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ABSTRACT

We present analytical results, and details of implementa-
tion for a novel adaptive filter incorporating an approx-
imate natural gradient tap-update algorithm, termed the
simplified signed sparse LMS algorithm (SSSLMS). Each
tap-update equation includes a term proportional to the
tap-value, so that larger taps adapt more quickly than for
a corresponding Least Mean Square (LMS) update. Re-
sults indicate that the algorithm is suited for use in sparse
channels. The bounds on its maximum allowable step-
size differ from LMS, and simulations are provided that
indicate potentially more robust convergence for larger
step-sizes than LMS. A theoretical expression for the ex-
cess mean square error (MSE) is also derived, and con-
firmed by numerical simulation. Fixed point simulations
of the algorithm using a proposed hardware architecture
are also presented. The computational complexity is of
the same order as the standard LMS. Finally, profiling
of the power consumption of the SSSLMS implemen-
tation indicate that the architecture consumes approxi-
mately twice as much power as a standard LMS imple-
mentation.

1. INTRODUCTION

Adaptive filters are at the core of many modern com-
munication systems, and find common use as equalizers,
echo cancelers, and crosstalk cancelers, to name but a
few applications. In these cases, the target for the adap-
tive filter is often asparsefinite impulse response (FIR)
filter. Loosely speaking, a sparse channel can be de-
fined as a long channel with many relatively insignificant
taps and a few significant taps. Alternatively, it can be
described as a filter where the probability density func-
tion for tap weights is heavily skewed towards zero val-
ues. Another interpretation of sparse filters is to consider
them as non-uniformly spaced filters. In filters adapting
to sparse channels, low magnitude taps do not contribute
significantly towards reducing the mean square error be-
tween desired and actual outputs; however they can be a
significant consumer of power, as their weights still need
to be continuously updated. In addition, the need to adapt
to low magnitude taps contributes to overall convergence
time with negligible benefit in residual error.

As signaling speeds increase in data communications,
long sparse channels are becoming more commonly en-
countered, while conversely the desire for low power ap-
plications requires these long filters to minimize power
consumption. This has led to efforts to consider alterna-
tives to the standard Least Mean Squares (LMS) specifi-
cally adapted to sparse channels, with the goals of reduc-
ing convergence time, reducing excess mean square er-
ror, reducing complexity and/or power, or combinations
of these properties.

In this paper, we consider an alternative to the well
known LMS algorithm for weight updates. This algo-
rithm is termed a simplified signed sparse LMS (SSSLMS)
algorithm, and can provide faster convergence for sparse
channels under certain circumstances. This algorithm is
a special case of the more general class of adaptive nat-
ural gradient algorithms proposed in [1], and a similar
algorithm was studied by Martinet al. [2]. Our algo-
rithm differs from Martin’s signed sparse LMS in that it
allows sign changes in the tap weights by reverting to the
standard LMS update. The hardware implementation is
presented in section 3.

2. ANALYSIS OF THE SIGNED SPARSE LMS
ALGORITHM

2.1. The Weight Update Equation

The conventional LMS algorithm has the well-known weight
update equation given by

wn+1 = wn + µenxn, (1)

wherewn is the tap-weight vector of the adaptive filter at
thenth interval,xn is a regressor vector of the current and
previous inputs to the adaptive filter,µ is a step size pa-
rameter, anden = dn−wT

nxn is the error between actual
and desired outputs (wheredn is the desired response). In
contrast, the exponentiated gradient (EG) algorithm first
developed by Kivinen and Warmuth [3] uses a weight up-
date equation

wn+1 = wn + µen

(
Wn + ε2I

)
xn, (2)

where, ifL is the length of the adaptive filter thenWn =
diag

{ ∣∣∣w(0)
n

∣∣∣ ∣∣∣w(1)
n

∣∣∣ . . .
∣∣∣w(L−1)

n

∣∣∣ }
is aL×L di-

agonal matrix with entries equal to the magnitude of the
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tap weights, andI is the identity matrix. The purpose
of the ε2 term is to ensure that the update term is not
equal to zero in the case wherew

(i)
n is at zero. The pres-

ence of theε2 term also allows the weights to transition
across the zero boundary. (Without this term, the update
term would become smaller and smaller as the true tap
weight approached zero, and for small step size it would
be extremely unlikely that the tap weight would change
sign). However, theε2 term increases the complexity of
hardware implementation, and also contributes to excess
mean square error. Note also that in the case where the
currentw(i)

n has the opposite sign as compared to its op-
timum Wiener weight, then it will tend to train to a zero-
magnitude tap. An interpretation of this algorithm is that
it is similar to the LMS weight update algorithm, except
that each tap has effectively a separate step sizeµ with

µeg = µlms |wn| . (3)

The potential advantage of this EG algorithm is that the
magnitude of the update term for each tap weight is pro-
portional to the tap weight itself. Therefore intuitively,
high magnitude taps should converge more quickly due to
their higher effective step size, whereas small-magnitude
taps should contribute less excess MSE than when the
conventional LMS is used. This insight led Martinet al.
to rename equation (2) as a signed-sparse LMS (SSLMS),
since such properties seem beneficial to sparse system
identification.

We propose a modified SSLMS algorithm, referred to
as the SSSLMS, in which theε2 term is discarded. There-
fore, for small step size it is extremely unlikely that the
tap weights will change sign. We maximize the proba-
bility of the tap weights having the correct sign and also
allowing taps to cross the zero boundary by alternating
the update between the SSSLMS and the standard LMS
algorithms.

For our SSSLMS algorithm, the weight update equa-
tion is simply

wn+1 = wn + µenWnxn. (4)

The architecture proposed in Section 3 in fact allows an
alternating update procedure similar to the PNLMS++ in
[4] to overcome.

2.2. Convergence and Excess Mean Square Error of
SSSLMS Algorithm

We start the analysis by defining a weight error vector as

εn = wn −wo. (5)

Equation (4) can then be expressed as

εn+1 = εn + µWnxnen (6)

= εn + µWnxn

(
dn − xT

n (εn + wo)
)

(7)

= εn − µWnxnxT
nεn + µWnxne∗n (8)

wherewo is the optimum Wiener filter, and the optimum
error is given bye∗n = dn − xT

nwo. Using a direct aver-
aging method [5], under the assumption thatµ is small,

this stochastic difference equation is similar to [4]

εn+1 = εn − µE
{
WnxnxT

n

}
εn + µE {Wne∗nxn} .

(9)
In the limit asn →∞, E {Wn} = Wo (a diagonal ma-
trix with the optimum Wiener weight magnitudes along
the diagonal). Using independence assumptions [5], equa-
tion (9) becomes

εn+1 = εn − µWoRεn + µWoxne∗n (10)

with R = E
{
xnxT

n

}
.

The correlation matrix of the weight-error vectorεn

is defined asKn = E
{
εnεT

n

}
. Under further indepen-

dence assumptions and using the definition ofKn, we
can write

Kn+1 = (I− µWoR)Kn (I− µWoR)T

+µ2JminWoRWo (11)

whereJmin is the minimum mean square error. Since
all matrices in equation (11) are positive definite for small
µ, a convergent solution satisfies:

K = (I− µWoR)K (I− µWoR)T

+µ2JminWoRWo (12)

The solution to this is given by [2]:

K =
1
2
µJminWo

(
I− µ

2
RWo

)−1

. (13)

This is only guaranteed to be positive definite if all eigen-
values ofµ2 RWo are less than 1. Therefore convergence
conditions for the SSSLMS algorithm are

0 ≤ µ ≤ 2
λmax

, (14)

whereλmax is the maximum eigenvalue of the matrixRWo.
For such a convergent solution, an expression for the

excess square error is given by [5]:

Jex(εn) = trace{RK} (15)

Under simulation conditions whereR andWo are known,
the excess MSE can be numerically evaluated. Since an
expression for the excess MSE of the LMS algorithm
is well known, the convergence properties of both algo-
rithms can be fairly compared by selecting both to have
the same excess MSE.

3. HARDWARE IMPLEMENTATION OF THE
SSSLMS ALGORITHM

3.1. Hardware Architecture

Figure 1 shows the proposed architecture for a single tap
section of the SSSLMS algorithm. This circuit imple-
ments equation (4) using two’s-complement signed arith-
metic. There are two multiplexers in the weight update
block, labeled as B and D. Multiplexer B implements
the |Wn| functionality using a ones complement inver-
sion. A control signal,revert_to_lmsis used allow the
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Fig. 1. Hardware architecture for SSSLMS algorithm.

architecture to operate using the standard LMS algorithm
by controlling multiplexer D (and necessarily multiplexer
B). This allows an easy swap between the LMS algorithm
and the SSSLMS algorithm modes. By alternating the up-
date between LMS mode and SSSLMS mode, we ensure
that taps train to their correct weights (similar to the alter-
nating update equation suggested in ([4]). The alternating
update mechanism also means that the taps cannot lock at
a zero value. This architecture is simpler than would be
necessary for the PNLMS [6] and greatly simpler than the
improved PNLMS suggested by Benesty and Gay in [7].

4. RESULTS

4.1. Infinite Precision Results

The analysis of Section 2 predicts several ways in which
the behavior of the SSSLMS algorithm differs from that
of conventional LMS.

Firstly, the analysis predicts that the SSSLMS algo-
rithm can have a higherµcritical whereµcritical is the largest
possible step size defined by equation (14). This is be-
cause the eigenvalues ofRW0 depend on both the chan-
nel and the input sequence, and in certain cases can give
a smaller maximum eigenvalue than that ofR alone. To
verify this, we conducted simulations using an eleven tap
sparse channel (with only three non-zero significant taps)
h=[3 1 3 0 0 0 0 0 0 0 0]. The adaptive filter was set up
in a system-identification configuration. The input signal
was white noise with variance equal to 0.001, and both
the adaptive filter and the true channel were assigned to
be eleven-tap FIR filters. Figure 2 shows the ensemble
average mean square error over 200 simulations of the
instantaneous squared error for both algorithms. It shows
that forµ = 0.14, the LMS algorithm does not converge
(though the generally accepted constraint forµlms to be
less than2/λmax is met) while the SSSLMS still achieves
an ensemble average MSE of -18dB, thereby confirming
the predicted variation in training performance.

Secondly, we confirmed the expression for excess MSE
given by equation (15). A similar configuration to that
described above was used, but with a channel given by
h=[0.1 -3 3 0.1 -0.1 0.1 -0.2 3.2 0.2 -0.3 0.1]. The the-
oretical value of excess MSE for the SSSLMS algorithm
was confirmed using an ensemble average of 200 simula-
tions, as shown in Figure 3.
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Fig. 2. SSSLMS versus LMS convergence forµlms =
µssslms = 0.14, indicating that the SSSLMS can poten-
tially have a larger possible step size than LMS.
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Fig. 3. Ensemble excess MSE for the SSSLMS algo-
rithm, with theoretical steady state excess MSE shown
as a dotted line.

4.2. Finite Precision Results

To explore further the convergence rates of the LMS and
SSSLMS algorithms, we compared the misalignment of
two 64 tap fixed point implementations (written in Ver-
ilog). The misalignment is defined as||wo−wn||/||wo||.
The input data was five level PAM symbols and the tapped
delay line filter uses 12 bits for each register in the tapped
delay line filter. The weight update blocks use a 16 bit
data path to maintain numerical accuracy. The tuning of
µssslmswas critical to the performance of the SSSLMS ar-
chitecture (a conclusion also identified in [6]). The result
shown in Figure (4) indicates that the SSSLMS algorithm
can achieve a better misalignment when the channel is
dispersive. This is as a result of a reduced effective step
size (equation (3) in the case where the tap weights are
small. Figure (5) shows how the SSSLMS trains faster
than the LMS algorithm in the case of a sparse channel
but the misalignment is larger. These results confirm that
Adaptive Natural Gradient Algorithms like SSLMS and
PNLMS are indeed suited to sparse channels if conver-
gence is the main criterion.
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Fig. 5. Misalignment Comparison for a quasi-sparse
channel

4.3. Power Consumption Results

We also profiled the power consumption of the architec-
ture using an Verilog power analysis tool1. The 64 tap fil-
ter was allowed to train in LMS mode and then switched
to SSSLMS mode after 1000 symbols. Power consump-
tion in DSP architectures is a function of the filter archi-
tecture, data statistics and data activity, number system,
arithmetic operator implementation and CMOS technol-
ogy. This experiment results are shown in Figure (6) and
indicate that the larger variance of the weights in steady
state SSSLMS mode contribute to activity in both multi-
pliers and hence increases the total dynamic power con-
sumption relative to the LMS algorithm.

5. DISCUSSION

In conclusion, our results show that the SSSLMS algo-
rithm is a possible alternative to the standard LMS algo-
rithm. A potential advantage of the SSSLMS algorithm
is that in some circumstances it allows higher values of
step-size than the corresponding LMS implementation. It
is suited to sparse channels and can be used if the chan-
nel is knowna priori to be sparse e.g acoustic echo and
crosstalk channels. If used in a conjunction with a gear-

1PowerTheater by Sequence Design
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Fig. 6. Power consumption during LMS and SSSLMS
training.

shifting algorithm, this may allow faster convergence. In
general, however, if both algorithms are constrained to
produce the same excess MSE, the SSSLMS is not guar-
anteed to converge faster than LMS; the relative conver-
gence speed is a function of both the channel and chosen
initial values. We have also given a novel hardware im-
plementation of the SSSLMS algorithm, which incorpo-
rates the facility for reversion to the standard LMS. Based
on the power profiling experiment we conclude that nat-
ural gradient algorithms may not be a promising solution
for low power operation.
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