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ABSTRACT As signaling speeds increase in data communications,
long sparse channels are becoming more commonly en-
countered, while conversely the desire for low power ap-
plications requires these long filters to minimize power
consumption. This has led to efforts to consider alterna-
tives to the standard Least Mean Squares (LMS) specifi-
cally adapted to sparse channels, with the goals of reduc-
ing convergence time, reducing excess mean square er-
ror, reducing complexity and/or power, or combinations

We present analytical results, and details of implementa-
tion for a novel adaptive filter incorporating an approx-

imate natural gradient tap-update algorithm, termed the
simplified signed sparse LMS algorithm (SSSLMS). Each
tap-update equation includes a term proportional to the
tap-value, so that larger taps adapt more quickly than for
a corresponding Least Mean Square (LMS) update. Re-
sults indicate that the algorithm is suited for use in Sparse ot these properties.

channels. The bounds on its maximum allowable step- |, yhis haper, we consider an alternative to the well
size differ from LMS, and simulations are provided that |, 0 LMS algorithm for weight updates. This algo-

indicat'e potentially more robu;t convergence for larger rihmis termed a simplified signed sparse LMS (SSSLMS)
step-sizes than LMS. A theoretical erpr%ss!on(;‘or thde €X- algorithm, and can provide faster convergence for sparse
cess mean square error (MSE) is also derived, and con<pannels under certain circumstances. This algorithm is

f';mr?d k}y ngr;:enca] simulation. ';'Xr?d dpomt S|mur:§t|ons a special case of the more general class of adaptive nat-
of the algorithm using a proposed hardware architecture, gradient algorithms proposed in [1], and a similar

are also presented. The computational gomplexity .i§ of algorithm was studied by Martiet al. [2]. Our algo-
the same order as the standard LMS. Finally, profiling iy, giffers from Martin's signed sparse LMS in that it

of the power consumption of the SSSLMS implemen- 1,5 sign changes in the tap weights by reverting to the

tauor: indicate that t?]e architecture co(r;sudmes aPmeX" standard LMS update. The hardware implementation is
mately twice as much power as a standard LMS imple- presented in section 3.

mentation.

2. ANALYSIS OF THE SIGNED SPARSE LMS
1. INTRODUCTION ALGORITHM

Adaptive filters are at the core of many modern com- 2.1. The Weight Update Equation

;ncl;]rgcsgr?gefgrsgezsa acnrgggg”focn;?c%r:eﬁe t?)s r?;#]zhﬁizsghe conventional LMS algorithm has the well-known weight
few applications. In these cases, the target for the (';ldap-ljpda'[e equation given by
tive filter is often asparsefinite impulse response (FIR)
filter. Loosely speaking, a sparse channel can be de- . . o
fined as a long channel with many relatively insignificant Wheréw,, is the tap-weight vector of the adaptive filter at
taps and a few significant taps. Alternatively, it can be the”_th mtgrval,x” IS a regressor vector of the current and
described as a filter where the probability density func- Prévious inputs to the adaptive filtgr,is a step size pa-
tion for tap weights is heavily skewed towards zero val- 'ameter, and,, = d,, —w,;x;, is the error between actual
ues. Another interpretation of sparse filters is to consider @d desired outputs (whedg, is the desired response). In
them as non-uniformly spaced filters. In filters adapting contrast, the exponentiated gradient (EG) algorithm first
to sparse channels, low magnitude taps do not contributedeveloped by Kivinen and Warmuth [3] uses a weight up-
significantly towards reducing the mean square error be-date equation

tween desired and actual outputs; however they can be a Wil = Wy + pen (Wy + 621) Xn; (2)
significant consumer of power, as their weights still need e N
to be continuously updated. In addition, the need to adaptWhere’ 'fLO'S the Ielngth of the a(zapl)tlve filter thaw,, =

to low magnitude taps contributes to overall convergence diag{ ‘w& )‘ ‘wr(v ) wi V| VisaL x Ldi-
time with negligible benefit in residual error. agonal matrix with entries equal to the magnitude of the

Wn41 = Wp + HEnXn, (1)
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tap weights, and is the identity matrix. The purpose this stochastic difference equation is similar to [4]

of the €2 term is to ensure that the update term is not

equal to zero in the case wheré” is at zero. The pres- ~ €nt+1 = €n — HE {Waxnxy, } en + pE{Wae;xn} .

ence of the:? term also allows the weights to transition o ] ©)
across the zero boundary. (Without this term, the update!" thel limit asn — 00, I {Wn} =W, (a dlqgonal ma-
term would become smaller and smaller as the true taptfix With the optimum Wiener weight magnitudes along
weight approached zero, and for small step size it would th€ diagonal). Using independence assumptions [5], equa-
be extremely unlikely that the tap weight would change tion (9) becomes

sign). However, the? term increases the complexity of
hardware implementation, and also contributes to excess

mean square error. Note also that in the case where thg,..h R — g {x,xT}.

currentw;,” has the opposite sign as compared to its 0p-  The correlation matrix of the weight-error vectag

timum Wiener weight, then it will tend to train to a zero- s defined a¥,, = E {e,€T} . Under further indepen-

magnitude tap. An interpretation of this algorithm is that gence assumptions and using the definitiorkof, we
it is similar to the LMS weight update algorithm, except «an write

that each tap has effectively a separate step;sizéh

Ent1 = &n — UW,Re,, + pWx, € (20)

K1 = (- pW,R) K, (I- pW,R)"
Heg = Hims |Wn| : ()

. . L +12 TminW ,RW,, (11)
The potential advantage of this EG algorithm is that the

magnitude of the update term for each tap weight is pro-  WhereJni, is the minimum mean square error. Since
portional to the tap weight itself. Therefore intuitively, all matrices in equation (11) are positive definite for small
high magnitude taps should converge more quickly due to /4, & convergent solution satisfies:
their higher effective step size, whereas small-magnitude -
taps should contribute less excess MSE than when the K=I-pW,R)K(I-uW,R)
conventional LM_S is used. T_his insight led Margnal. 112 Jin W, RW,, (12)
to rename equation (2) as a signed-sparse LMS (SSLMS),
since such properties seem beneficial to sparse systend ne solution to this is given by [2]:
identification. 1 1

We propose a modified SSLMS algorithm, referred to K = —puJninWo ( — BRWO> . (13)
as the SSSLMS, in which thé term is discarded. There- o 2 2 N o ]
fore, for small step size it is extremely unlikely that the This is only guaranteed to be positive definite if all eigen-
tap weights will change sign. We maximize the proba- value_s_ ofS RW, are less than 1. _Therefore convergence
bility of the tap weights having the correct sign and also conditions for the SSSLMS algorithm are
allowing taps to cross the zero boundary by alternating
the update between the SSSLMS and the standard LMS 0<p<
algorithms.

For our SSSLMS algorithm, the weight update equa- WheréAmaxis the maximum eigenvalue of the matRWw .
tion is simply For such a convergent solution, an expression for the

excess square error is given by [5]:

(14)

)
/\max

Wptl = Wy, + pen WpXy,. (4)
Jex(€n) = trace{RK} (15)

The architecture proposed in Section 3 in fact allows an

alternating update procedure similar to the PNLMS++ in Under simulation conditions whekR andW,, are known,

[4] to overcome. the excess MSE can be numerically evaluated. Since an
expression for the excess MSE of the LMS algorithm

2.2. Convergence and Excess Mean Square Error of IS Well known, the convergence properties of both algo-

SSSLMS Algorithm rithms can be fairly compared by selecting both to have
the same excess MSE.

We start the analysis by defining a weight error vector as

e — W — W (5) 3. HARDWARE IMPLEMENTATION OF THE
" " o SSSLMS ALGORITHM

Equation (4) can then be expressed as ,
3.1. Hardware Architecture

Ent1 = Ent+pWnXnen ®) Figure 1 shows the proposed architecture for a single tap

= &n+ uWox, (dn — X (€0 +Wo)) (7) section of the SSSLMS algorithm. This circuit imple-
= &p— W, x,XL e, + pWoxnel  (8) ments equation (4) using two’s-complement signed arith-
metic. There are two multiplexers in the weight update
wherew,, is the optimum Wiener filter, and the optimum block, labeled as B and D. Multiplexer B implements
error is given by’ = d,, — xXw,. Using a direct aver-  the |W,,| functionality using a ones complement inver-
aging method [5], under the assumption thas small, sion. A control signalyrevert_to_Imss used allow the
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Learning Curves for SSLMS versus the LMS algorithm: 11 =0.14
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Fig. 1. Hardware architecture for SSSLMS algorithm.
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architecture to operate using the standard LMS algorithm
by controlling multiplexer D (and necessarily multiplexer Fig. 2. SSSLMS versus LMS convergence fof,s =
B). This allows an easy swap between the LMS algorithm fsssims = 0.14, indicating that the SSSLMS can poten-

and the SSSLMS algorithm modes. By alternating the up- tja|ly have a larger possible step size than LMS.
date between LMS mode and SSSLMS mode, we ensure

that taps train to their correct weights (similar to the alter-
nating update equation suggested in ([4]). The alternating jo eSS MSE Leaming Curves for SSSLMS aigorithm
update mechanism also means that the taps cannot lock at
a zero value. This architecture is simpler than would be
necessary for the PNLMS [6] and greatly simpler than the
improved PNLMS suggested by Benesty and Gay in [7].

Excess MSE (dB)

4. RESULTS

4.1. Infinite Precision Results

i i i . . 0 500 160_0 ] 1500 2000
The analysis of Section 2 predicts several ways in which number of iterations

the behavior of the SSSLMS algorithm differs from that
of conventional LMS.

Firstly, the analysis predicts that the SSSLMS algo-
rithm can have a highergiical Wherepriical IS the largest
possible step size defined by equation (14). This is be-
cause the eigenvalues BW depend on both the chan-
nel and the input sequence, and in certain cases can give
a smaller maximum eigenvalue than thafRofalone. To ~ 4.2. Finite Precision Results
verify this, we conducted simulations using an eleven tap

sparse channel (with only three non-zero significant taps) To explore further the convergence rates of the LMS and
h=[3130000000 0] The adaptive filter was set up  SSSLMS algorithms, we compared the misalignment of
ina SyStem-identiﬁcation Configuration. The input Signal two 64 tap fixed point imp|ementations (Written in Ver-
was white noise with variance equal to 0.001, and both jiog). The misalignment is defined B, —wol| /|| Wol|.
the adaptive filter and the true channel were assigned toThe input data was five level PAM symbols and the tapped
be eleven-tap FIR filters. Figure 2 shows the ensemblede|ay line filter uses 12 bits for each register in the tapped
average mean square error over 200 simulations of thegelay line filter. The weight update blocks use a 16 bit
instantaneous squared error for both algorithms. It showsqata path to maintain numerical accuracy. The tuning of
that for,. = 0.14, the LMS algorithm does not converge |, was critical to the performance of the SSSLMS ar-
(though the generally accepted constraint/fggs to be  chitecture (a conclusion also identified in [6]). The result
less thark / Amax is met) while the SSSLMS still achieves  shown in Figure (4) indicates that the SSSLMS algorithm
an ensemble average MSE of -18dB, thereby confirming can achieve a better misalignment when the channel is
the predicted variation in training performance. dispersive. This is as a result of a reduced effective step
Secondly, we confirmed the expression for excess MSEize (equation (3) in the case where the tap weights are
given by equation (15). A similar configuration to that small. Figure (5) shows how the SSSLMS trains faster
described above was used, but with a channel given bythan the LMS algorithm in the case of a sparse channel
h=[0.1-330.1-0.10.1-0.23.20.2-0.3 0.1The the- but the misalignment is larger. These results confirm that
oretical value of excess MSE for the SSSLMS algorithm Adaptive Natural Gradient Algorithms like SSLMS and
was confirmed using an ensemble average of 200 simulaPNLMS are indeed suited to sparse channels if conver-
tions, as shown in Figure 3. gence is the main criterion.

Fig. 3. Ensemble excess MSE for the SSSLMS algo-
rithm, with theoretical steady state excess MSE shown
as a dotted line.
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Misalignment during Training for LMS and SSLMS Algorithms
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Misalignment Comparison for a dispersive chan-
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Fig. 5. Misalignment Comparison for a quasi-sparse
channel

4.3. Power Consumption Results

We also profiled the power consumption of the architec-
ture using an Verilog power analysis tbol he 64 tap fil-

ter was allowed to train in LMS mode and then switched
to SSSLMS mode after 1000 symbols. Power consump-
tion in DSP architectures is a function of the filter archi-
tecture, data statistics and data activity, number system,
arithmetic operator implementation and CMOS technol-
ogy. This experiment results are shown in Figure (6) and
indicate that the larger variance of the weights in steady
state SSSLMS mode contribute to activity in both multi-
pliers and hence increases the total dynamic power con-
sumption relative to the LMS algorithm.

5. DISCUSSION

In conclusion, our results show that the SSSLMS algo-
rithm is a possible alternative to the standard LMS algo-
rithm. A potential advantage of the SSSLMS algorithm
is that in some circumstances it allows higher values of
step-size than the corresponding LMS implementation. It
is suited to sparse channels and can be used if the chan
nel is knowna priori to be sparse e.g acoustic echo and
crosstalk channels. If used in a conjunction with a gear-

1powerTheater by Sequence Design

Power Consumption of LMS and SSLMS Algorithms
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Fig. 6. Power consumption during LMS and SSSLMS
training.

shifting algorithm, this may allow faster convergence. In
general, however, if both algorithms are constrained to
produce the same excess MSE, the SSSLMS is not guar-
anteed to converge faster than LMS; the relative conver-
gence speed is a function of both the channel and chosen
initial values. We have also given a novel hardware im-
plementation of the SSSLMS algorithm, which incorpo-
rates the facility for reversion to the standard LMS. Based
on the power profiling experiment we conclude that nat-
ural gradient algorithms may not be a promising solution
for low power operation.
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