
CONCURRENT INTERLEAVING ARCHITECTURES FOR
HIGH-THROUGHPUT CHANNEL CODING

Michael J. Thul, Frank Gilbert, Norbert Wehn

Microelectronic System Design Research Group, University of Kaiserslautern
Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany�

thul, gilbert, wehn � @eit.uni-kl.de

ABSTRACT
Interleavers are widely used for a vast range of communi-

cations applications. Traditionally used for burst-error sep-
aration in distorted channels, they have gained additional
interest since the discovery of Turbo-Codes whose perfor-
mance essentially depends on the interleavers. With the ever
increasing data rates demanded by customers, architectures
that provide interleaving at high throughput become manda-
tory.

We present a heuristic approach to the design of interleav-
ing architectures based on random graph generation. They
can handle any given interleaver pattern and allow for any
parallelization degree, and hence speed-up, of the interleav-
ing operation.

Moreover, this enables highly parallel architectures for
channel decoders such as Turbo- and LDPC-Decoders.

1. INTRODUCTION

Interleaving is scrambling the processing order of the data
inside a block to break up neighborhood-relations. It is used
in many channel coding schemes and also essential for the
communications performance of Turbo-Codes. Interleaver
tables contain one-to-one mappings of source addresses to
destination addresses for reordering the data. In Table 1 a
sample interleaver and deinterleaver is shown, where dein-
terleaving maps the interleaved data back onto its original
sequence. If only one data is interleaved per clock cycle,
the reordering can be performed on the fly through indirect
addressing.

Address
Inter-
leaved Address

Deinter-
leaved

1 3 1 6
2 6 2 4
3 5 3 1
4 2 4 5
5 4 5 3
6 1 6 2

Table 1. Interleaver and Deinterleaver Tables for Six Ad-
dresses

source
memory

rel.
Addr. Addr.

Inter-
leaved

target
memory

rel.
Addr.� 1 1 1 3 1 3

1 2 2 6 2 3
1 3 3 5 2 2� 2 1 4 2 1 2
2 2 5 4 2 1
2 3 6 1 1 1

Table 2. Interleaver Table with Memory Partitioning

High throughput, however, implies the interleaving of
several data per cycle. Parallel Turbo-Decoders for high
throughput, for example, are only enabled through concur-
rent interleaving architectures [4]. The problem is best il-
lustrated by taking the interleaver table of Table 1 for two
concurrently interleaved data and partitioning its addresses
and data into two individual memories. Table 2 shows the
interleaver table entries together with the associated memo-
ries and relative addresses1.

The number of write accesses can be determined from
the interleaver tables and the reading scheme: Assuming
that the two data are read in the order of ascending relative
addresses (i.e. in the first cycle at the absolute addresses 1
and 4) and interleaving is performed according to Table 2,
Table 3 shows the resulting write accesses.

In the first cycle one data is read from source mem-
ory 1 (Addr. 1) and written to target memory 1 (Addr. 3).
The other one is read concurrently from source memory 2
(Addr. 1) and written to target memory 1 (Addr. 2), which
results in two concurrent write accesses for target mem-
ory 1.

1From now on, only the interleaver is mentioned. Of course, the same
concepts apply to the deinterleaver as well.

Clock Cycle Write Accesses to
memory 1

Write Accesses to
memory 2

1 2 0
2 0 2
3 1 1

Table 3. Write Accesses to Memories

II - 6130-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

In-Port Left

In-Port Right

In-Port Local

Out-Port Left

Out-Port Right

AddressData

Out-Port Local

AddressData

Fig. 1. RIBB Cell

For arbitrary interleavers concurrent write operations to
memories occur, thus resulting in conflicts although each
memory is on average only accessed once per cycle. These
conflicts can either be avoided, through the design of a con-
flict free interleaver as in [1] or by deriving a schedule for
optimal read/write sequences for a known interleaver as
in [3] or these conflicts can be resolved at run-time. We
choose the latter approach as it is the only one providing
for architecture-independent and standard-compliant inter-
leavers. Buffers can be introduced to match the worst case
to the average case.

2. INTERLEAVING ARCHITECTURES

In [6] we introduced a buffer concept for concurrent inter-
leaving, where special multiple-input FIFOs are added in
front of each memory. These FIFOs are capable of storing
several data concurrently in one cycle while outputting one
data per cycle [6]. Thus the concurrency is moved into those
FIFOs.

However, for parallelization degree N, the FIFOs scale
with O(N3) in area and pose severe layout problems for
larger N. In [5] we presented a new architectural concept,
optimized with respect to layout and interconnect proper-
ties. A Ring-Interleaver-Bottleneck-Breaker (RIBB) is in-
troduced, which consists of individual cells with one data
input and one data output each, plus connections to two
neighboring cells, see Figure 1 and Figure 2.

In-Port
Left

Out-Port
Left

In-Port
Right

Out-Port
Right

Source Memory 1
In-Port Local

Out-Port Local
Target Memory 1

AddressData

AddressData

In-Port
Left

Out-Port
Left

In-Port
Right

Out-Port
Right

Source Memory 2
In-Port Local

Out-Port Local
Target Memory 2

AddressData

AddressData

In-Port
Left

Out-Port
Left

In-Port
Right

Out-Port
Right

Source Memory 3
In-Port Local

Out-Port Local
Target Memory 3

AddressData

AddressData

In-Port
Left

Out-Port
Left

In-Port
Right

Out-Port
Right

Source Memory 0
In-Port Local

Out-Port Local
Target Memory 0

AddressData

AddressData

Fig. 2. RIBB

In-Port 0

In-Port 1

In-Port

In-Port Local

Out-Port 0

Out-Port 1

Out-Port

Out-Port Local

AddressData

AddressData
PSfrag replacements

∆ � 1∆ � 1

Fig. 3. GIBB Cell

The local in-port determines from the incoming address
the target memory and decides whether the data is to be
stored locally or to be forwarded as a data/address packet
left or right for a shortest paths routing to the target cell.
The other in-ports only determine whether the incoming
data/address packet is to be stored locally or fed through.
The out-ports consist of named multiple-input FIFOs. The
cells are connected in a ring to form the RIBB as shown in
Figure 2.

When not limiting the connections to only two neigh-
boring nodes we call it a General-Interleaver-Bottleneck-
Breaker (GIBB). A RIBB is a special case of GIBB with
the number of neighbors equal to two. A GIBB-cell also has
one data input and one data output, yet features ∆ neighbors
at the in-ports and ∆ neighbors at the out-ports, see Figure 3.
The topology of a GIBB, without local data input and out-
put, can depicted by a directed graph with nodes with out-
degree ∆. A GIBB cell translates to a node such as shown
in Figure 4.

From now on we refer to a graph as the set of nodes N
and edges E, whereas we refer to a network as a graph
with associated routing information, which is the informa-
tion which path shall lead from one node to another.

Using GIBBs any graph can be used to describe the inter-
connection topology. Routing can be performed in various

In-Port 0

In-Port 1

In-Port

Out-Port 0

Out-Port 1

Out-Port

PSfrag replacements
∆ � 1∆ � 1

Fig. 4. Node Notation for a GIBB Cell

II - 614

➡ ➡

ways. For the time being we restrict our considerations to a
shortest path routing.

3. HIGH-THROUGHPUT REQUIREMENTS

Networks for high-throughput interleaving require a special
cost function. We make the following reasonable assump-
tions:

a) Interleavers spread the data with equal distribution
over the address space such that each incoming data
has the probability of 1

�
N to be targeted at any specific

node k. This holds for interleavers with good commu-
nications performance.

b) Each out-port can transmit one data/address packet per
clock cycle.

The traffic of each out-port is the number of packets to be
transmitted over a certain number of cycles. Given assump-
tion a) we can model the traffic during interleaving through
the following approach:

Every node communicates with all other nodes. Out of
N packets one is kept locally and N � 1 are transmitted
to neighboring nodes. Each out-port is annotated with a
counter that keeps track of the passed packets. These coun-
ters are incremented as the packets pass the out-port while
traveling through the network from node to node until their
destination is reached. Though a coverage of all possible
interleavers is impossible statistic traffic properties for good
interleavers are obtained.

Thus, in N cycles N ��� N � 1 � packets are transmitted. The
capacity of the network is sufficient, according to assump-
tion b), when in those N cycles equal or less than N packets
pass through each out-port.

Let E be the number of edges, ∆ the node out-degree, and
d jk the length of the shortest path between the nodes j and
k, then the average distance between any two nodes is

D̄ � 1
N � N � 1 � � ∑

j � k � N � j 	
 k

d j � k �

The N ��� N � 1 � messages must be conveyed in N cycles
and each message passes on average D̄ edges. Therefore,
� N � 1 �
� D̄ edges are passed each cycle.

A necessary but not sufficient condition for a network
capable of interleaving is: not more than E edges can be
passed within one clock cycle, i.e.

E � D̄ ��� N � 1 �
E
N

� D̄ � N � 1
N

∆ � D̄ ��� 1 � 1
N
��� (1)

which also determines the minimum out-degree given the
average distance and the number of nodes2.

2Please note that the average distance, in general, depends on the num-
ber of nodes.

a) b)

c) d)

Fig. 5. Random Graph Generation

4. RANDOM GRAPH GENERATION
In [2] random graphs are generated for distributed net-

works with high fault tolerance, good scalability, and low
diameter. The graphs are passed through various filters to
check necessary conditions, the accepted ones are evalu-
ated, and the best suited are selected.

In contrast to this, we propose a constructive random
graph generation scheme for fixed N and ∆ in which graphs
are organically grown that are valid by construction. They
must fulfill the following conditions: each node has ∆ dis-
junct predecessors and ∆ disjunct successors and all nodes
can be reached from any given node (connectivity). During
growth, the equal distribution property of good interleavers
is reflected in the conditions on random selections.

A valid initial graph is given by a fully connected graph
of ∆ � 1 nodes. It is extended using the following scheme,
see also Algorithm 1 and Figure 5: To a given graph of
out-degree ∆ with M nodes (a) one node is added (b) and
connected to ∆ randomly selected nodes (c) through ran-
domly selected edges (d) under the condition that only dis-
junct nodes are connected.

Algorithm 1 Random Graph Generation�
N: Number of Nodes ��
M: Current Number of Nodes ��
∆: Out-Degree �

a) Create a fully connected graph with M � ∆ � 1
while M � N do

b) Add Node
Randomly (1

�
M) select ∆ disjunct nodes

c) Randomly (1
�
∆) select one out-ports of each node

with disjunct targets
d) Make targets of the selected out-ports targets of new
node

Make new node the target of selected out-ports
a) Increment M

end while

II - 615

➡ ➡

10 20 30 40 50 60
2

3

4

5

6
Max. Distance

N
10 20 30 40 50 60

1.5

2

2.5

3

Av. Distance

N

10 20 30 40 50 60

20

40

60

80

100

Max. Traffic

N
10 20 30 40 50 60

10

20

30

40

50

60

Av. Traffic

N

Fig. 6. Statistics of Random Graphs for ∆ � 3

5. RESULTS

Figure 6 shows the statistical properties of networks on ran-
domly grown graphs of out-degree ∆ � 3. The traffic is de-
rived using a shortest path routing. The average over 1000
graphs is depicted with thick lines, the average +/- stan-
dard deviation with slim lines. The average distance of the
graphs and average traffic of the networks have a very low
variance, whereas the maximum distance varies the most
followed by the maximum traffic. The straight lines in the
traffic plots depict the bound above which the network ca-
pacity is exceeded. Though the maximum traffic exceeds
this bound for very low N, the average traffic does not.

Simulated annealing is used for a re-routing that dis-
tributes the traffic more evenly onto the edges, thus raising
the average, yet decreasing the maximum traffic. The de-
gree of freedom for this optimization is increased through
in-ports which feature their own routing table each. Hence
data with the same target may be routed through different
out-ports of the node depending on the in-port.

Relevant for our exploration is the maximum number of
nodes that can be connected using graphs of a given de-
gree. For ∆ � 3 we found that up to 43 nodes can be con-
nected with sufficient capacity for interleaving, i.e. the max-
imum traffic does not exceed 43 after simulated annealing.
For ∆ � 4 already up to 310 nodes can be connected. The
bound given by the average traffic as in Figure 6 would be
44.06. However, the redistribution through simulated an-
nealing must raise the average traffic as it is originally de-
rived from shortest path routing.

The theoretical bound as given in Equation 1 is depicted
in Figure 7 with the y-axis normalized to 1. It also suggest
the limit of 44.06 nodes. Thus we can conclude that the

10 20 30 40 50 60
0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacementsD̄

� 1

� 1

� N

�

∆

N
Fig. 7. Theoretical Bound for ∆ � 3

average distance is sufficient to estimate the average traffic
which is far more complex to determine. A design space
exploration can thus focus on the average distance before
moving to the maximum traffic which is mandatory for the
finishing simulated annealing.

6. CONCLUSION AND FUTURE WORK

The parallelization of concurrent interleaver architectures
no longer has a conceptional bound. Given the paralleliza-
tion, a degree has to be chosen and a graph can be grown
to fulfill the capacity requirements of interleaving. For iter-
ative channel decoders, e.g. Turbo- and LDPC-Decoders,
this paves the way for highly parallel architectures for high
throughput.

Further research on General-Interleaver-Bottleneck-
Breakers will incorporate physical layout properties into a
cost function, intermediate graph selection during growth
for improved properties based on evolutionary concepts,
and trade-offs between degree and size of individual
buffers.

7. REFERENCES

[1] A. Giulietti, L. van der Perre, and M. Strum. Parallel turbo de-
coding interleavers: avoiding collisions in accesses to storage
elements. Electronics Letters, 38(5):232–234, Feb. 2002.

[2] V. Lakamraju, I. Koren, and C. Krishna. Synthesis of inter-
connection networks: A novel approach. In in Proc. 20th
International Conference on Dependable Systems and Net-
works, pages 56–64, June 2000.

[3] T. Richter and G. Fettweis. Parallel Interleaving on Parallel
DSP Architectures. Proc. 2002 Workshop on Signal Process-
ing Systems (SiPS ’02), pages 195–200, Oct. 2002.

[4] M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn.
A Scalable System Architecture for High-Throughput Turbo-
Decoders. In Proc. 2002 Workshop on Signal Processing Sys-
tems (SiPS 2002), San Diego, California, USA, Oct. 2002.

[5] M. J. Thul, F. Gilbert, and N. Wehn. Optimized Concurrent
Interleaving for High-Speed Turbo-Decoding. In Proc. 9th
IEEE International Conference on Electronics, Circuits and
Systems - ICECS 2002, Dubrovnik, Croatia, Sept. 2002.

[6] M. J. Thul, N. Wehn, and L. P. Rao. Enabling High-Speed
Turbo-Decoding Through Concurrent Interleaving. In Proc.
2002 IEEE International Symposium on Circuits and Systems
(ISCAS ’02), Phoenix, Arizona, USA, May 2002.

II - 616

➡ ➠

