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ABSTRACT

This paper analyses the effects of fixed-point arithmetic in FIR
filter based architectures, based on the roundoff statistical noise
model. A novel approach, which alows diminishing the error
dynamic range and predicting its vaue according to the
wordlength precision, is suggested. This permits the user to preset
the fraction precision according to the sought architecture's
precision. The efficiency of this approach is demonstrated through
the 2-D DWT Biorthogonal 9& 7 transform.

1. INTRODUCTION

Usualy, DSP algorithms are initially developed without regard to
the effects of the quantisation errors introduced when implemented
in digital systems. When implementing a DSP system in hardware,
truncation or rounding operations are often undertaken to limit the
growth in precision of the intermediate calculations and thus
excessive hardware requirements [1]. However, wordlength
reduction does introduce error into the data architecture’s, so the
designer must balance the need for an efficient implementation
with acceptable output quality.

The two sources of error in fixed-point arithmetic are the [2]:

e Signal Wordlength Quantisation (SWQ) due to the
truncation or rounding carried on the internal signals as well as the
filter output, which resultsin what is called the roundoff noise.

* Filter coefficient quantisation (FCQ) due to the
quantisation applied on the filter coefficients values. The resulting
filter impulse response will be then different from the ideal.

In this paper, we will analyse the effect of those two factors on
the architecture’'s precision. In section 2, we give the roundoff
noise statistical model. The validity of this model is then assessed
in section 3. Section 4 is devoted to our novel approach owing to
diminish and predict the error dynamic range in FIR based
architectures. A case study is reported in section 5. Finaly, a
conclusion is drawn.

2. ROUNDOFF NOISE STATISTICAL MODEL

The effect of using finite wordlength precision has been studied
for some time. Rabiner in [2] lays down standard models for
guantisation errors and error propagation through linear time-
invariant systems, based on a linearisation of the truncation or
rounding operation. We linearise the truncation or rounding
operation by replacing it by an addition with an error signal, e, as
illustrated in Fig 1. The multiplier is modelled as infinite precision
multiplier followed by an adder where the quantisation
error(noise), e, is added to the product. To statistically model this
guantisation error, often the following assumptions are made [2]:

1 e(n)isuniformly distributed white noise.
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2 ¢(n) isawide-sense stationary random process
3 ¢gn) is uncorrelated to al other signals such as input and
other noise signals.

e
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Figure 1. Fixed point quantisation noise model, the letter q stands
for quantisation

When implementing a filter with finite wordlength precision,
the critical information from the user's perspective is the error
variance at the filter output. We therefore propagate the SWQ
errors, g(t), associated with each multiplier to the filter output.
This allows us to estimate their effect on the overall system
precision. Doing so, the error signa E(t) a N-tap filter output

N-1

isE(t) = Y & (1) .Under the above model’s statistical assumptions,
i=0

the total output error variance (noise power) can be shown to be

the addition of the individual noise powers contributed by each of

the error sources e(t). Then, we need to find the statistical

parameters of each roundoff error g(t).

Unlike with the rounding operation, the truncation introduces a
bias (its mean is not equal to zero), and therefore it leads to lower
precision. In the following, we will limit ourselves to the rounding
operation.

According to [3], when rounding b;-bit precision to by-bit
precision, the mean of the rounding error satisfies:

Mg =0 )
and the varianceis given by:
1. _
O =5 (@7 =27) @

To caculate the noise variance and mean at the outputs of a
multistage FIR filters, we use the following theorem

Theorem[4

If an FIR filter, h, is fed with a stationary zero mean white noise of
varianceoz, then the noise at its output is of zero mean and of
variance, og,equal to:
a5 =0’y |h(n)|? 3
n
where h(n) ae the filter's coefficientss The term
S |h(n)[* represents the filter power gain. Therefore by applying

the above theorem and the previous statistical noise assumptions
on atwo cascading FIR filters (hy and h; respectively), the error
noise variance at the second filter o®is:

2_ 2 2
o —ohl +Kh10h0 4
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and itsmean is equal to zero. K hy isthe h,filter’s power gain. For a

multistage FIR module, this formula has simply to be extended to
the number of cascading FIR filters.

It is well known that when adding two uncorrelated random
variables, the resulting error Probability Distribution Function
(PDF) is the convolution of the two input PDFs [5]. We therefore
expect triangle-shaped error PDFs for the sum of two rounding
errors g(recal having uniform distribution, i.e a rectangle-shape
PDF). If athird random variable is added, the resulting PDF error
gets a bell-shaped graph. By adding more uniform random
variables, the resulting error, E, tends to have a Gaussian
distribution according to the central limit theory [5]. Figure 2
shows the roundoff error PDF shape (histogram) evaluated at the
output of the low biorthorgonal 9&7 FIR filter (Staps!) when
rounding at 2-bit precision. This is deduced by taking the same
filter implemented with double precision (64 bits) filter
coefficients and intermediate results as a reference. A 256x256
Lena standard image has been chosen as a testing input. Therefore,
we will assume that the filter output roundoff noise be following a
Gaussian distribution.

Round =2

Figure 2. Noise histogram a the output of 9-taps low
Biorthogonal 9& 7 filter due to 2-bit rounding order

A Gaussian distribution function with mean (m) and standard
deviation ¢ (SDV), is defined from minus to plus infinity.
However, mathematical computation shows that 99.994% of the
values fal within 4 standard deviations of the mean, that is,
between m-4c and m+4a[5]. Thus, amost all values of a Gaussian
distribution function lie within 4 standard deviations of the mean.
Throughout, we refer to this property by the Gaussian Range (GR)
property. This property is so important since it permits us to
predict the dynamic error range at any FIR filter output by using
its estimated theoretical variance. However, simulations need first
to be undertaken to assess to what extent the model assumptions
are vaid in practice. For this purpose, we need to address the
following question: Is the predicted mean and the variance
accurate (even for multistage FIR modules)?

3. ROUNDOFF NOISE STATISTICAL MODEL
ACCURACY

To answer the previous question, we use 3-Stage (thus 6
cascading filters!) Biorthogonal 9&7 2-D DWT transform. This
family has been chosen due to its widespread use in compression
based system [6]. Figure 3 shows the basic one stage transform. It
produces four images — three detailed images along the
horizontal(LH), vertica(HL) and diagonal(HH), and one coarse
approximation of the original image(LL). The Latter can be further
decomposed by using the same block diagram transform. Three
stages of decomposition are usually considered sufficient for most
applications.

A 256x256 Lena standard image will be used as a test image.
Uniform rounding is carried on the architecture’s wordlength. The
resulting transform image is then subtracted from the full precision
transform (where even the architecture's wordlength are
represented with full precision) to produce the error transform

image. Because of the paper size limit, we will be reporting the
simulations results performance at only the L,H,LL,LH bands (see
fig 3) of the 3-stage transform. Those have been chosen because
they infer higher cascading FIR filters modules. We will use also
these abbreviations: Round(l) to refer to the I-bit rounding, Pred
and Sm stands respectively for the predicted and the simulated
value, CWL to the filter coefficients wordlength and Bio 9&7 to
the Biorthogonal 9& 7.
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Figure 3. Basic stage of the 2-D wavelet transform using the filter
bank structure

ho/h; stands for low pass/ high pass filter

hD: horizontal decimation, i.e. keeps one column from every two

vD: vertical decimation, i.e. keeps one row from every two

a. SWQ factor

By using full filter coefficients representation and different
rounding order on the intermediate results, the simulation results
show that the statistical noise model gives a reasonably accurate
prediction of the error standard deviation and mean values. Table
1.a&b show the values obtained for rounding order of 2.

Stage1 Stage 2 Stage3
Round(2) L LL L LL L LL
Pred 0 0 0 0 0 0
Sm 0012 | 0016 | 0021 | 0029 | 0047 | 0055
(& Themean
Stage1 Stage 2 Stage3
Round(2) L LL L LL L LL

Pred 0.216 0.309 0.378 0439 0.490 0.547
Sm 0.221 0.321 0.404 0.483 0577 0.654
(b) The standard deviation

Table 1. The predicted and the simulated mean and standard
deviation values at 3-stages Bio 9&7 2D-DWT transform using
full CWL

Being able to predict the mean and the subbands' SDV values,
the GR property can be used to preset the fractional precision
needed for the sought error dynamic range. Table 2 gives for
rounding order of 2, the dynamic range of the predicted and the
actua (simulated) quantisation errors at the 2-D DWT Bi09&7
low sub-bands.

Stage 1 Stage 2 Stage 3
Round(2) L LL L LL L LL

-0.866 -1.237 -1.510 -1.759 -1.961 -2.188
0.866 1.237 1.510 1.759 1.961 2.188

Pred

-0.831 -1.160 -1.443 -1.770 -2.240 -2.445
0.832 1.164 1.840 2134 2.325 2.184

Table 2 Comparison between the predicted and the simulated
error dynamic range at the 2-D DWT Bi09& 7 subbands using full
precision CWL.

The above results validate clearly the statistica model
assumption when only quantisation is carried out on the

Sim
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intermediate results. Further investigation should be carried out to
see the FCQ factor effect.

b. FCQ factor

As stated previously, the rounding noise statistical model has been
introduced without taking into account the FCQ factor. If the filter
coefficients are quantified (limited wordlength), the accuracy of
the predicted error dynamic range risks degrading. Table 3
highlights this problem when the filter coefficients are
implemented with just 8-bits(as it is often adopted in hardware
implementation).

Stage 1 Stage 2 Stage 3

Round(2) L LL L LL L LL
Pred -0.866 -1.237 -1.510 -1.759 -1.961 -2.189
0866 | 1237 | 1510 | 1759 | 1961 | 2189
Sim -2.376 -5.731 -10.80 -19.21 -33.51 -56.05

0.278 0.015 -1.234 | -3.158 -7.36

Table 3. Comparison between the predicted and the simulated
error dynamic range at the 2-D DWT Bio 9& 7 subbands using 8-
bits CWL

We can easily see from table 3 (compared to table 2) how the
accuracy of the predicted error dynamic range has remarkably
dropped.

To try to recover (some of) the accuracy, which has been lost
through FCQ, and therefore maintaining the validity of the
previous statistical model, we have developed the error
cancellation approach in order to cancel the FCQ contribution on
the overal error.

-13.331

4. FILTER ERROR CANCELLATION
APPROACH

When implemented in hardware, the filter coefficients are
quantified, and not exactly represented. Thus some error, Ae, is
introduced. If for instance, a two taps filter with coefficients

h®,h® (t stands for theoretic) has to be implemented in fixed-
point arithmetic, the coefficients will be quantified to h{”,h® (h
stands for hardware). Such quantisation produces two errors Aeg,
Ae; associated respectively with h® and h® . Subsequently, the

filter implemented in hardware can be modelled with a full
precision coefficient filter and an error coefficient filter (seefig.4).

| T o
n O out <:> In DL

(a) (b)
Figure 4 Hardware implementation filter Model

From Figure 4(a), the output outy™ satisfies:
Outo( ) = |n0 ho(h) + Inl hl(h)

which can be written, using the model Figure 4(b) as:
Outo(h) =1 No (ho g +Aeo)+ | Ny (hl(t) +Ael)
Outo(h) = (l No ho(t)"’l Ng hl(t) ) + (I Ng AC()‘H Ny Ael)

and so
OUto(h) = Outo(t) + Ae
where outy® denotes the theoretic filter output, and Ae is the error
associated with its hardware implementation.
We can notice then that the error Ae can be cancelled if the term
(Ing.Aeg+Ing.Ae,) is made equal to zero. If not, we try to get as
close as possible to this equality by carefully choosing the

quantified representation of the coefficients (and hence Aeg, Aeq)
so to cancel as much of the error as possible. Note that in most
natural signals (such images), the values of neighbouring samples
are strongly correlated. Also, there is often some correlation
between the filtered signal samples [4]. If for instance, we pass a
relatively smooth image through the above 2-elements filter, we
can assume therefore that Iny= Iny~ In. The error Ae will be equal
to In (AegtAe,). The reader can deduce easily that this error would
tend to zero if Aep= -Ae;, and so the error Ae will be equal to (Ing
—-In;) Aeg. Since the image features are contained in the edges
(which show a big fluctuation, Ing >>In; or the inverse), filtering
through those pixels will increase the error Ae drastically.
Nevertheless, by knowing the input dynamic range, one can still
ensure that the error Ae is bounded by a value 1 (at any position of
the filtered image) by choosing enough bits in order that Aey and
Ae; are less than (n / (Max — Min)), where Max and Min denote,
respectively, the maximum and minimum input filter values.

This scheme can be expanded to any filter length and most of
the practical signals. The cancellation just has to be done by
considering pairs of coefficients (or sometimes triples if the filter
length is odd). By following this approach, the quantisation errors
are sought to be limited to just the SWQ factor which is
statistically well modelled.

5. CASE STUDY

In the following, the error filter coefficients will be computed by
subtracting the quantified coefficients filter from the real filter
values one. Figure 5(a) shows the low Bio 9&7 error filter
coefficients due to the quantisation at 8-bit CWL. As shown in this
figure, we can see that although the error filter coefficients values
are at 10 order, they amost al have the same sign increasing
then the dynamic error range of this error filter. This clearly
explains why the accuracy of the error dynamic range prediction
has so dropped in table 3.
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Figure 5. Low error Bio 9& 7 filter coefficients using (a) 8-bit and
(b) 7-bit CWL.

In[7], we have shown that for any arbitrary input image, the
dynamic range is [114.10,898.13] at the LL output of the second
stage, therefore for N=2, Ae should be of 10 order(see section 4).
We have found rounding at 7-bit CWL enough to deliver such
individual coefficient precision (see fig 5(b)). In the following, we
refer to the resulting I-coefficient low(high) filter with
Lay(1)(Hay(1)). For each Lay(1)(Hay(1)), we associate the coefficient
quantisation error e g (1)(enaz(1)). The real values of the low and
the high Bio 9& 7 coefficients can be found in [6]. We a so note by
LsbV(W) the LSB value associated with the W-bits representation.
It is equal to 1/2% and for example LsbV(9)= 0.00195,
LsbV(8)=0.00390 and LshV(7)= 0.00781.

To enhance the precision performance of the 7-bit CWL low Bio
9&7, our error cancellation approach can be applied by choosing
instead a non-uniform coefficients wordlengths (CWL).
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For this 9-tap filter, the cancellation could be applied on a subset
of 3 samples, or aternatively on the first 2 coefficients and then
the subsequent 5 coefficients. If the last option is adopted, the
reader can verify easily that the individua FCQ error associated
with the first two coefficients are respectively e 7(1)=-0.00123
and g _4;(2)=-0.00041. The sum of those individua errors is equal
to “-0.00164" which is close to “-LsbV(9)” value. Therefore, the
LsbV(9) vaue can be added to e ;(1)+e 7(2) to ensure error
cancellation between those two coefficients. Since the quantisation
error associated with L&, (2) is minima (0.00041), we subtract
LsbV(9) from Lay(1) (=10/256). The resulting updated coefficient
Lay (1) is then equal to 19/512. Now for the {3,4,5,6,7} order set
coefficients, the associated sub-filter dynamic should be
minimised while ensuring the overal error filter dynamic being
small. The user can verify that
[e/(3)+e/(4)+e;(6)+e,(7)] +€e,(5)=0.00344, which is nearly equa to
LsbV(8). Therefore if we add the LsbV(8) value to the fifth
coefficient(109/128), we get 109/128+LsbV(8)=219/256. This
update has not been applied on the other coefficients since there
was aready a partial error cancellation between them (see fig
5(b)). The resulting filter coefficients are [19/512,-3/128,-
7/64,3/8,219/256,3/8,-7/64,-3/128,19/512]. Fig 6 shows the
resulting low Bio 9&7 error filter coefficients, whereas table 4
gives the improvement achieved in predicting the error dynamic
range at the low subbands outputs compared to table 3.
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Figure 6. Low error Bio 9&7 filter coefficients using hybrid CWL

Stage 1 Stage 2 Stage 3
Round(2) L LL L LL L LL
pred -0.866 -1.237 | -1.510 -1.759 -1.961 -2.189
0.866 1.237 1.510 1.759 1.961 2.189
sim -1.003 -1.807 -2.179 -3.027 -3.600 -3.083
1.000 1.234 1.920 2.276 2.334 2.381

Table 4. Comparison between the predicted and the simulated
error dynamic range at the 2-D DWT Bio 9&7 subbands using
Hybrid CWL

The same approach can be applied on the high Bio 9&7 filter (7
taps). Table 5 gives the predicted and the simulated error dynamic
range at the high bands of the transform using 8-bit CWL.

Stage 1 Stage 2 Stage 3
Round(2) H LH H LH H LH
Pred -0.764 -1.165 -1.454 -1.709 -1.918 -2.148
0.764 1.165 1.454 1.709 1.918 2.148
Sim -0.336 -0.520 | -0.267 -0.209 0.458 0.443
2.229 3.200 4.409 5.792 7.217 10.498

Table 5. Comparison between the predicted and the simulated
error dynamic range at the 2-D DWT Bio 9&7 subbands using
Hybrid CWL

On the other side Fig 7(a) shows the error filter using 7-bit CWL.
We can see from fig 7(a), an already partial error cancellation
taking place with the two first coefficients. Therefore, we can
focus on the subset coefficients order {3,4,5}. The user can verify
that e:7(3)+ eya7(4)+ eqar(5)=-0.00699,which is close to -LshV(7)
vaue. Therefore, we can minimise this sum by substracting
LsbV(7) to some of the high filter coefficients. The third and the
fifth sample can be updated with 0.5*LsbV(7) i.e. LsbV(8). The

resulting filter high filter coefficients is [-1/16,5/128,107/256,-
101/128,107/256,5/128,-1/16].
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Figure 7. High error Bio 9&7 filter coefficients using (a) 7-bit
CWL and (b) hybrid CWL

Table 6 shows the improvement reached comparing to table 5.
Sagel Sage2 Sage3
Round2) [~ H LH H LH H LH

0764 | -1.165 | -1454 | -1709 | -1918 | -2148
0.764 1165 | 1454 1709 1918 2148

-1.057 -1571 | -1673 | -1942 | -28% | -3.083
0.787 1.148 1671 2422 2.313 2381
Table 6 Comparison between the predicted and the simulated 3-
stage Bio9&7 2-D DWT subbands' error noise dynamic range
using hybrid CWL

The previous results confirm clearly the validity of our error
cancellation approach. i.e. the best way is to have the error
dynamic filter nearly egua to zero with neighbouring error
coefficients cancelling each others. Moreover, for the Bio 9&7
family, our approach gave an average number of bits per low and
high filter coefficient of 6.4 and 6.42 respectively comparing to an
average of 7 and 7.52 with the 8 bits coded. Though, using fewer
bits, it gives better precision!

6. CONCLUSION

In this paper we have given a thorough analysis of filter
coefficient quantisation and roundoff noise in FIR based
architectures. A novel approach, the error cancellation, has been
presented. This approach allows the designer to reduce the error
dynamic range due to quantisation, and especialy to predict its
vaue. The approach tends to use hybrid wordlength representation
for the different filter coefficient in order to reduce the error filter
dynamic range. This alows limiting the quantisation effects to just
the roundoff error which is well modelled statistically. The model
made an extra assumption of a Gaussian distribution output noise.
The simulations results demonstrate clearly the vaidity and the
efficiency of our approach
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