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ABSTRACT

This paper presentsasingle FPGA implementation of areal-

time sound | ocalization system using two microphones. The

implementation, utilizing a cross-correl ation technique based
on a modified version of the phase transform, successfully

localizes sound sources in noisy environments with as low

an SNR as 10dB. Using the same algorithm and similar

hardware architecture, it is shown that up to 5 parallel sys-

tems (using 10 microphones), al real-time, can be imple-

mented on asingle FPGA while only utilizing an estimated

77mW-108mW per microphone.

1. INTRODUCTION

Real-time sound localizationis required for applicationssuch
as robust speech recognition and automatic teleconferenc-
ing, where, severa audio signals obtained from an array of
microphones are processed concurrently [7, 5, 4].

Thereal-time processing of multiple audio signalsis of -
ten expensive as it requires several processors. Even if a
dedicated Digital Signal Processor (DSP) is employed, it
often requires alarge amount of power, rendering it imprac-
tical for many applications. For example, the Huge Micro-
phone Array system developed by Brown University [12]
utilized multiple DSP processors and buffers for sound lo-
calization with an average power consumption of 400mw
per microphone. Thisis far beyond the power availability
in applications such as Personal Digital Assistants and mo-
bile phones. The best solution for such applications would
be a custom-designed VL SI chip.

Asaprecursor of a VLS| implementation, we will illus-
trate the implementation of a sound localization system on
aField Programmable Gate Array (FPGA). In contrast with
the prior work, which either utilized DSPs [12] or a com-
bination of FPGAs and DSPs [10], this work implements
the entire sound localization system (except the anal og front
end) on a single FPGA. As will be shown, the efficiency
of the algorithm proposed and the hardware implementa-
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tion result in an average power utilization in the 77-108mwW
range.

2. SOUND LOCALIZATION ALGORITHMS

While many sound localization techniquesexist [7, 5, 4, 8],
including signal subspace based methods such as MUSIC
[11] or spatia likelihood based techniques [3, 8], the most
common method is to estimate the time-delay of arrivals
(TDOA) between al microphone pairs[7]. The TDOA be-
tween a single microphone pair will constrain the sound
source location to a hyperboloidin three dimensions, and as
a result, the intersection of multiple hyperboloids obtained
from TDOA estimates from multiple microphone pairs will
pinpoint the true location of the sound source.

TDOA estimation has been extensively explored in the
past [9, 7]. Themost common method isto utilize the gener-
alized cross correlation (GCC) method [9]. The GCC based
sound localization method is, relative to other techniques,
computationally simple and efficient.

We assume that there are two microphones which re-
ceivethe signals m (t) and m-(t), respectively. These sig-
nals include noise, reverberation, and a time-delayed (with
TDOA 7) version of a speech signal whose TDOA must
be estimated. The most common method to estimate the
TDOA is the single-segment generalized cross correlation
defined below:

7 :argmgx/W(w)Ml(w)Mg(w)e_jw’Bdw (@)

where 7 is an estimate for 7, M;(w) and M, (w) are the
Fourier transforms of of the first and second microphone
signals, respectively, and W (w) isacrosscorrelation weight-
ing function. Two different choices for W (w) include:
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The PHAT weights correspond to the PHAse Transform,
and are known to be effective in reverberant environments
[7, 9, 4. The UCC weights correspond to the Unfiltered
Cross Corrélation technique, which is simply a standard
cross correlation without any weights.

The single-segment GCC for discrete-time signals can

alternatively be expressed as:
N/2
T = arg mgx Z W (k)| M, (k)||M2(k)| cos(8(k)) (4)
k=0

whered(k) = /My (k) — /M2(k) — 2w Fsk/N isdefined
asthe phaseerror, k istheindex of thediscretefourier trans-
forms (or, alternatively, the fast fourier transforms (FFTS))
of the signalsinvolved, IV isthe total number of samplesin
each segment, and F's is the sampling frequency.

Equation 4 can be viewed as a weighted reward-punish
function of the phase error at different frequencies. Ideally,
the phase error would be close to zero, resulting in the max-
imization of equation 4. The cosine phase error selector
function in effect rewards lower phase errors and punishes
higher phase errors. An aternative version of the equa
tion above is to use a rectangular reward-punish function,
as shown below:

N2
7= argm/g}xz W (k)| M1 (k)|| M2 (k) |rect <9(k)> (5)

€
k=0

where ¢ defines the width of the rectangular function (in
other words, it definesthe aggressivenes of the reward-punish
algorithm) andrect(t) = 1if |¢| < 1 and hasavalue of zero
otherwise.

TDOA estimation based on equation 5 has severa ad-
vantages as compared to that of equation 4, including re-
duced implementation complexity and better performance
at lower signal-to-noiseratios (SNRs). Asaresult, thistech-
nique was employed for FPGA implementation in this pa-
per.

3. FPGA IMPLEMENTATION

The proposed TDOA estimation technique is employed for
a single microphone pair. Each microphone undergoes am-
plification, bandpass filtering, and then sampling at 20kHz
with 24bits per sample. The 8 most significant bits of the
samples are then fed digitally to a Xilinx Virtex 11 2000
(2V2000) FPGA [1] where the TDOA computation takes
place. While the implementation here only consists of a
single microphone pair, the extension to multiple micro-
phone pairs is trivial and can be accomplished within the
same FPGA (aswill be discussed in Section 5).
Theinput samplesare stored in two user selectable buffers

(onefor each channel) with sizes ranging from 256 samples

to 1024 samples. The buffers were then windowed using
Hanning windows, converted to 16 bit floating point repre-
sentations, and stored in two Fast Fourier Transform (FFT)
buffers, as shown in Figure 1. The FFT is performed in-
place on each of the buffers.

Ch1 Input Channell i
4’{ Buffer Buffer 1 corde

Ch2 Input I
—>{ nga?%erlz B Buffer 2 D_,' Cordic IJ

Fig. 1. The overal system. The input buffersare 1024 x 8
bits and the FFT buffersare 2 x 1024 x 16 hits.

TDOA TDOA
Estimator

The CORDIC agorithmisutilized to calcul ate the Fourier
Transform sines and cosines and to convert complex num-
bers from real-imaginary to magnitude-phase representations
[13, 6]. The CORDIC agorithm was chosen since it can
perform magnitude-phase estimation quickly without sig-
nificant hardware requirements.

Once the magnitude and phases of each of the two chan-
nels are cal cul ated, the modified GCC technique of equation
5 is used to obtain a TDOA estimate, as shown in Figure
2. This TDOA estimation involves searching for the GCC
maximizing T according to equation 5. The search step size
started at —307'; and ended at 307 in T’ step sizes, where
T;, = 1/F; is the sampling period. Also, a value of 0.5
radians was used for €. The hardware implementation uti-
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Fig. 2. The TDOA estimation block. Each GCC buffer is 2
x 256 x 16 hits.

lizes a 3-stage pipeline architecture in order to obtain real-
time TDOA estimates. The first stage consists of acquiring
the input samples, the second stage consists of FFT com-
putation and conversion to magnitude-phase representation,
and thefinal stage consists of TDOA estimation. While two
GCC buffersare sufficient, three buffersare used in order to
keep the results of the previous time segment. This allows
for temporal smoothing which results in more accurate lo-
calizations [5].
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4. REAL-TIME EXPERIMENTAL RESULTS

For the experimentsin this section, the buffer sizewas set to
1024 bits (corresponding to approximately 50ms time seg-
ments). Two microphones were connected to the FPGA as
discussed in the previous section. The first experiment in-
volved a stationary speaker positioned in the room as shown
in Figure 3. As shown in Figure 3, a single male speaker
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Fig. 3. Experimental setup with stationary speaker.

(whose mouth height equals the height of the microphones)
speaks in aroom for several minutes with two microphones
placed on the walls. The microphone signals are amplified,
filtered, sampled, and processed by the FPGA as discussed
in Section 3.

Noise consisting of sensor noise introduced by the mi-
crophones and/or their amplification and filtering systems
resultsin an average signal-to-noiseratio of 30dB. TheUCC
and the PHAT weights are used to estimate the TDOA of
the speaker for every 50ms speech signal frame that is cap-
tured by the microphones. The TDOA 7 of each frameis
converted to a direction-of-arrival (DOA) ¢ = arcsin (%),
where v isthe speed of soundin air (approximately 345 m/s)
and d is the inter-microphone distance (in this case, 0.4m).

The resulting DOA estimates are subtracted from the
true DOA (which is obtained from the actual location of
the speaker in the environment) in order to assess the DOA
error. The resulting DOA error histogram is plotted in Fig-
ure 4. As shown, PHAT TDOA estimation results in the
most accurate localization of the sound source. As aresult,
for all subsequent experiments, only the PHAT technique
was used. In order to assess the performance of the FPGA
based sound localization system for different speaker po-
sitions and noise conditions, severa other experiments us-
ing the PHAT technique were performed. This time, the
speaker moved from one location in the environment to an-
other location, as shown in Figure 5. During this motion,
which took approximately 1 minute, the speaker continu-
ously spoke while facing microphones.

This experiment was performed a total of 8 times, with
SNRs of 30dB, 20dB, 10dB, and 0dB, and for two different
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Fig. 4. Histogram of DOA errorsfor staionary speaker with
a30dB average SNR.

male speakers. While the 30dB average SNR condition in-
volved no external noise sources (the noise only consisted of
the inherent sensor and sensor processing noises), the other
SNRs (20dB, 10dB,and 0dB) were obtained by placing a
Gaussian noise source far away from the array, and adjust-
ing its intensity to result in the desired SNR of the recorded
signals. The DOA error histogram for the 30dB average
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Fig. 5. Experimental setup with moving speaker.

Final Speaker

SNR case is shown in Figure 6a. Asthe SNR is decreased
(20dB in Figure 6b and 10dB in Figure 6¢) a coherent peak
is maintained near a DOA error of zero degrees, indicating
that a correct sound localization is possible. However, at
lower SNRs, the average error is larger (indicated by larger
peaks in the histogram at non-zero errors). At 0dB, the co-
herent peak around zero disappears, indicating that a correct
sound localizationis no longer possible, as shown in Figure
6d.

5. CONCLUSIONS

A real-time sound localization system was implemented on
aXilinx Virtex 1 2000 (2V2000) FPGA. It was experimen-
tally shown that the proposed sound localization agorithm
and the implementation resulted in a robust sound localiza-
tion system capabl e of accuratelocalizationsin SNRsaslow
as 10dB.
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Fig. 6. Histogram of DOA errors with moving speaker with
a) 30dB average SNR (top |eft), b) 20dB average SNR (top
right), ) 10dB average SNR (bottom left), and d) OdB aver-
age SNR (bottom right).

The standard method for implementing multi-microphone

signal processing algorithmsisto use Digital Signal Proces-
sors (DSPs) [12]. However, the power requirement and the
need for external components (such as memory) make DSPs
unsuitablefor many applicationsthat requirelow power con-
sumption and alow profile. For example, using the method
proposed in this paper, it is possible to have 5 to 6 paral-
lel TDOA estimation modules (using up to 12 microphones)

withinaXilinx Virtex I Pro-70 FPGA [2], running at 10MHz

and consuming between 0.776W and 1.074W of estimated

power. This estimate is obtained from the fact that our

proposed implementation used a total of 1,192,793 logic

gates and the Virtex |1 Pro-70 has atotal of 6,000,000 gates

available. By pipelining and running the same FPGA at

100MHz, it becomes possible to fit up to 50 TDOA esti-

mation modules (using up to 100 microphones) within the

same FPGA but now consuming between 7.76W and 10.74W
of power. Note that the input buffers do not require extra
logic gates since the Virtex |1 Pro-70 has enough memory

for 100 input buffers.

Compared with aternative approaches (such asthe Huge
Microphone Array which consumed about 400mW per mi-
crophone [12]), the average power consumption of the pro-
posed FPGA system is far less (about 77-108mW per mi-
crophone). The only cause for concern regarding FPGASs
isthe relative cost compared to other approaches. However,
for most commercial applications such as sound localization
on handheld computers, custom VLS| circuits can be fab-
ricated which would have a reduced cost (when produced
on acommercial scale), low power consumption, and more
processing capability.
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