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ABSTRACT

The generalized direct-form II transposed (DFIIt) struc-
ture in d-operator has been studied by several authors
recently and it has been shown that this structure has
some nice numerical properties over that in the con-
ventional shift operator. Noting that the d-operator
based DFIIt structure yields a better performance only
for those digital IIR filters whose poles are clustered
around z = +1, based on a polynomial operator ap-
proach a more generalized DFIIt structure is derived
and its equivalent state-space realization is investigated
in this paper. The corresponding expression for round-
off noise gain is derived. The optimal polynomial prob-
lems are then formulated and solved for any given fil-
ter. It is shown that this realization yields a smaller
roundoff noise gain than that of the generalized DFIIt.
A numerical example is given to illustrate the design
procedure.

1. INTRODUCTION

The optimal structure design has been considered as
one of the most effective methods (see, e.g., [1]-[4]) to
minimize the effects of finite word length (FWL) er-
rors on the performance of digital filters. It is well
known that for a given digital filter, there exist a num-
ber of different realizations with which the filter can
be implemented. The optimal FWL state-space de-
sign is to compute those realizations that minimize the
degradation of the filter due to the FWL effects. It
has been noted that the optimal realizations are usu-
ally fully parameterized. In practice, it is desired that
the filter have a nice performance as well as a very
simple structure that possesses many trivial parame-
ters!, which can be implemented exactly and produce
no rounding errors. Noting this fact, a lot of effort has

1By trivial parameters we mean those that are 0 and +1.
Other parameters are, therefore, referred to non-trivial parame-
ters.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il - 557

been made to achieve sparse optimal or quasi-optimal
realizations (see, e.g., [5]-[6]).

It is well known that though having poor numeri-
cal properties the direct-forms in the conventional shift
operator are the simplest structures. Recently, the
direct-forms in delta operator have been studied by re-
searchers (see, e.g., [7]-[11]). An extensive comparative
study of different direct forms in delta operator was
given in [11], where the transfer function is cascaded
into second order sections and each section is imple-
mented with a direct form in delta operator. It was
shown there that among all the direct forms, the direct
form II transposed (DFIIt) structure has the lowest
quantization noise level at output. In [7], the DFTIt
structure in §-operator was investigated for an arbi-
trary order IIR filter, where the concept of different
coupling coeflicients at different branch nodes is uti-
lized for better roundoff noise gain suppression.

The use of delta operator, defined as § = Z;j with
Ts the sampling period, was first promoted in estima-
tion and control applications (see, [12], [13]). Later on,
the numerical properties of the delta operator, where
T, is replaced by a positive factor A, were investi-
gated in [4] from a pure algebraic point of view. Tt
was found that one can make the transfer function in
delta operator have better numerical properties in the
case where the poles of the transfer function are closer
to z = 4+1 than z = 0. This means that the delta op-
erator based structures have a very good performance
for narrow band low-pass filters and may not yield a
satisfactory performance for other types of filters. In
this paper, our contribution is twofold. First of all,
based on the concept of polynomial operators a more
generalized DFIIt structure is derived. This structure
is optimized with respect to the polynomial operators
to reduce the roundoff noise gain. The second one is to
study its equivalent state-space realization. It is shown
that this realization always yields a smaller roundoff
noise than that of the generalized DFIIt structure.
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2. A POLYNOMIAL OPERATOR BASED DFIIT
STRUCTURE

Consider the following time-invariant linear digital fil-
ter H(z) given by

o boP+bi2P T 4 by 2+ by

H . 1
(Z) Zp+alzp71 Jr...JrCLp_l +&p ( )
Define
AN Z— Tk
= k=1,2,.. 2
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where {7} and {Ax > 0} are two sets of constants to
be discussed later.

It can be shown that H(z) can be reparametrized
with {@m, Bm} in the polynomials {px}, called polyno-
mial operators:
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Vo 2 (1 ) Ve = (B )"
one has
Vo = KMV, Vo =K 'M~'V,
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where K = [[F_, Ay and M € RPHDX@HD) g 3 lower
triangular matrix whose mth column is determined by
the coefficients of the polynomial [[}_,, px for m =
1,2,..,pand M(p+ 1,p+1)=1.

It can be shown that the output can be computed
with the following equations

y(n) = Pou(n) +wi(n)
wr(n) = pg [Bru(n) — ary(n) + wy i1 (n)]
wp(n) = pyt[Bpu(n) — apy(n)] (5)

with wpt1(n) = 0. Fig. 1 shows the corresponding
realization structure to (5), where wy(n) is the output
of the operator plzl.

Clearly, when v, = 0, Ag = 1, Vk, Fig. 1 is the
conventional DFIIt, and when v, = 1, Vk, one gets the
generalized dDFIIt structure, denoted as WN’s struc-
ture, studied in [7]. In this paper, we just consider the
cases for which ~ takes values from the set {—1,0,1}.
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Fig. 1. A generalized DFI1It structure with polynomial
operators

2.1. Equivalent state-space realization

One can implement p,j with the realization depicted
in Fig. 2. We choose {zj(n)} indicated in Fig. 2 as the
state variables and denote x(n) as the state vector. Tt
can be shown that the proposed structure is equivalent
to the following state-space realization

zn+1) = A,x(n)+ Byu(n)
y(n) = Cpz(n)+ Bou(n), (6)
where
B, = 3—60d,Cp:(A1 o - O)
Ap = Dry + Ma (7)

with D., = diag(y1,- -+ ,7p), My is the px p zero matrix
except M (k,1) = —Ajag,Vk and M, (k, k+1) = Apyq
fork=1,---,p—1, and

(& - 8) . a

1>
1>

(a1 - o).
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Fig. 2. A realization of operator p,j

- wi(n)

Denote (A4,, B,,C,, ) as the realization given in
(7) but corresponding to Ay, = 1, Vk. It can be shown
that the realization (A4,, B,, C), fo) with any given {A}
can be obtained from (A4,, B,,C,, 39) with a diagonal
similarity transformation, denoted as Tk.,

A, =T AT,

sc !

B,=T.B,, C,=C,T..", (8)

where

Tsc - dl’ag(dlad% te




2.2. Iy-scaling

The [y-scaling means that each state variable should
have a unit variance when the input is a white noise
with a unit variance. This can be achieved if

We(k, k) = 1,Vk, (10)
where W, is given by
+o0
W.=>_ ASB,B](A])", (11)

called the controllability gramian of (4,, B,, C,, 5o).

Denote W,, corresponding to (A B,,C ,ﬂo) It
follows from (8)-(9) that W, = T, W, T_T Therefore,
the lp-scaling can be achieved if d%ﬁfc(k,k) =1, Vk,
which leads to

- W, (
= JWL(1,1),
A Well, 1), & \/W P, 1%1)
k= 2,3,..p. (12)

We note that for a given digital filter, one can imple-
ment it with the generalized DFIIt structure depicted
in Fig. 1 as well as its equivalent state-space (SS) re-
alization (6). In the next section, we will analyze the
performance of the two structures in terms of roundoff
noise gain.

3. ROUNDOFF NOISE ANALYSIS

Roundoff noise occurs in those variables computed with
multiplications if less-than-double precision fixed-point
arithmetic and rounding are utilized. Assuming round-
ing occurs after multiplication, expressions for roundoff
noise gain in the above two structures are derived be-
low.

3.1. Roundoff noise of the generalized DFIIt

Since {vi} are trivial parameters, there is no rounding
occuring after them at all. Therefore, the expression
for the roundoff noise gain is exactly the same as that
derived for WN’s structure in [7] for a given set {x}.
Denoting W, as the observability of the realization
(A,, B,,C,, Bo), which is given by
—+oo
Tk ~T k

W, =Y (ATYeCT C, AL, (13)

k=0

Denote G, G, and G as the roundoff noise gain
due to {ax}, {0k} and {Ay}, respectively, the total
roundoff noise gain is given by

G = 3tr(W,) + 21 + aTW,a) — W,(p,p).  (14)
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When v, = 1,Vk, G above yields to roundoff noise
gain for the WN’s structure [7].

3.2. Roundoff noise of the equivalent SS realization

First of all, we note that 4, has two non-trivial pa-
rameters A,(k, 1) and A,(k,k + 1) in kth row for k =
1,2,...,p—1 and one non-trivial parameter A,(p,1) in
the pth row, all the elements of B, are generally non-
trivial, and C, has only one non-trivial parameter. And
assume that the direct term 3y is non-trivial. Noting
that each of those parameters will produce a roundoff
noise source after multiplication, (6) becomes

p(nt1) = Aat(n)+ Byu(n) +n(n)
y'(n) = Cpa*(n) + fouln) + o(n) (15)

where 7(n) is a noise vector whose kth element is the
summation of three and two roundoff noise sources for
k=1,2,...,p— 1 and k = p, respectively, while p(n) =
€§(n)+e%(n), where the two roundoff noise sources are
due to C,(1) and 3y, respectively.

Denoting
ex(n) £ (n) — 2*(n), ey(n) £ y(n) — y*(n),
it can be shown that
ey(n) = —CylzI — A)7'n(n) — p(n)
£ nn) — p(n) (16)

Since all the roundoff noise sources are statistically
independent zero-mean processes with the same vari-
ance o2, we have

= El(n)] + Elp*(n)). (17)

With some manipulations, the roundoff noise gain, de-

A .
noted as Ggs = 5—27 can be shown to be given by the

following
Gas = tr(QW,) +2 = 3tr(W,) — Wo(p,p) + 2, (18)
where @ = diag(3,3,---,3,2) and W,is given by (13).

Remark 3.1: Comparing (14) with (18), one can con-
clude that for the same {vx}, Gss < G is always true.

3.3. Optimal operators

As mentioned before, +;, takes value from the finite set
Syt

211,01} (19)




For a given {74}, one can compute (4,, By, C,, )
and hence (W,,W,). Then, the scaling factors {A}
can be computed with either (12) and hence Ty, can
be determined with (9). Tt can be shown that W, =
T..'W,T..', then the total roundoff noise gains G' and
Gss can be evaluated with (14) and (18), respectively,
for the generalized DFIIt structure and its equivalent
state-space realization. We have the following two in-
teresting problems

min G, min  Ggs. (20)

VLES~, VK YLES, VEk

The first one leads to the optimal generalized DFIIt
structure, while the second one, to the optimal equiv-
alent state-space realization. Though G and G are
highly nonlinear function of {~x}, the problem can be
solved easily since the space {vx : v, € S,} is finite.

4. DESIGN EXAMPLES

This is a fourth order low-pass Butterworth filter with a
normalized 3dB frequency f. = 0.125. The correspond-
ing poles are located at p; o = 0.5565 £ j0.5142, p3 4 =
0.4277 £+ j0.1637 with |p; o = 0.7577, |p3 4| = 0.4576.

The following table shows the roundoff noise gains
G and G for five different sets of {~x}.

Table Roundoff Noise Gain
Y|l 2 | 3| v G Gss
1 -1 -1 -1 5.3056 x 10° | 4.0095 x 10°
0 0 0 0 52.4953 29.0450
1 1 1 1 27.1189 22.5630
0 1 0 1 13.9221 10.3263
0 0 0 1 14.8786 8.7249

Here, we note that {0, 0, 0, 0} and {1, 1, 1, 1}
correspond to the zDFIIt (in the shift operator) and
the §DFIIt (in the delta operator), as proposed in [7],

respectively. The combinations vg 2 {0, 1, 0, 1} and

.. = {0, 0, 0, 1} yield the optimal polynomial op-
erators obtained from (20) for G and G, respectively.
We can see that for the generalized DFIIt the optimal
polynomial operators 75 yields a G which is just half
of that by §DFIIt. And for optimal SS realization J4__,
it is better than 45 and has a much smaller roundoff
noise gain, just one third of that yielded by 6 DFIIt.
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