The 16-bit arithmetic unit was built-up as a four 4-bit
processors wired together using a set of multiplexers allow-
ing to change the hardware connections between two adja-
cent rows of cellsin order to obtain aweight precision of 4,
8 or 16-hit. Depending on the selected precision different
topologies of networks can be configured. Pyp x ¢ stands
for anetwork topology with b bits of precision, p inputs and
g TLUs. For a4-bit precision three configurations are pos-
sible namely: P,16 x 4, P,8 x 8 and P44 x 16. For an 8-bit
precision two configurationsare possible: Pg4 x 8, Pg8 x 4
and only one configurationis possible for a 16-bit precision:
Pig4 x 4. Larger networks (more inputs per TLU) are ob-
tained by bypassing the activation function and connecting
the partial weighted sum across different chips.

The basic chip has been fabricated using standard cell
0.7um CMOS technology. After designing the chip and
successfully testing it, four dies were mounted on a sin-
gle Multi-Chip-Module (MCM). Each MCM implements a
fully configurablesystolic array constituted of 16 x 16 16-bit
PEs. The 3D packaging technology referred to as MCM-
V [12] was used to redlize the 3D chip. After test of the
MCMs, the selected ones are stacked, one above the other
and encapsulated in epoxy resin. After aglobal metalization
of the cube, alaser isthen used to pattern the surface so that
vertical wire tracks are formed on the cube [12]. Intercon-
nections between the layers are realized on the sides of the
module. Each step in the fabrication of the 3D module uses
astandard and well-characterized technol ogical process. As
a consequence, the MCM-V technology is relatively low
cost [12]. Figure 3.C shows a photograph of the final 3D
chip. The module includes four substrates layers with 4
chips on each of the threetop levels (12 chipsintotal). The
Bottom substrate is fully dedicated to the report of the ver-
tical connections to an external PGA package. The size of
thefinal moduleis2 x 2 x 0.7cm?. Thisrepresents at least
25% of the volume of an advanced PCB implementation.
The 3D chip has been successfully tested for al configura-
tions of precision and TLU topology. It presents a loading
time of 10.8us. Thisvalue correspondsto the time required
to load the synaptic words (768 words of 8 bits) and the
control sequences. The processing time for a single recall
operation varies from 611ns to 2111ns depending on the
selected topology of the threshold network and precision.
Figure 4 showsthe experimental output from the chip which
correspondsto afull recall cyclefor thetopology P44 x 192.
A 4 x 4 weight matrix W was loaded into each chip within
the 3D prototype. A test vector X 7 was also fed serially to
the chip from the least significant bit to the most significant
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one. The values of both T and X7 were chosen so that
the output of two adjacent rows of the systolic array would
have opposite sign and hence the TLUs outputs (Out sig-
nal) would oscillate at f/2. A chip within each MCM has
been selected for the purpose of thistest. The first neuron’s
output is obtained after 8 clock cycles of the load acknow!-
edgment signal (lw,,:)- The 192 TLU outputs are obtained
in only 23 clock cycles using only 12 physical PINs. Each
output would generate sequentially the results correspond-
ing to 16 TLUs as shown in Figure 4. This corresponds to
a very high level of parallelism realized with very limited
physical outputs.

Tek [EITE 2.00Gs/s

ch| 5.00 v ch2  5.00 v W 200ns
5.00v chd 5.00v Ch5 5.00 v

W Tz

Fig. 4. Experimentally measured sequence for the loading acknowledg-
ment signal Lw,,¢ and the output of the different neurons for topology:
P44 x 192. Ch1-Ch5 representing the clock signal, the acknowledgment
loading, the TLUs outputs from the first second and third chip respectively.

4. CONCLUSION

In this paper we have presented the agorithm, 3D circuit
implementation and experimental test results of neural net-
work classifiers using threshold network ensembles. The
algorithm is based on combining a set of elementary binary
classifiers in order to achieve higher classification perfor-
mance. We have demonstrated, for different datasets, that
such classifiers were always more accurate than any of their
individual component classifiers. Moreover threshold en-
sembles outperformed SVMs in most tested problems. We
have also investigated the performance degradation due to
limited precision of the synaptic weights and proposed to
implement threshol d network ensemblesin amulti-precision

(B.)

(C)

Fig. 3. (A.) Internal architecture of the VLSI chip. (B.) Internal schematic of the multiprecision arithmetic unit. (C.) Photograph of the 3D chip.

hardware (4/8/16-bit). The 3D chip representsavery power-
ful neural processor including 16-bit 192 PEsimplementing
768 digital synapses. It exhibits a significant speed of 1.25
GCPS as compared to other digital NN hardware.
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