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ABSTRACT

The effects of angle approximation and rounding in the CORDIC
processor have been intensively studied for the determination of
design parameters. However, the conventional analyses provide
only the error bound which results in large discrepancy between
the analysis and the actual implementation. Moreover, some of the
signal processing architectures require the specification in terms
of the mean squared error (MSE) as in the design specification of
FFT processor for OFDM. This paper proposes afixed point MSE
analysis based on the variance propagation for more accurate error
expression of CORDIC processor. It is shown that the proposed
analysis can also be applied to the modified CORDIC agorithms.
As an example of application, an FFT processor for OFDM using
the CORDIC processor is presented. The results show close match
between the analysis and simulation.

1. INTRODUCTION

The COordinate Rotation DIgital Computer (CORDIC) is an ef-
fective method for the cal culation of trigonometric functions, mul-
tiplication, division, and conversion between binary and mixed
radix number systems [1, 2]. There are a number of digital sig-
nal processing (DSP) applications using the CORDI C-based hard-
ware in modern digital signal processing systems such as modu-
lation, digital filtering, and fast Fourier transforms (FFT). For the
optimal design of systems using the CORDIC processor, the anal-
ysis of various error sourcesis required asin other DSP problems.
Since Walther [2] first briefly discussed the accuracy of CORDIC
computation, there have been many papers on the analysis of er-
ror bound [4-7]. Specificaly, Y. Hu [4] analyzed various error
sources of angle approximation, round-off, and normalization er-
ror in greater detail for all modes of the CORDIC arithmetic, and
X. Hu and Bass [5] reformed the model by adding neglected er-
ror source about the direction of rotation. Kota and Cavallaro [6]
proposed a partial normalization scheme to reduce the numerical
error in the computed inverse tangent of CORDIC backward rota-
tion mode, and Antelo et al. [7] presented a prescaling algorithm
to compensate for the disadvantage of [6]. However, the conven-
tional analyses provide only the upper bound of the error, which
is not sufficient for several reasons. More specificaly, although
the upper bound analysis helps the designer select the parameters
for stable operation, the difference between the analysis and prac-
tical result is very large. Moreover, in the case of application such
as FFT employing several CORDIC processors, the error is prop-
agated and added to another errors. As a result, the error bound
of the output provides very little information. Hence, the mean
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squared error (MSE) analysis as well as the upper bound error is
needed for more accurate analysis of CORDIC processor.

The MSE analysis have already been devel oped for many DSP
systems such as the quantization error analysis of digital filter,
FFT, and DCT implementations. The MSE analysis can provide
the designer with the average SNR of the system for the given
parameters. Hence, we attempt to provide the MSE analysis of
CORDIC processor, which can be applied to many DSP systems
employing CORDIC. From the simulations, it is shown that the
MSE analysisismuch closer to the simulation than the upper bound
error analyzed in the conventional literature. The proposed anal-
ysis can aso be used for the analysis of modified CORDIC fam-
ily [3]. To demonstrate how our analysis can be applied to a typi-
cal DSP system employing the CORDIC processor, simulation of
FFT processor for OFDM using the CORDIC processor [8] is pre-
sented.

2. CONVENTIONAL CORDIC ALGORITHM

The CORDIC processor computes a set of trigonometric functions
using vector rotation. These functions can be computed by a se-
ries of specific incremental rotation angles, where each rotation is
performed by a shift/add operation. The rotation angle 6 can be
represented as [3]
N—-1
0~ > a(i)ali), 1)
=0
where IV isthe number of rotations. Theterm o (7) isasequence of
+1swhich determines the direction of remaining angle. The «(7)
is the elementary rotation angle of the i-th rotation. The CORDIC
algorithm consists of two parts, namely iteration process and scal-
ing process. Theiteration process relates the output vector v(i+1)
to itsinput vector v (i) as
v(i+1) = P(i) (i),
o(i+1) = ¢(i) — o(i)a(i) fori=0,1,..,N—1,

where P (i) represents the micro rotation in the i-th iteration, and
¢(1) isthe remaining angle after the i-th iteration. The rotational
result is not restricted on the circle of fixed radius. Hence, the
magnitude of the result needs to be normalized by the scaling pro-
cess. That is, the output of the iteration process v (V) is divided
by the scaling factor K where K = [ ' k(4). Hence, the final
result of CORDIC processor v, (IN) can be represented as

vo(N) = %.U(N) - (Elk(i))lm(N).
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In case of circular rotation mode, P (i), k(¢), and (%) are repre-
sented as

N 1 o(i)27"
PO=1_6@e 1 |
k() = V14272, a(i) =tan '(277).

3. ACCURACY OF CORDIC ALGORITHM

3.1. MSE of Angle Approximation Error

One of the error sources of CORDIC agorithm is the angle ap-
proximation. If we wish to rotate the input vector by 6 using the
CORDIC agorithm, 8 should be smaller than |6] < "N ! a(i) +
a(N —1) for the convergence [4]. In this case, the # can be repre-
sented asf = "N " o (i)a(i) +9, where § isthe residual rotation
angle, which is caused by finite combination of the elementary an-
gles. Assuming there is no round-off error, the ideal CORDIC
output v, (oc) is compensated by the compensation matrix C' [4],
i.e,

cosd —sind

vo(00) = C-vo(N) = [siné cos &

} vo(N).

Therefore, the angle approximation error e, (V) of the v, (N) is
given by

ea(N) 2 vy(N) = vy(00) = (I = C)-wo(N), (&

where I isthe 2 x 2 identity matrix. Now, the MSE of the angle
approximation error is given by following theorem.

Theorem 2.1:

For the case that the input angle isgiven and thusthe § is determin-
istic, the MSE of the angle approximation error can be expressed
as

Ele.(N)|> = 4sin® g “Elv(0)]* ~ 6*-Elv(0)]*, (5
where E( - ) isthe statistical expectation.
Proof:
Since the CORDIC output v, (V) is independent of C, the MSE
of e, (IV) in eg. (4) can be expressed as

Elea(N)I” = E{III = C|I* - [vo(N)I*}

where || - || is the I>-norm of a matrix. Assuming the infinite
precision arithmetic, there is no round-off error, and then v, (V)
has the same energy as the CORDIC input v(0). Also, since
|1 —C|> = 4sin® ¢ ~ §?, this proves eq. (5).

|
When the input angle is not given, we just have the information
that the residual angle || is bounded by a(N — 1) [4]. If we
assume that the error is uniformly distributed, the MSE can be
evaluated as follows.

Ele.(N)|” = /_Oc(n_l)4sm2 3 3a(mn=1) ds - E|v(0)|
(o o sina(N—-1)\ 2
= <2 2 (N T) ) Elv(0)|. (6)

For using variance propagation formula, variance and mean of the
angle approximation error are required to be separated from its

MSE. Variance of the angle approximation error is approximated
as the MSE by the following theorem.

Theorem 2.2:

Lete,(N) £ [eqn(N),eqy (N)])T, where[ - |7 represents vector
transpose. Then

Var{eas ()} = Varfea,(N)} ~ SN

where Var( -
Proof:
The M SE of the angle approximation error can be described as

) isthe statistical variance.

Elea(N)|” = Var{ews(N)} + Var{eay (N)} + [Eea(N)|”.
If § is deterministic, since |[E{v(0)}|* < E|v(0)|* in most case,
|E{ea(N)}|” < Eleq(N)|”. Otherwise,

|E{ea<N>}|2=(1—%) JE@O}S.  ®

From egs. (6) and (8), it can be observed that |E{eq(V)}
E|eq(N)|?. Hence,

| 2

L

Elea(N)” =~ Var{e..(N)} + Var{ea,(N)}. (9

3.2. MSE of Round-off Error

In the previous subsection, the analysis for the angle approxima-
tion error is presented. Now, we derive the errors caused by finite
precision arithmetic in the micro rotations and multiplication of
the scaling factor. For the analysis of these errors, let [ - ] denote
guantization operator. Then the round-off errors are given by
e (i) & [w(i)g —v@G) for i=0,1,..,N -1,
es £ [vo(N)]g — vo(NV),

where e, () is the round-off error introduced by (i — 1)-th itera-
tion process. Specifically, e, (0) isthe round-off error of the input
vector. Also, e, isthe scaling error.

Theorem 2.3:

Total round-off error e, isexpressed as

N—-1N-1

er = (e + X [ Ple) + e 0

i=0 j=i

Proof:
This can be easily proved from the well-known error propagation
formula [4]. Since the CORDIC operation is alinear transforma-
tion, the total round-off error is aso the sum of the linear transfor-
mation of e, (¢) up to the N-th iteration with the scaling, which is
the first term in the eg. (10), plus the final scaling error es.

[ |
Since CORDIC is alinear transform, the covariance matrix of the
output error can be determined from that of input only:
Theorem 2.4:
Since two elements of the vector e (i) are uncorrelated, its covari-
ance matrix isrepresented as

Cov{e (1)} = wo(i —1)-1 for 1 =0,1,..., N,
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where w, (i — 1) is the variance of each element of vector e, (4).
If e, (0) = 0, the covariance matrix of e,, can be described as
follows.

Cov{eor} = % <wU(N _1)

N—1 1
+ 3 T woG - 1)k(i)2> I+ Covies}. (12)
j=1 J

i=j

Proof:
Let e, (7) be the output error propagated from e, (z). Then, from
the variance propagation formula,

| 7= P(i)Cov{e. (i)} P(i)T for1 <i< N,
Cov{eo (i)} = {?E Covie, (i)} fori = N,

where P(i) £ T];" P(j). Hence, the covariance matrix of e,
can be described as

Cov{e,,} = ZCov{eor

j=1

)} + Cov{es}, where

Now that we have the variance, the mean of round-off error is
needed for the derivation of M SE:

Theorem 2.5:
N—
E{eo} = <E{eT Z j)E{e.(j >+E{e3}.
- (13)
Proof:

The total round-off error is the linear combination of round-off
error and scaling error. Thus, this theorem is derived immediately.

|
Finaly, from egs. (12) and (13), the MSE of the total round-off
error isrepresented as

Eleo|” = % <wU(N 1)+ Z 1:[ wy(j — 1)k(i)2)
btz [Eler () + 3 PUELe, ()| + Elesl?. (14

3.3. M SE of Total Output Error

Theorem 2.6: '
The MSE of the total CORDIC output E |e, | can be expressed as

Ele.|> = Elea(N)|” + Eleor|”. (15)

Proof:
The direction sequence o (i)’s in the infinite precision system are
different from those in the actual CORDIC system. The differ-
ence of o(4)’sresults in additional angle approximation error [5].
Hence, the angle approximation error is dependent on the round-
off error in general. However, in the applications when the in-
put angle is given, residual angle § is deterministic, and the angle
approximation error depends only on the input energy E |v(0)*.
Hence, two error sources are independent. In this case, it can be
assumed that the angle approximation error is an additional er-
ror introduced by a linear transform C~! after the termination of
CORDIC operation. If the input angle is not given, the angle ap-
proximation error variance with a(N —1) isreplaced by its upper
bound a(N — 1) + 315" [eac| + leo |, where e,;) and eq are
round-off errors of c(i )and0 respectively [5], and is added to the
round-off error under the independence assumption. Finaly, the
MSE of the total CORDIC output is the sum of angle approxima
tion error and the round-off error.

|

4. SSIMULATION RESULTS

In the simulation, binary input vectors v(0)’s are represented by
two’'s complement with b fractional bits. For the simulation of
MSE, 1000 sets of v(0)’s are generated, which are random num-
bers uniformly distributed over [—1,1]. Also, 50 rotation angles
with double precision at every 1/1007 (rad) over [0, 7/2] are used.
For each angle and v (0), the simulator performs acomplete CORDIC
rotation operation. The result, in two’s complement binary format,

is converted into a double precision real number to be compared

with the “theorem” derived in the previous section. The magni-

tude of the difference between these two results is taken as the

quantization error corresponding to the given N, b, 8, and v(0).

Tab. 1 shows the total MSE which is the sum of angle approxima-

tion error and round-off error. From the table, it is verified that

the MSE derived in this paper closely matches with the error of

actual CORDIC system. The statistical error analysis of MSE in

this paper can help the designer estimate the SNR of the system as

SNR (dB) = 101log,, Elvo(N)|*/Eles|>.

The proposed analysis can also be used for the analyses of
modified CORDIC algorithms such as AR method, MVR-CORDIC,
and EEAS scheme, which can improve the conventional one in
terms of computational speed, accuracy, and complexity [3]. Their
MSEs can also be evaluated using the similar method as the con-
ventional CORDIC. The tightness of the analysis and simulation
can be proved in the same manner as the conventional CORDIC,
and the result is omitted here. Fig. 1 plots the predicted output er-
rors versus 32 rotation angles for the case of b = 16. Asshown in
the figure, the proposed analysis can be used to compare the accu-
racy of modified CORDIC algorithmswith that of the conventional
CORDIC.

As an example of the application of the proposed error analy-
sis, the output MSE of an 2K /4K /8 K -point FFT processor based
on the CORDIC processor is analyzed. Detailed architecture and
practical implementation of 2K /4K /8 K-point FFT processor can
befoundin[8]. Thesmall DFT modules usethe conventional com-
plex multiplier based on Booth algorithm. However, in thetwiddle
factor multiplications for larger transforms such as 2K, 4K, and
8K point DFT, CORDIC processor is more efficient since it does
not require large ROM for storing many twiddle factors. Fig. 2
shows close match between the analysis and simulation in terms
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Table 1. Comparisons between simulation and analysis with re-

spect to the fractional bits b and iterations V.

[ b | N] Smulation | Andysis [ Difference% |
13 | 7.29159e—09 | 7.28858e—09 0.0412603%
16 | 14 | 2.02484e—09 | 2.02522e—09 | —0.0184523%
15 | 7.96293e—10 | 7.97837e—10 —0.193942%
16 | 5.60222e—10 | 5.59224e—10 0.178053%
29 | 1.60902e—18 | 1.61080e—18 —0.110723%
32 | 30 | 5.40555e—19 | 5.40945e—19 | —0.0721537%
31 | 2.69712e—19 | 2.69116e—19 0.220931%
32 | 2.17780e—19 | 2.17662e—19 0.0541165%

Input angle (*pi/64)

Fig. 1. Comparisons between the conventional CORDIC algo-
rithm (N = 16) and the modified CORDIC agorithms. (Rm:
predefined iteration number of modified schemes).

of MSE at one sample of the output. Also, a simple design ex-
ample of the FFT processor is shown in Tab. 2. As shown in the
table, in order to have the same accuracy as the case that all com-
plex multipliers employ the Booth algorithm, the iteration number
larger than 18 is needed. From the analysis, the number of bits
needed for certain MSE or peak SNR can be obtained.

5. CONCLUSIONS

In this paper, fixed-point error analysis of the CORDIC proces-
sor has been presented using error and variance propagation for-
mula. Using the model, total quantization error of the CORDIC
agorithm has been derived in terms of MSE. Simulation shows
the tightness of the derived MSE with the simulation results. As
an example of the application of proposed error model, the output
MSEs of the modified CORDIC algorithm and an FFT processor
employing the CORDIC processor have been analyzed. The result
shows close match between the analysis and simulation.
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