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ABSTRACT

The effects of angle approximation and rounding in the CORDIC
processor have been intensively studied for the determination of
design parameters. However, the conventional analyses provide
only the error bound which results in large discrepancy between
the analysis and the actual implementation. Moreover, some of the
signal processing architectures require the specification in terms
of the mean squared error (MSE) as in the design specification of
FFT processor for OFDM. This paper proposes a fixed point MSE
analysis based on the variance propagation for more accurate error
expression of CORDIC processor. It is shown that the proposed
analysis can also be applied to the modified CORDIC algorithms.
As an example of application, an FFT processor for OFDM using
the CORDIC processor is presented. The results show close match
between the analysis and simulation.

1. INTRODUCTION

The COordinate Rotation DIgital Computer (CORDIC) is an ef-
fective method for the calculation of trigonometric functions, mul-
tiplication, division, and conversion between binary and mixed
radix number systems [1, 2]. There are a number of digital sig-
nal processing (DSP) applications using the CORDIC-based hard-
ware in modern digital signal processing systems such as modu-
lation, digital filtering, and fast Fourier transforms (FFT). For the
optimal design of systems using the CORDIC processor, the anal-
ysis of various error sources is required as in other DSP problems.
Since Walther [2] first briefly discussed the accuracy of CORDIC
computation, there have been many papers on the analysis of er-
ror bound [4–7]. Specifically, Y. Hu [4] analyzed various error
sources of angle approximation, round-off, and normalization er-
ror in greater detail for all modes of the CORDIC arithmetic, and
X. Hu and Bass [5] reformed the model by adding neglected er-
ror source about the direction of rotation. Kota and Cavallaro [6]
proposed a partial normalization scheme to reduce the numerical
error in the computed inverse tangent of CORDIC backward rota-
tion mode, and Antelo et al. [7] presented a prescaling algorithm
to compensate for the disadvantage of [6]. However, the conven-
tional analyses provide only the upper bound of the error, which
is not sufficient for several reasons. More specifically, although
the upper bound analysis helps the designer select the parameters
for stable operation, the difference between the analysis and prac-
tical result is very large. Moreover, in the case of application such
as FFT employing several CORDIC processors, the error is prop-
agated and added to another errors. As a result, the error bound
of the output provides very little information. Hence, the mean

squared error (MSE) analysis as well as the upper bound error is
needed for more accurate analysis of CORDIC processor.

The MSE analysis have already been developed for many DSP
systems such as the quantization error analysis of digital filter,
FFT, and DCT implementations. The MSE analysis can provide
the designer with the average SNR of the system for the given
parameters. Hence, we attempt to provide the MSE analysis of
CORDIC processor, which can be applied to many DSP systems
employing CORDIC. From the simulations, it is shown that the
MSE analysis is much closer to the simulation than the upper bound
error analyzed in the conventional literature. The proposed anal-
ysis can also be used for the analysis of modified CORDIC fam-
ily [3]. To demonstrate how our analysis can be applied to a typi-
cal DSP system employing the CORDIC processor, simulation of
FFT processor for OFDM using the CORDIC processor [8] is pre-
sented.

2. CONVENTIONAL CORDIC ALGORITHM

The CORDIC processor computes a set of trigonometric functions
using vector rotation. These functions can be computed by a se-
ries of specific incremental rotation angles, where each rotation is
performed by a shift/add operation. The rotation angle � can be
represented as [3]

� '

N�1X
i=0

�(i)�(i); (1)

where N is the number of rotations. The term �(i) is a sequence of
�1s which determines the direction of remaining angle. The �(i)
is the elementary rotation angle of the i-th rotation. The CORDIC
algorithm consists of two parts, namely iteration process and scal-
ing process. The iteration process relates the output vector v(i+1)
to its input vector v(i) as

v(i+ 1) = P (i) � v(i);

�(i+ 1) = �(i) � �(i)�(i) for i = 0; 1; :::; N � 1;

where P (i) represents the micro rotation in the i-th iteration, and
�(i) is the remaining angle after the i-th iteration. The rotational
result is not restricted on the circle of fixed radius. Hence, the
magnitude of the result needs to be normalized by the scaling pro-
cess. That is, the output of the iteration process v(N) is divided
by the scaling factor K where K =

QN�1

i=0
k(i). Hence, the final

result of CORDIC processor vo(N) can be represented as

vo(N) =
1

K
� v(N) =

�N�1Y
i=0

k(i)

�
�1

�v(N):
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In case of circular rotation mode, P (i), k(i), and �(i) are repre-
sented as

P (i) =

�
1 �(i)2�i

��(i)2�i 1

�
;

k(i) =
p

1 + 2�2i; �(i) = tan�1(2�i):

3. ACCURACY OF CORDIC ALGORITHM

3.1. MSE of Angle Approximation Error

One of the error sources of CORDIC algorithm is the angle ap-
proximation. If we wish to rotate the input vector by � using the
CORDIC algorithm, � should be smaller than j�j �

PN�1

i=0 �(i)+
�(N � 1) for the convergence [4]. In this case, the � can be repre-
sented as � =

PN�1

i=0
�(i)�(i)+Æ, where Æ is the residual rotation

angle, which is caused by finite combination of the elementary an-
gles. Assuming there is no round-off error, the ideal CORDIC
output vo(1) is compensated by the compensation matrix C [4],
i.e.,

vo(1) = C � vo(N) =

�
cos Æ � sin Æ
sin Æ cos Æ

�
� vo(N):

Therefore, the angle approximation error ea(N) of the vo(N) is
given by

ea(N) , vo(N) � vo(1) = (I � C) � vo(N); (4)

where I is the 2 � 2 identity matrix. Now, the MSE of the angle
approximation error is given by following theorem.
Theorem 2.1:
For the case that the input angle is given and thus the Æ is determin-
istic, the MSE of the angle approximation error can be expressed
as

E jea(N)j2 = 4 sin2
Æ

2
� E jv(0)j2 ' Æ2 � E jv(0)j2 ; (5)

where E( � ) is the statistical expectation.
Proof:
Since the CORDIC output vo(N) is independent of C, the MSE
of ea(N) in eq. (4) can be expressed as

E jea(N)j2 = EfkI �Ck
2
� jvo(N)j2g

where k � k is the l2-norm of a matrix. Assuming the infinite
precision arithmetic, there is no round-off error, and then vo(N)
has the same energy as the CORDIC input v(0). Also, since
kI �Ck

2 = 4 sin2 Æ
2
' Æ2, this proves eq. (5).

�

When the input angle is not given, we just have the information
that the residual angle jÆj is bounded by �(N � 1) [4]. If we
assume that the error is uniformly distributed, the MSE can be
evaluated as follows.

E jea(N)j2 =

Z �(n�1)

��(n�1)

4 sin2
Æ

2
�

1

2�(n� 1)
dÆ � E jv(0)j2

=

�
2� 2 �

sin�(N � 1)

�(N � 1)

�
� E jv(0)j2 : (6)

For using variance propagation formula, variance and mean of the
angle approximation error are required to be separated from its

MSE. Variance of the angle approximation error is approximated
as the MSE by the following theorem.
Theorem 2.2:
Let ea(N) , [eax(N); eay(N)]T , where [ � ]T represents vector
transpose. Then

Varfeax(N)g = Varfeay(N)g '
E jea(N)j2

2
; (7)

where Var( � ) is the statistical variance.
Proof:
The MSE of the angle approximation error can be described as

E jea(N)j2 = Varfeax(N)g+ Varfeay(N)g+ jEea(N)j2 :

If Æ is deterministic, since jEfv(0)gj2 � E jv(0)j2 in most case,
jEfea(N)gj2 � E jea(N)j2. Otherwise,

jEfea(N)gj2 =

�
1�

sin�(N � 1)

�(N � 1)

�2

� jEfv(0)gj2 : (8)

From eqs. (6) and (8), it can be observed that jEfea(N)gj2 �

E jea(N)j2. Hence,

E jea(N)j2 ' Varfeax(N)g + Varfeay(N)g: (9)

�

3.2. MSE of Round-off Error

In the previous subsection, the analysis for the angle approxima-
tion error is presented. Now, we derive the errors caused by finite
precision arithmetic in the micro rotations and multiplication of
the scaling factor. For the analysis of these errors, let [ � ]Q denote
quantization operator. Then the round-off errors are given by

er(i) , [v(i)]Q � v(i) for i = 0; 1; :::; N � 1;

es , [vo(N)]Q � vo(N);

where er(i) is the round-off error introduced by (i � 1)-th itera-
tion process. Specifically, er(0) is the round-off error of the input
vector. Also, es is the scaling error.
Theorem 2.3:
Total round-off error eor is expressed as

eor =
1

K

�
er(N) +

N�1X
i=0

N�1Y
j=i

P (j)er(i)

�
+ es: (10)

Proof:
This can be easily proved from the well-known error propagation
formula [4]. Since the CORDIC operation is a linear transforma-
tion, the total round-off error is also the sum of the linear transfor-
mation of er(i) up to the N -th iteration with the scaling, which is
the first term in the eq. (10), plus the final scaling error es.

�

Since CORDIC is a linear transform, the covariance matrix of the
output error can be determined from that of input only:
Theorem 2.4:
Since two elements of the vector er(i) are uncorrelated, its covari-
ance matrix is represented as

Covfer(i)g = wv(i� 1) � I for i = 0; 1; :::; N;
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where wv(i � 1) is the variance of each element of vector er(i).
If er(0) = 0, the covariance matrix of eor can be described as
follows.

Covfeorg =
1

K2

�
wv(N � 1)

+
N�1X
j=1

N�1Y
i=j

wv(j � 1)k(i)2
�
� I + Covfesg: (12)

Proof:
Let eor(i) be the output error propagated from er(i). Then, from
the variance propagation formula,

Covfeor(i)g =

(
1

K2 �
e
P (i)Covfer(i)geP (i)T for 1 � i < N;

1

K2 � Covfer(i)g for i = N;

where eP (i) ,
QN�1

j=i P (j). Hence, the covariance matrix of eor
can be described as

Covfeorg =
NX
j=1

Covfeor(j)g+ Covfesg; where

NX
j=1

Covfeor(j)g

=
1

K2

�
wv(N � 1) � I +

N�1X
j=1

wv(j � 1) � eP (j)eP (j)T
�

=
1

K2

�
wv(N � 1) +

N�1X
j=1

N�1Y
i=j

wv(j � 1)k(i)2
�
� I:

�

Now that we have the variance, the mean of round-off error is
needed for the derivation of MSE:
Theorem 2.5:

Efeorg =
1

K

�
Efer(N)g+

N�1X
j=1

e
P (j)Efer(j)g

�
+ Efesg:

(13)
Proof:
The total round-off error is the linear combination of round-off
error and scaling error. Thus, this theorem is derived immediately.

�

Finally, from eqs. (12) and (13), the MSE of the total round-off
error is represented as

E jeorj
2 =

2

K2

�
wv(N � 1) +

N�1X
j=1

N�1Y
i=j

wv(j � 1)k(i)2
�

+
1

K2

�����Efer(N)g+

N�1X
j=1

e
P (j)Efer(j)g

�����
2

+ E jesj
2 : (14)

3.3. MSE of Total Output Error

Theorem 2.6:
The MSE of the total CORDIC output E jeoj

2 can be expressed as

E jeoj
2 = E jea(N)j2 + E jeorj

2 : (15)

Proof:
The direction sequence �(i)’s in the infinite precision system are
different from those in the actual CORDIC system. The differ-
ence of �(i)’s results in additional angle approximation error [5].
Hence, the angle approximation error is dependent on the round-
off error in general. However, in the applications when the in-
put angle is given, residual angle Æ is deterministic, and the angle
approximation error depends only on the input energy E jv(0)j2.
Hence, two error sources are independent. In this case, it can be
assumed that the angle approximation error is an additional er-
ror introduced by a linear transform C�1 after the termination of
CORDIC operation. If the input angle is not given, the angle ap-
proximation error variance with �(N � 1) is replaced by its upper
bound �(N � 1) +

PN�1

i=0

����(i)��+ j�� j, where ��(i) and �� are
round-off errors of �(i) and �, respectively [5], and is added to the
round-off error under the independence assumption. Finally, the
MSE of the total CORDIC output is the sum of angle approxima-
tion error and the round-off error.

�

4. SIMULATION RESULTS

In the simulation, binary input vectors v(0)’s are represented by
two’s complement with b fractional bits. For the simulation of
MSE, 1000 sets of v(0)’s are generated, which are random num-
bers uniformly distributed over [�1; 1]. Also, 50 rotation angles
with double precision at every 1=100� (rad) over [0; �=2] are used.
For each angle and v(0), the simulator performs a complete CORDIC
rotation operation. The result, in two’s complement binary format,
is converted into a double precision real number to be compared
with the “theorem” derived in the previous section. The magni-
tude of the difference between these two results is taken as the
quantization error corresponding to the given N , b, �, and v(0).
Tab. 1 shows the total MSE which is the sum of angle approxima-
tion error and round-off error. From the table, it is verified that
the MSE derived in this paper closely matches with the error of
actual CORDIC system. The statistical error analysis of MSE in
this paper can help the designer estimate the SNR of the system as
SNR (dB) = 10 log10 Ejvo(N)j2=Ejeoj2.

The proposed analysis can also be used for the analyses of
modified CORDIC algorithms such as AR method, MVR-CORDIC,
and EEAS scheme, which can improve the conventional one in
terms of computational speed, accuracy, and complexity [3]. Their
MSEs can also be evaluated using the similar method as the con-
ventional CORDIC. The tightness of the analysis and simulation
can be proved in the same manner as the conventional CORDIC,
and the result is omitted here. Fig. 1 plots the predicted output er-
rors versus 32 rotation angles for the case of b = 16. As shown in
the figure, the proposed analysis can be used to compare the accu-
racy of modified CORDIC algorithms with that of the conventional
CORDIC.

As an example of the application of the proposed error analy-
sis, the output MSE of an 2K=4K=8K-point FFT processor based
on the CORDIC processor is analyzed. Detailed architecture and
practical implementation of 2K=4K=8K-point FFT processor can
be found in [8]. The small DFT modules use the conventional com-
plex multiplier based on Booth algorithm. However, in the twiddle
factor multiplications for larger transforms such as 2K, 4K, and
8K point DFT, CORDIC processor is more efficient since it does
not require large ROM for storing many twiddle factors. Fig. 2
shows close match between the analysis and simulation in terms
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Table 1. Comparisons between simulation and analysis with re-
spect to the fractional bits b and iterations N .

b N Simulation Analysis Difference %

13 7:29159e�09 7:28858e�09 0:0412603%
16 14 2:02484e�09 2:02522e�09 �0:0184523%

15 7:96293e�10 7:97837e�10 �0:193942%
16 5:60222e�10 5:59224e�10 0:178053%
29 1:60902e�18 1:61080e�18 �0:110723%

32 30 5:40555e�19 5:40945e�19 �0:0721537%
31 2:69712e�19 2:69116e�19 0:220931%
32 2:17780e�19 2:17662e�19 0:0541165%
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1e-08

1e-07

1e-06
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Me
an

 sq
ua

red
 er

ror
 (M

SE
)

Input angle (*pi/64)

Conventional CORDIC
EEAS scheme (Rm=3)
MVR-CORDIC (Rm=6)

AR method

Fig. 1. Comparisons between the conventional CORDIC algo-
rithm (N = 16) and the modified CORDIC algorithms. (Rm:
predefined iteration number of modified schemes).

of MSE at one sample of the output. Also, a simple design ex-
ample of the FFT processor is shown in Tab. 2. As shown in the
table, in order to have the same accuracy as the case that all com-
plex multipliers employ the Booth algorithm, the iteration number
larger than 18 is needed. From the analysis, the number of bits
needed for certain MSE or peak SNR can be obtained.

5. CONCLUSIONS

In this paper, fixed-point error analysis of the CORDIC proces-
sor has been presented using error and variance propagation for-
mula. Using the model, total quantization error of the CORDIC
algorithm has been derived in terms of MSE. Simulation shows
the tightness of the derived MSE with the simulation results. As
an example of the application of proposed error model, the output
MSEs of the modified CORDIC algorithm and an FFT processor
employing the CORDIC processor have been analyzed. The result
shows close match between the analysis and simulation.
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