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ABSTRACT 

A real time crack detection system is presented in order to 
be used as a quality control strategy for syntherized 
metallic pieces. The signal processing algorithm is based 
on the spectral analysis of the signal measured by means 
of ultrasonic resonance inspection. The spectrum is 
obtained applying an FFT based chirp algorithm and 
from the resonance frequencies a minimum Euclidean 
distance algorithm, controlled by the false alarm 
probability,  is applied to apart the cracked or defective 
pieces from the production system. The system has been 
tested in different production environments and with 
different types of pieces giving for all cases satisfactory 
results.  

 
1. INTRODUCTION 

The resonance inspection is a technique widely used for 
defective pieces detection. In a serial production process it 
results an attractive strategy because it is a non destructive 
test. Each produced piece is excited to vibrate in a 
determined bandwidth. A resonance signal modulated by 
the natural resonance frequencies of the piece is produced, 
and its spectrum constitutes a piece signature or a piece 
identification signal.  When a different piece is analyzed 
(cracked or with a different density, etc..) a change is 
produced in the resonance frequency set. The power of 
resonance inspection is based on the fact that the 
resonance spectrum of a part is extremely sensitive to   
changes in its structure and composition. The spectrum 
observed for different good pieces fits a frequency pattern 
that characterize at all the subset of good pieces. When a 
piece has a defect, it may happen that some of its 
resonance frequencies be shifted from the frequencies that 
marks the pattern of good parts. When this happen, the 
frequency bandwidth between the shifted frequency and 
the reference frequency is proportional to the size of the 
defect.  
 
The work here presented, has been developed to operate in 
a serial production manufacturer environment. The 
techniques selected in the spectrum analysis, spectrum 
peak research step and classification algorithm are the 

result of a half-way compromise between a kick and 
simple signal processing stage and an efficient crack 
detection system. 
 
In what follows the general scheme is presented in section 
2.  The signal processing steps are described with detail in 
section 3. In section 4 the false alarm probability is 
developed and some interesting spectrum results are 
shown in section 5. 
  

2. GENERAL SCHEME 
The general scheme for the developed system is 
summarized in figure 1. An analog noise signal with a flat 
frequency response is generated in a certain bandwidth 
(200 KHz is the maximum allowed) which is used to 
excite a piezoelectric emitter transducer to make the piece 
vibrate. This noise exciting  signal is digitally generated 
and D/A converted, conferring to the system the flexibility 
to choose the work bandwidth. Before exciting the 
transducer, the noise signal is low band  filtered (for 
reconstruction effects), and amplified. From the piece 
vibration, two electrical analog resonance signals are 
measured by two receiver transducers correctly situated 
under the piece to test. This two time domain  signals are 
A/D converted at a 625 KHz rate.  

 
Once the two time signals are captured, a spectrum 
analysis algorithm must be implemented in order to 
estimate the frequency components of these two signals. 
The selected algorithm to estimate the spectrum is the non 
parametric FFT based Chirp algorithm. The chirp 
transform, allows to select a certain frequency span  in 
order to concentrate the spectral points and obtain a better 
resolution. The result of applying the chirp algorithm to 
the resonance signals are two frequency domain vectors 
that contain the frequency components  of the piece 
vibrations. In order to obtain two resonance frequency 
vectors to be used in the classification process, a Top Hat  
peaks detection algorithm is applied. Finally, a 
classification block decides whether a piece is cracked or 
not. 
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Figure 1. General Block Diagram 

 
 

3. SIGNAL PROCESSING STEPS 
Several parametric and non parametric spectrum analysis 
techniques  [1], have been investigated to obtain the 
resonance frequencies. In this application, the chirp 
algorithm [2] averaged using the periodogram estimator 
produced the higher resolution solution. For the 
classification step we found major difficulties to obtain a 
detection algorithm because defective pieces presented a 
very varied behavior and only a pattern for non defective 
pieces was modeled to perform  the decision  algorithm. 
3.1 Spectrum Analysis 
The chirp transform, was applied to each one of the two 
A/D converted signals [ ] [ ]1 2;x n x n . Vectors captured 

from a single piece are divided into L NB-sample 
segments. 
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k=1..M-1. M denotes the number of frequency points 
computed in the selected bandwidth. Eq. (3) is computed 

more efficiently with ( )2 2 2( ) / 2nk n k k n= + − − . 
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Eq. (4) results a convolution of signals “gi-l” and “hi-l” and 
can be  computed as the inverse Fourier transform of a 
direct product in the frequency domain. The periodogram 
estimator is used to average  the L  processed segment 
spectrum. 
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Figure 2. Chirp based periodogram spectrum obtained 
from a non defective piece. Blue and Red color are for 
signal 1 and 2 respectively.  
 
Figure 2 shows the spectrum obtained for a non defective 
piece. In this example M=4096 uniformly spaced points 
where estimated in a 40 KHz bandwidth with L=150 
averaged segments of length NB=28673 samples pre-
windowed with a Hanning window. The spectrum signals 
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correspond to a circular axial symmetric piece. Although 
both signals should present same resonance frequencies, 
some differences are appreciated caused by the two 
different receiver sensor impulse responses. 
 
3.2 Peak Research algorithm 
The process of peaks detection is simplified by the use of 
the Top Hat algorithm [4] [5]. Top Hat algorithm is based 
on mathematical morphology and gives relative geometry 
information that simplifies resonance frequencies 
detection. It is based on the use of the two elemental 
morphology operators in mathematical morphology: 
dilation and erosion. With dilation and erosion, more 
complex operators as aperture and closing can be build. 
Top Hat algorithm is the result of subtracting to the 
original spectrum signal, the signal processed with the 
opening of the closing of the original signal, and setting to 
zero all those negative resulting points. 
 

( )( ){ }xxx ,ϕγ∧−   (6) 
 
In (6), { }∧   denotes the minimum operator. ( )γ  and  

( )ϕ respectively denote the opening and closing 
operators. Noisy variations are eliminated, and only 
resonance frequencies remain from the spectrum signal. 
Figure 3 shows the top hat processed signals obtained 
from signals shown in figure 2. 

 
Figure 3. Top Hat processed signals. 11 peaks selected 
with proposed thresholds for its detection. 
 
In order to obtain resonance frequencies, crosses by zero 
are detected from the two top-hat signal derivatives. An 
amplitude  threshold, proportional to the power of each 
peak of the resonance frequency pattern, must be set, as a 
first step to detect those cracked pieces, that do no present 
enough energy.    
 
3.3 Classification Algorithm 
From a classification point of view [3], the detection 
algorithm must distinguish between two different patterns: 

defective pieces and non defective pieces. The 
classification algorithm here applied, is based in a 
minimum Euclidean distance criteria. Given the difficulty 
to obtain a simple  model for the defective or cracked  
pieces only the non defective pieces statistical distribution 
has been modeled. From each measured piece, two 
frequency vectors are recorded that act as a piece 
signature. In (7) the number of frequencies recorded in 
previous steps is represented by Nf, and f1 , f2 denote the 
two obtained frequency vectors:  

( )1 : ;         1,2i i i Nff f i− −= =
T

f  (7) 

These two vectors are measured by the system, during a 
training period, for the maximum available number of non 
defective pieces and next parameters are measured: 

Channel 1 and channel 2 mean vectors: 1 2
ˆ ˆ;f f  

Channel 1 and channel 2 covariance matrices: 1 2;C C  
After the training period the classification strategy is 
developed applying simple criteria. For the piece number 
“n” the frequency vectors [ ] [ ]1 2;n nf f are measured and: 

• If a component is not in the expected range: 
( ),i k T i k i k T i kf K f Kσ σ− − − −− +  the piece is 
classified as defective. In the previous expression 
i denotes channel (i=1,2), k denotes component 
number (k=1..Nf) and KT is a threshold selected 
empirically from the training period. 

• The Euclidean distances [ ]( )1 1 1,d d n= f f , 

[ ]( )2 2 2,d d n= f f  are computed (for axial 

symmetric pieces also cross distance 

[ ] [ ]( )1 2 1 2,d d n n− = f f ). If previously to the 

distance computation, each frequency vector 
component is normalized to present zero mean 
and variance equal to one, the mean value for 
previous distances are: 2

1 1E d  =  , 

2
2 1E d  =  , 2

1 2 2(1 )E d ρ−  = −  . ρ denotes 

the cross correlation between channel 1 and 
channel 2 and for a Np pieces set is estimated as 

[ ] [ ]1 1
1 21

1 1

p f

f p

N N

i iN N
n i

f n f n− −−
= =
∑∑ . 

• After the three normalized distance computation 
process, if a distance metric is not in the expected 

range: ( )20, T xK E d    the piece is classified 

as defective. x denotes distance (x=1,2 or 1-2), 
and KT is a threshold, that is selected empirically 
from the training period. 
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 Figure 4 shows histogram obtained from a frequency 
(15.58KHz) measured from a 150 non defective pieces set 
and figure 5 shows the histogram obtained for the three 
normalized Euclidean distances. 
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Figure 4. Histogram obtained for a single resonance 
frequency: 15.58KHz Blue and red for signals 1 and 2, 
respectively. Black dots at , 2 : 2i k i kf n nσ− −± = − +  
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Figure 5. Histograms obtained for the three Euclidean 
normalized distances. Blue for d1, red for d2, and black for 

d1-2. Dots are drawn at 2ˆ ; 1: 3xnE d n  =   

4. FALSE ALARMA PROBABILITY 
Some assumptions have been assumed to estimate the false 
alarm probability as a measure of the system quality. 

• The two frequency vectors are gaussian 
distributed. 

• The false alarm probability has been computed in 
the signal subspace domain. 

The frequency vectors have been projected to the NR main 
eigenvectors subspace obtained from the global covariance 
matrix  
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=   
  

T Tf
f f

f
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The new projected vector, has NR components assumed 
distributed as:   

( )( )2 2
10, ,..,

RNdiag σ σx : N   (9) 

The previous threshold KT is empirically transformed in 
threshold KN for the new components, and in this 
conditions the false alarm probability has been computed 
as: 
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πσ σ
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(10) 
Table 1 shows the predicted values for false alarm 
probability depending on the normalized threshold KN. 

KN 1 2 3 4 
erfc(KN) 0,16 4,6 e(-3) 2,2 e(-5) 1,5 e(-8) 

Table 1. Estimated false alarm probability. 
 

5. RESULTS AND CONCLUSIONS 
With cracked pieces, resonance frequencies suffer changes 
as can be seen in figure 6-left, and even for some pieces, 
defects are traduced with the elimination of some of its 
resonance frequencies, figure 6-right, where red spectrum 
appears for a cracked piece and it is compared with the 
non defective set in black. When this happen, the piece is 
automatically rejected by the quality control system.  
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Figure 6. Spectrum partial view in dB. Frequency in KHz. 
 
In conclusion, a crack detection system has been 
developed to select defective pieces from a serial 
production environment. The system is flexible to analyze 
different bandwidth until 200 KHz, and to test different 
kind of syntherized small pieces.  
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