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ABSTRACT
We develop an algorithm suitable for convolving two finite
length sequences of uneven length that is more efficient than
its FFT-based competitor. In particular, we present a method
for computing a fast linear convolution of the finite length
sequences h and x where the length of x is much greater
than the length of h using the Hirschman Optimal Trans-
form (HOT). When compared to the most efficient methods
using the DFT and its fast FFT implementation, our method
can reduce the computational complexity by a third.

1. INTRODUCTION

The DFT (Discrete Fourier Transform) has the well-known
convolution property that convolution in time is multiplica-
tion in the frequency domain, though, of course, the DFT
performs what is most typically called “circular convolu-
tion” in the literature. However, the linear convolution of 2
finite duration sequences, define them as the N1-point se-
quence h and the N2-point sequence x, can be computed by
evaluating the (N = N1 +N2 − 1)-point DFT of H with
that of X of the appropriately zero-padded sequences h and
x respectively. This is accomplished by multiplying the re-
spective N DFT coefficients, followed by the computation
of the N -point IDFT (Inverse DFT) of that element by el-
ement product H. ∗ X, where we have used the definition
that

H. ∗X ≡ H (k)X (k) ∀ 1 ≤ k ≤ N

Hence we have

c = DFT−1 {DFT {h} . ∗DFT {x}}
for

c(l) =
NX
n=1

h(n)x(l − n) l = 1, . . . , N.

The required number of multiplications M and additions A
are (assuming that DFT H of h is known a priori) are

M = 2
N

2
log2N +N = N log2N +N

A = 2N log2N.

These formulas are taken directly from [3]. This fundamen-
tal concept forms the basis of many digital signal process-
ing systems. In fact, some effort has been made to make
this more efficient. Recently, [1] developed a method of
“bit packing” that may reduce the computational complex-
ity to that of calculating the DFT of 2 max (N1, N2)-point
sequences. This method will work on any circular convolu-
tion method, but the performance of their proposed method
degrades as the number of bits increases and as the lengths
of the DFT increase.

The method that we propose and study in this paper
does not suffer from these drawbacks. In fact, because our
method uses circular convolution of smaller sub-sequences,
application of their method to our proposed method could
result in even more computational savings than we report
here. We will leave that to future work. However, it is im-
portant to remember that the method of linear convolution
that we describe in the subsequent sections of this paper re-
quires as little as 69% of the multiplications and 65% of the
additions without any loss for any reason! These reported
savings require the length of the DFT to be N = 212, but
the savings of approximately 10% in both multiplications
and additions is present for lengths on the order of N = 26.
Our method also obtains more substantial savings as the
disparity in the lengths of the sequence increases, i.e. as
N2 À N1. To understand how this savings results, we first
present the HOT (Hirschman Optimal Transform). Then we
develop our linear convolution procedure using this trans-
form, and then we provide some examples that show how
it performs compared to the DFT implementation of linear
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convolution. Finally, we conclude and discuss our future
work.

2. THE HIRSCHMAN OPTIMAL TRANSFORM

We repeat a few of the salient results from [2] regarding
the HOT just to aid the reader. We use the K-dimensional
(K-point) DFT as the originator signal for the N ≡ LK-
dimensional (N-point) HOT basis. Each of these basis func-
tions must then be interpolated (by K or L) and then circu-
larly shifted to produce the complete set of orthogonal basis
functions that define the HOT. As an example of this process
of interpolation and shifting, we detail the process for an
N = 9-point HOT. To start, consider the 3-point DFT X(1)

X(2)
X(3)

 =
 1 1 1
1 ω3 ω23
1 ω23 ω43

 x[1]
x[2]
x[3]


where ω3 = e−j

2π
3 .

This 3-point DFT yields the 9-point HOT

[H(1),H(2), . . . ,H(7),H(8),H(9)]T =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 ω3 0 0 ω23 0 0
0 1 0 0 ω3 0 0 ω23 0
0 0 1 0 0 ω3 0 0 ω23
1 0 0 ω23 0 0 ω43 0 0
0 1 0 0 ω23 0 0 ω43 0
0 0 1 0 0 ω23 0 0 ω43


· x

where x = [x[1], x[2], . . . , x[7], x[8], x[9]]T .
In general we have the transform relationship

H(L(r−1)+ l) =
1p
(K)

KX
n=1

x[L(n−1)+ l]ω
(n−1)(r−1)
K

where 1 ≤ r, l ≤ K, and its inverse

x[L(n− 1)+ l] =
1p
(K)

KX
r=1

H(L(r−1)+ l)ω
(n−1)(r−1)
K

where 1 ≤ n, l ≤ K.
Because the HOT is based on periodic shifts of the DFT,

the N = LK-point HOT can be accomplished using L sep-
arate K-point DFT computations. When K is a power of 2
this becomes (M multiplications and A additions):

M = L
K

2
log2K =

N

2
log2K

A = LK log2K = N log2K.

add 
zeros 
and
permute
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x(8)
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0
0
0
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Fig. 1. Figure 1. Fast Convolution of HOT for a 9- and 2-
point sequence.

3. THEMAIN IDEA

Since the HOT transform of any sequence is calculated us-
ing the DFT of several sub-sequences, we can apply con-
cepts of the overlap-and-add method to compute the linear
convolution of h and x where the length of x is greater
than the length of h. Suppose that the length of the se-
quence h is L and that the sequence x is length Km, where
K ≥ L. Of course both K and m are integers. First we re-
arrange (index) the sequence x and compute its Km-point
HOT transform. We also compute the K-point DFT of h,
H = DFT{h}, thus h is typically zero-padded. The next
step is to multiply each successive subgroup of K elements
of the calculated HOT X = HOT{x} coefficient by coeffi-
cient H. Then, we should take the Km-point inverse HOT
(IHOT) of the resultant sequence and rearrange (undue the
effects of the indexing of x) the terms. We can think of this
vector as a collection of Km-point circular convolutions.
To obtain a linear convolution of x and h we must add the
last L − 1 samples of the nth K-point segment to the first
L − 1 samples of the (n+ 1)st segment, for each of the
subgroup segments n = 0, . . . ,m− 1.

This process is best exemplified for the convolution of a
9-point x with a 2-point h. Consider the flow given in Fig-
ure 1. Notice that to get the lengths correct, we must add
3 zeros to the end of x (zero pad). The multiplication in
the center of the figure is an element by element multiplica-
tion. The indexing on the DFT shows the re-use of the DFT
coefficients K times.

4. FAST CONVOLUTION OF TWO SEQUENCES
OF FINITE LENGTH

Now lets look at the details and generalize our concept.
Consider the two sequences h and x. The length of h is
equal to L and length of x is equal to S. Let m = S

n where
n > L and K = L+n− 1 and m,n,L,K,S ∈ Z, i.e. they
are all integers. Now, pad h with n−1 zeros and compute its
DFT, call it H = DFT {h}. We will use the idea presented
in the preceding section. Between every n elements of x
and at the end of the sequence insert L− 1 zeros to get a se-
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quence y of length N = nm+m(L−1) = m(n+L−1) =
mK where K = n+ L − 1. Arrange the elements of y by
applying a permutation matrix P of size mK ×mK which
gives a new vector ỹ such that

ỹ(b+ 1 + (a− 1)m) = y(a+Kb),

a = 1, . . . ,K and b = 0, . . . ,m− 1.
Hence P has ones at the coordinate pairs (b + 1 + (a −
1)m,a + Kb) where a = 1, . . . ,K and b = 0, . . . ,m −
1 and zeros elsewhere. Compute the N -dimensional HOT
of ỹ, call it eY , and then multiply the elements of eY with
the elements of the expanded DFT (where each H(i), i =
1, . . . ,K, is repeated m times)

eH =
£
H (1) · · · H (1) · · · H (K) · · · H (K)

¤T
Now, we should evaluate the IHOT of that product eH.× eY
to get eZ. Finally, applying the inverse of the permutation
PT to eZ we obtain z. The result of this process are several
mK-point convolutions of h with n-point long sections of x
put together one after the other to form z. Thus, z is a vector
in CmK and we have to project it onto the space Cnm+L−1
where a convolution vector c = h ∗ x lives. Consider the
linear map T : CmK → Cnm+L−1 given by the mK ×
(nm+ L− 1) matrix

T =



In 0 0 0 0 0 0 0
0 A 0 0 0 0 0 0
0 0 I2n−K 0 0 0 0 0
0 0 0 A 0 0 0 0
0 0 0 0 I2n−K 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 A 0
0 0 0 0 0 0 0 In


where In and I2n−K are the identity matrices of dimensions
n × n and (2n − K) × (2n − K) respectively and A is a
(K − n)× (2K − 2n) matrix of the form

A =


1 0 . . . 0 1 0 0 . . . 0
0 1 . . . 0 0 1 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 0 . . . 0 1


where in every row there are two ones with K − n − 1
zeros between them. Evaluating T at z yields the linear
convolution of h with x, i.e. c = Tz = h ∗ x.

5. EXAMPLE

To see that this method works without loss, we compute an
example. Consider two sequences h = [1, 2] and

x = [1, 3, 5,−2,−1, 7, 1, 1, 5]. Their linear convolution

c = h ∗ x = [1, 5, 11, 8,−5, 5, 15, 3, 7, 10]
Since the length of x is 9 = 3 · 3, we have n = m = 3,
K = 3 + 2− 1 = 4 and N = 3 · 4 = 12. Let

H = DFT



1
2
0
0


 =


1.5

0.5− i
−0.5
0.5 + i

 .
Now pad x with zeros to obtain the sequence

y = [1, 3, 5, 0,−2,−1, 7, 0, 1, 1, 5, 0]
Before applying the 12-point HOT we permute it with P ,

P =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


The outcome is

ỹ = PyT = [1,−2, 1, 3,−1, 1, 5, 7, 5, 0, 0, 0]T

The 12-point HOT transform coefficients eY and the expan-
sion of H are

eY =



4.5
2
3.5

−2− 1.5i
−4.5 + 0.5i
−2− 0.5i
1.5
3
2.5

−2 + 1.5i
−4.5− 0.5i
−2 + 0.5i



and eH =



1.5
1.5
1.5

0.5− i
0.5− i
0.5− i
−0.5
−0.5
−0.5
0.5 + i
0.5 + i
0.5 + i



,

Then, we multiply eH term by term with eY and compute the
IHOT of

³ eH.× eY ´
z̃ = [1,−2, 1, 5,−5, 3, 11, 5, 7, 10, 14, 10]T .
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We want to rearrange the sequence into its normal order, so
compute

z = PT z̃ = [1, 5, 11, 10,−2,−5, 5, 14, 1, 3, 7, 10]T

The last step is to multiply z with the matrix T , which in
this case has the form

T =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


Consequently, we get the convolution of h with x:

c = Tz = [1, 5, 11, 8,−5, 5, 15, 3, 7, 10]T
= h ∗ x

It is not too difficult to prove that this method works in gen-
eral.

6. COMPUTATIONAL COMPLEXITY

Now, we want to consider the application of this method in
a block-processing implementation of FIR filtering. In that
case, we may assume that the DFT of h is known since it is
the fixed filter. Thus, we need only count the computations
involving x. Suppose x is an infinite-length sequence, i.e.
suppose that x is the input sequence that is very long. We
segment x into blocks of length nm and take the N =mK-
point HOT . Then the number of multiplications and addi-
tions, respectively, are

M = mK log2K +mK

A = 2mK log2K + (m− 1)(K − n)

Tables 1 and 2 list the number of operations corresponding
to the calculations of the convolutions of one block of x by
the DFT and HOT respectively. Note that the block lengths
are slightly different for each method (DFT and HOT) due
to each algorithms peak performance lengths. Consequently,
we have calculated the number of multiplicationsM and ad-
ditions A per output sample as the fairest comparison avail-
able. We have assumed that the length of h (the shorter
sequence) is 15 to generate the tables. We see that the HOT
algorithm reduces the number of operations (both multipli-
cations and additions) per point when the segment length of

the input sequence x is as short as 27. We have also noted
that the computational load reduction of the HOT algorithm
improves as the difference between the length of h and the
length of the segments of x increases.

L (x) M /pt. A/pt.
64 (x=50) 8.96 15.36

128 (x=114) 8.98 15.72
256 (x=242) 9.52 16.92
512 (x=498) 10.28 18.5

1024 (x=1010) 11.15 20.27
2048 (x=2034) 12.08 22.15
4096 (x=4082) 13.04 24.08

Table 1. DFT Algorithm Computational Complexity

L (x) N M /pt. A/pt.
68 (x=54) 3 · 25 10.66 18.296

164 (x=150) 3 · 26 8.96 15.546
264 (x=250) 5 · 26 8.96 15.584
514 (x=500) 10 · 26 8.96 15.612

1064 (x=1050) 21 · 26 8.96 15.624
2064 (x=1050) 41 · 26 8.96 15.633
4114 (x=4100) 82 · 26 8.96 15.636

Table 2. HOT Algorithm Computational Complexity

7. CONCLUSIONS AND FUTUREWORK

We see that the HOT algorithm has the potential to reduce
the computational burden of block processing FIR imple-
mentations by as much as 30% of the multiplications and
35% of the additions. This amazing reduction in the com-
putational complexity may be accomplished because of the
dependence of the HOT on the DFT, and the natural overlap
and add nature of the sub-segments of the HOT. We are cur-
rently developing a convolutional theory of the HOT that
could potentially improve our performances shown here.
We are also examining overlap and save algorithms.
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