

FLOATING-POINT ERROR ANALYSIS BASED ON AFFINE ARITHMETIC

Claire Fang Fang, Tsuhan Chen, Rob A. Rutenbar

Dept. of Electrical and Computer Engineering
Carnegie Mellon University

{ffang, tsuhan, rutenbar}@ece.cmu.edu

ABSTRACT

During the development of floating-point signal
processing systems, an efficient error analysis method is
needed to guarantee the output quality. We present a novel
approach to floating-point error bound analysis based on
affine arithmetic. The proposed method not only provides
a tighter bound than the conventional approach, but also is
applicable to any arithmetic operation. The error
estimation accuracy is evaluated across several different
applications which cover linear operations, non-linear
operations, and feedback systems. The accuracy decreases
with the depth of computation path and also is affected by
the linearity of the floating-point operations.

1. INTRODUCTION

With the constant advance in VLSI technology, more and more
floating-point signal processing algorithms are being ported from
software solutions, with virtually infinite precision, to hardware
solutions where precision is highly limited by the low-power
constraint. Custom floating-point format for video, audio and
speech applications and its benefit in power saving are studied in
[1-3]. In order to prevent numerical catastrophe and assist design
decision making, a method that can keep track of floating-point
error is needed during the system development. Unlike the case
of fixed-point arithmetic, where the round-off error could be
modeled as a white noise sequence independent of the input
signal, the round-off error in floating-point arithmetic is strongly
correlated with the signal magnitude determined only at run-
time, which complicates the error analysis.

Research in floating-point error analysis has been going on for
about three decades. Previous publications take approaches that
fall into two categories. One is to predict statistical property of
the computed signal, namely error variance, given the system
transfer function H(z) [5-9]. The other is to estimate the error
bound based on floating-point error propagation models [10].
However, both of them have limitations when applied to the
current scenario. In [5], a floating-point round-off error variance
model is introduced for digital filters, which requires H(z) and
the autocorrelation matrix of the inputs. More recently, a
simplified model is proposed in [9] based on the same
methodology. The main drawback of these statistical approaches

is that the derivation of the model is only applicable to vector
inner products, and is not scalable to a larger set of signal
processing algorithms involving operations such as division,
square, square root, etc. Further, knowing only the error variance
is not enough to avoid numerical failures coming from the worst
case error. For example, in the IEEE standard for the
implementation of Inverse Discrete Cosine Transform in image
and video processing, both the peak error and the mean square
error are considered [11]. On the other hand, error bound
estimation presented in [10] employs interval arithmetic (IA) to
build round-off error bound propagation models for not only
addition and multiplication, but also for division and square
root. Although its accuracy is not shown in the paper, it is very
likely to lead to unacceptable overestimation given the fact that
IA performs poorly when signals have correlations among each
other.

In this paper, we develop an error bound analysis method that
not only gives a tighter bound than previous work regardless of
correlations between signals, but also is applicable to more
floating-point computations than just vector inner products. We
present a novel approach based on affine arithmetic, a recent
development in range arithmetic, and show its advantages over
previous approaches in terms of accuracy and scalability.

The remainder of the paper is organized as follows. In Section
2, background on range arithmetic is briefly introduced. Based
on the affine arithmetic (AA) model in range arithmetic, we
present our AA-based floating-point error model in section 3.
Section 4 provides experimental results to show the accuracy and
applicability of the proposed method. More discussions about
related issues are given in section 5. Finally, some concluding
remarks are given in Section 6.

2. BACKGROUND – RANGE ARITHMETIC

Range arithmetic is widely used in approximate numerical
computations. It also plays an important role in floating-point
error analysis due to the following reasons. First, in order to
keep track of the error bound of each quantity during
computation, ideally, an accurate estimate of the quantity value
is required, because the floating-point error bound strongly
depends on the magnitude of the quantity [4]. However, such
information is impossible to obtain prior to run-time. Therefore,
a less accurate, but more practical feature - range of the quantity
- is estimated and propagated through computations. Second,
estimated error can be expressed as either a single value (bound),

II - 5610-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

or a range. By choosing range as a representation of error, we are
able to model the error propagation more precisely, with the help
of range arithmetic.

2.1 Interval Arithmetic

Interval arithmetic (IA), also known as interval analysis, is
invented in the 1960s by Moore [12] as a simple tool to solve
range problems. The interval of quantity x is represented
by].,.[hixloxx = , meaning that the “true” value of x is known to
satisfy x.hi. xx.lo ≤≤

For each operation f: Rm → R, there is a corresponding range
extension RR: f m → . An important property of the range
extension is the fundamental invariant:

)()(xfxfxx ∈⇒∈
The fundamental invariant guarantees that the operation output
lies in the range estimated by the range extension. For example,
the sum of two intervals x and

y
 is computed as

 (1)] .[.hiy.hix.lo, ylox yx z ++=+=
According to the fundamental invariant, the value of quantity z
lies in the interval z . Analogous formulas can be derived for
multiplication, division, square root, and all other common
mathematical functions [13].

The main problem of IA is overestimation, especially when
intervals are correlated with each other. To illustrate the
problem, suppose in (1) x = [-1, 1], y = [-1, 1], and the
quantities x and y have the relation y = -x. According to (1), z =
[-2, 2], while z = x + y ≡ 0! The effect of overestimation
accumulates along the computation chain, and finally may result
in range explosion.

2.2 Affine Arithmetic

Affine arithmetic (AA), or affine analysis, is developed as a
solution to the overestimation in IA. It not only keeps track of
intervals, but also preserves correlations between them. In affine
arithmetic, a quantity x is represented by an affine form x̂ , which
is a first-degree polynomial:

1 1- with ...ˆ i22110 ≤≤++++= εεεε nnxxxxx (2)
Each noise symbol iε stands for an independent component of
the total uncertainty of the quantity x; the corresponding
coefficient xi gives the magnitude of that component. The source
of the uncertainty may be either “external” (due to variation of
the quantity, numerical approximation), or “internal” (due to
arithmetic round-off or other numerical errors committed in the
computation of x̂) [13]. Similar to IA, affine arithmetic also has
the fundamental invariant property.

For the linear operations xaxayx ˆ and ,ˆ,ˆˆ ±± on affine
forms yx ˆ,ˆ and real number a, the resulting affine forms are
easily obtained by applying (2). For any other operation f: Rm →
R, the resulting function),...(1

*
nf εε is no longer a linear

combination of iε . In order to preserve the affine form of the
result, we first select an approximate linear function

),...(1 n
af εε according to a certain rule, e.g. Chebyshev

approximation theory, then a new noise term kε indicating the
approximation error is estimated and added to the final affine
form.

The key feature of the AA model is that the same noise
symbol may contribute the uncertainty of two or more quantities,
indicating the correlations among them. This advantage of AA is

especially noticeable in computations subject to range
cancellation or of great arithmetic depth. In the example in
Section 2.1, x and y have the following affine forms

 εε 10ˆˆ and 10ˆ −=−=+= xyx
The resulting affine form yxz ˆˆˆ += = 0 perfectly agrees with

the range that the quantity z actually falls in. To show the
difference between IA and AA along a computation chain, we
apply both on the Inverse Discrete Cosine Transform (IDCT),
implemented according to the structure in [14] and fed by inputs
generated in the range [-128, 128]. There are six stages along the
computation path, including the inputs and the outputs. Fig. 1
shows the range for each stage in a particular path. Thanks to the
extra information embedded in the affine form about the
correlations, the ranges estimated by AA grow much slower than
those by IA.

3. FLOATING-POINT ERROR MODELS USING

AFFINE ARITHMETIC

Floating-point representations are computer approximations of
real numbers, with errors caused by input quantization, or
rounding committed at each arithmetic operation. In this section,
we first review a conventional model that people have been
using to analyze floating-point error. We then develop a new
model that nicely fits into the affine form for any arithmetic
operation.

3.1 Conventional error models

Throughout the paper, we assume that floating-point numbers
are stored in the form (sign)·µ·2ν, where ν is called the exponent,
and µ, with the value between 1 and 2, is called the mantissa..
For each input quantity x, xf denotes its floating-point
approximation. The notation fl(·) is the floating-point
approximation for an operation. The approximations by input
quantization and rounding (real rounding is assumed in the
paper) are modeled as the following [4, 5]:

(4))1)(()(

(3))1(

β
α

+=

+=

yxyxfl

xx f

oo

, where the error variables βα , are usually assumed to be
uniformly distributed within [-2-q, 2-q], where q is the number
bits used in the mantissa.

3.2 AA-based error models

If the quantity x is distributed in a range and represented by an
affine form 110 εxxx += , from (3) we can see that the error of x
is bounded by max(|x|)·2-q. In this case, xf can be written in the
affine form

4498
1913

IA: range explosion

AA: tighter interval

Fig. 1 Estimated range growth in a computation path in
IDCT

II - 562

➡ ➡

]1 ,1[, ,2|)max(| ˆ 111110 −∈⋅⋅++= − δεδε q
f xxxx (5)

We call 1ε the variation symbol and 1δ the error symbol
according to their different causes.

For any operation f: Rm → R, the output quantity z can also
have an affine form. Here we use a binary operation

)(yxfz o= to illustrate. According to (4), the error of z has a
bound of max(|z|)·2-q. Therefore the affine form for zf is

1] [-1, ,2|)max(|)ˆˆ(ˆ ∈⋅⋅+= − δδq
fff zyxz o , (6)

As discussed in the last section, the first term)ˆˆ(ff yx o is
either in a precise affine form, or an approximate affine form,
depending on the linearity of the operation. Combining (5) and
(6), for any quantity (input, output, or intermediate result) during
floating-point computations, it can be represented in an affine
form

]1 ,1[, ,ˆ 0 −∈∑ ∑++= iii
i i

iiif wvuu δεδε
, where the variation symbol iε denotes the variations from all
related input quantities, and the error symbol iδ represents the
errors from input quantization, rounding, and affine
approximation.

If two or more quantities share the same error symbol, it is
possible for them to be cancelled during computation. Hence,
error analysis using AA is more accurate than using IA.
Differences between them on the same example, IDCT, are
shown in Fig. 2. Six vertical bars are the estimated error range
for each stage along a computation path. The error ranges
estimated by AA are much tighter than those by IA.

4. EXPERIMENTAL RESULTS

Based on the AA floating-point error model, we build a C++
library that automatically keeps track of the floating-point errors.
We test the applicability and accuracy of the proposed error
analysis method on several frequently-used signal processing
tasks, among which Walsh-Hadmard Transform (WHT), FIR and
IDCT are all essentially linear transforms, or vector inner
products. To show that the AA error analysis is also applicable
to non-linear operations, we conduct an experiment on the
Gaussian distribution distance calculation task
(∑ −=

i
ii vmxy /)(2) commonly used in pattern recognition

algorithms. In addition, IIR filter is evaluated as an example of
feedback systems.

4.1 Accuracy

To evaluate the AA-based error analysis, we define
 Accuracy = real error / estimated error

, where the real error is obtained by measuring the maximum
difference between a 64-bit double precision result and a 16-bit
custom floating-point result, simulated using Cmufloat custom
floating-point library [1, 2].

Since the estimated error provides an error bound, it is always
expected to be larger than the real error. The closer this
measurement is to 1, the more accurate the error analysis.

 # of adds # of mults AA accuracy

WHT4 3 0 0.958
WHT64 63 0 0.799

FIR (4-tap) 3 4 0.777
FIR (25-tap) 24 25 0.564

IDCT8 13 6 0.473

Dist. calc. 11 4 0.39

 Table 1. Accuracy of AA-based error analysis

In Table 1, we show the accuracy of six benchmarks. Their
accuracy is affected by the number of arithmetic operations
along the computation path and the linearity of the operations.
Comparing WHT and FIR, we can see that multiplications
reduce the accuracy more than additions because of the affine
approximations taken in multiplications [13]. Gaussian distance
calculation has the lowest accuracy since it involves non-linear
operations.

We also obtain the error analysis accuracy of IDCT using IA-
based method. The AA-based error analysis is significantly
better (124%) than the IA-based method due to a large number
of correlations. For example, in the IDCT structure shown in
Fig. 3, two quantities denoted by the grey dots are correlated
because they are both dependent on x1. This is where
overestimate in the IA-based method takes place.

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

20

40

60

80
Accuracy

Convergence time

Accuracy Conv. time

ρ

4.2 Applying to feedback systems

Results by IA

Fig. 2 Estimated error ranges in a computation path in IDCT

0.043

Results by AA 0.144

x7
x5
x3
x1
x6
x4
x2
x0

y5
y2
y4
y3
y6
y1
y7
y0

C7

C5

C3
C1

C4

1/C4
C4

C6/C4
C2/C4
C6/C4
C2/C4

16 cos 2
1

π i Ci =
x y

y - x y+x
x C C*x x y

y+x y
Butterfly

Both are dependent on x1

Fig. 3 Structure of IDCT

Fig. 4 Accuracy of error analysis on IIR filters

II - 563

➡ ➡

As the error estimation accuracy decreases with the depth of the
computation chain, one may ask whether this method is suitable
for a feedback system which can be viewed as having infinite
computation depth. We conduct the experiment on an IIR filter
with poles inside the unit circle. It's specified by

)2(2
2

1 −− +−−= nnnn yyxy ρρ . We find that after a sufficient
amount of time, the estimated error converges (the error range
stops growing). The accuracy of the asymptotic error and the
convergence time depends on the location of the poles, as
depicted in Fig. 4. The larger the ρ, the past computations have
more influence on the present computation. Therefore it takes
longer to converge and results in worse accuracy.

5. DISCUSSION

In all the experiments above, the inputs are generated according
to uniform distribution assumption. A different distribution of
real application data will certainly worsen the error estimation.
In the same IDCT experiment, if the inputs are from a Gaussian
distribution, the accuracy is decreased from 0.473 to 0.304. The
performance can be boost by feeding a histogram, not just a
range of the inputs. The result is a histogram of error in this case.
The final error bound is chosen to cover 90% confidence
interval. From Table 2, we show the accuracy is improved to
0.987 by having a 5-bin histogram. However, the runtime grows
exponentially with the number of bins. Hence, it's not worth
having even more complicated histogram.

 Accuracy runtime (sec)

Simple analysis 0.304 0.03

3-bin histogram 0.822 5

5-bin histogram 0.987 13889

 Table 2. AA error analysis with histogram inputs

The AA-based error estimation can also be used in floating-
point custom format optimization. In the optimization algorithm
proposed in [2], it relies on simulation to evaluate the goodness
of the current format setting. This time-consuming step can be
replaced by static error estimation. Although it does not have
100% accuracy, the final format can be achieved by a little local
tuning after the optimization. Further, by using AA-based error
estimation, it is very easy to determine which quantity
contributes the most in the final error, and hence where to
allocate more bits in the next iteration during the optimization.

Finally, we want to point out that similar fixed-point error
models can also be built upon affine arithmetic. Since the
quantization and round-off error in fixed-point arithmetic is
independent on the magnitude of the quantity, the AA-based
fixed-point error models will be simpler than floating-point
arithmetic.

6. CONCLUSION

In this paper we have described a novel approach to

analyze floating-point propagation errors using affine
arithmetic. A general affine form is developed for floating-
point error bound estimation independent of the type of

operations. We have shown that the advantage of this
method is significant when a large number of correlations
are involved in the intermediate computations. However,
the accuracy decreases with the computation complexity
and is also affected by the linearity of the computations. It
is also applicable to feedback systems, with convergence
time and accuracy dependent on the pole positions. In case
of non-uniform distributed inputs, the accuracy can be
boost by feeding histogram inputs.

Armed with the AA-based error model, we can
integrate error analysis and custom format optimization
together for both floating-point and fixed-point arithmetic,
and ultimately provide a powerful developing environment
for signal processing algorithms.

7. REFERENCE

[1] F. Fang, T. Chen, R. Rutenbar, "Lightweight Floating-

Point Arithmetic: Case Study of Inverse Discrete Cosine
Transform", EURASIP Journal on Signal Processing, Special
Issue on Applied Implementation of DSP and Communication
Systems, 2002

[2] F. Fang, T. Chen, R. Rutenbar, "Floating-point Bit-width
Optimization for Low-Power Signal Processing Applications,"
Proc. International Conf. on Acoustic, Speech and Signal
Processing, pp 3208-3211, 2002

[3] R. Chamberlain, Y. H. Chew, V. DeAlwis, et al., "Power
consumption of customized numerical representations for audio
signal processing", Sixth Annual Workshop on High
Performance Embedded Computing, pp 41-43, 2002

[4] P. H. Sterbenz, "Floating-point computation", Prentice-
Hall

[5] B. Liu, T. Kaneko, "Error analysis of digital filters
realized with floating-point arithmetic", Proc. IEEE, vol. 57, pp
1735-1747, Oct.1969

[6] C. Weinstein, A. V. Oppenheim, "A comparison of
roundoff noise in floating point and fixed point digital filter
realizations", Proc. IEEE, vol. 57, pp 1181-1183, Jun. 1969

[7] T. L. Laakso, L. B. Jackson, "Bounds for floating-point
roundoff noise", IEEE Trans. Circ. and Syst.-II: Analog and
Digital Signal Processing, vol. 41, pp 424-426, Jun. 1994

[8] C. Tsai, "Floating-point roundoff noises of first- and
second-order sections in parallel form digital filters", IEEE
Trans. Circ. and Syst.-II: Analog and Digital Signal Processing,
vol. 44, pp 774-779, Sep. 1997

[9] B. D. Rao, "Floating point arithmetic and digital filters",
IEEE, Trans. Signal Processing, vol 40, pp 85-95, Jan, 1992

[10] W. Kramer, "A prior worst case error bounds for
floating-point computations", IEEE Trans. Computers, vol. 47,
pp 750-756, Jul. 1998

[11] "IEEE-standard specifications for the implementations
of 8X8 inverse discrete cosine transform," IEEE Std 1180-1990,
Institute of Electrical and Electronics Engineers, Inc, 1990

[12] R. E. Moore. "Interval analysis", Prentice-Hall, 1966
[13] L. H. de Figueiredo and J. Stolfi, "Self-validated

numerical methods and applications", Brazilian Mathematics
Colloquium monographs. IMPA, Rio de Janeiro, Brazil, Jul.
1997

[14] A. Artieri, O. Colavin, "A chip set core for image
compression," IEEE Trans. on Consumer Electronics, vol. 36,
pp.395 -402, Aug. 1990

II - 564

➡ ➠

