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ABSTRACT 

Substituting a real valued linear transform with an integer-
to-integer mapping has become very important in lots of 
applications. This paper introduces a new kind of matrix
decomposition method called lifting-like factorization, 
which leads to a theorem: Every 2n-order real matrix
with determinant norm 1 can be expressed as the product
of one permutation matrix and at most three unit
triangular matrices. Rounding error of this method is
analyzed. Realization of 2-D integer transform is also 
studied and it is shown that a 2-D integer-to-integer 
transform cannot be realized by performing two 1-D 
integer transforms separately. Left and right permutation 
matrices are introduced to reduce rounding error and an 
application of this method to intDCT is discussed. 

1. INTRODUCTION 

Linear transform is playing a very important role in signal
and image processing. Although the input of these 
transforms are usually integers, the output are rarely so.
Constraining the output of an arbitrary transform to lattices
is very important in many applications, such as lossless
compression and hardware implementation. It is well
known that some integer transform can be realized by
factoring matrix into lifting steps. But the factorization is
not unique and so far no systematic method has been
proposed to find the optimal one. Furthermore, for image
processing, the input signal is usually 2-D, while previous
works mainly focused on of 1-D integer transforms.

Recently, multiple description coding (MDC) based 
on correlating transforms has attracted a lot of attentions 
[1][3]. In general, these linear transforms are real valued 
and with determinant one. A cascade structure proposed in 
[3] demand an optimal implementation of 2-D transforms 
from integers to integers. One may argue that 2-D integer 
transforms can be realized by performing two 1-D 
transforms successively. But we will show this is not 
optimal, which is quite different from float transforms.  
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In literature, factor 2 2 matrix into lifting steps has 
been widely used. This kind of factorization is not unique, 
and is usually constraint to size of 2 2. In this work, we 
propose a new kind of factorization of 2n-order matrix 
into at most three unit triangular matrices. The 
factorization can be done in a recursive manner, and may 
be considered as an extension of lifting method to higher 
order condition. So, it can be called as lifting-like 
factorization. In [8], similar but not the same theorem was 
obtained and the factorization method is totally different. 
In this paper, expectation of rounding error is analyzed. 
Left and right permutation matrices are introduced not 
only to guarantee the existence of factorization, but also to 
further reduce the rounding error. Finally, an application
of the new factorization method to intDCT is discussed, 
and example of 4 4 DCT matrix is shown.

2. NEW FACTORIZATION AND MAIN THEOREM

The factorization procedure, which also forms a proof of 
the theorem shown below, is described in appendix.
Lemma: Every even-order real matrix with determinant 
norm 1 can have the following factorization:
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where |det(Bn)| =1, and P2n is a 2n 2n permutation 
matrix.  
Proof: see appendix.
Theorem 1-1: Every 2n 2n real matrix with determinant 
norm 1 has the following factorization: 

n2

Where P is a permutation matrix, L1 and L2 are both lower 
triangular matrices with diagonal entries 1, which is 
always referred to as UTM (Unit Triangular Matrix). U is 
an upper triangular matrix with diagonal entries 1 except 
that the first entry may be –1, which is also called UTM in 
this paper for convenience.
Proof: see appendix. Similarly we have: 
Theorem 1-2: Every 2n 2n real matrix with determinant 
norm 1 also has the following factorization: 

n2
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Where U1 and U2 are both upper UTMs. L is a lower 
UTM. 

3.  ROUNDING ERROR ANALYSIS 

It is well known that a Unit Triangular Matrix is very 
suitable for integer transform. For example, assuming the 
original transform matrix is L (UTM) with float entries. 
The input is an integer matrix A. Then the integer 
transform pair is as follows: 
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where [ ] denotes rounding. This kind of transform 
is invertible. 

In integer-to-integer transform, the properties of the 
original transform need to be preserved, so the smaller the 
rounding error, the better. Because multiplication with 
permutation matrix does not introduce rounding error, we 
assume the original floating point matrix be factored into: 

n2

Where L1, L2 and U are lower and upper UTMs with the 
first entry of U may be –1. The realization of the integer 
transform of T is then divided into three steps containing 
one left-multiplication with a UTM and rounding each. 
Denote ,),...,,( ,2,1,

T
miiii 3,2,1,2 im n  as the 

rounding error vector of each step if the input is an integer 
vector. Obviously the total rounding error can be 
calculated by: 

11213                    (1)
And 01,3,21,1 m .For simplicity, we make the 
assumption that all non-zero ji, s are independently, 

identically distributed (i.i.d.) with zero expectation and 
variance 2 . The final expectation of rounding error can 
be obtained by taking expectation of (1). This procedure 
can be done by using the following algorithm: 
1. Calculate the expectation of i s. For example:  
                                        If there is any float entry in the  

i-th row of L2.
Else

where 2 is always set to 1/12. 
2. If i  is further multiplied by X, then the rounding 

error is propagated to: 
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3. Calculate the total error expectation: 
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More specifically, if the original transform matrix T is 
orthogonal, then because , we have: 
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so: 
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4.  2-D INTEGER-TO-INTEGER TRANSFORM 

A 2-D float transform can be realized by performing two 
1-D transforms separately. But in 2-D integer-to-integer 
transform condition, this is not the case. Divide 2-D 
integer transform into two separate 1-D integer transform 
will generate more rounding steps and error.  

The procedure of 2-D integer transform is described 
below. A 2-D matrix transform can be expressed by: 

Factoring T1 and T2 into three UTMs respectively using 
the above method, the 2-D integer transform can also be 
divided into three steps. Each step consists one of the 
following matrix multiplications and rounding.  
                                  

       
Where L is a lower UTM and U is an upper UTM.  
For the first matrix multiplication: 

k l
kjlkilij                     (2) 

Because Lil = 0,Ukj = 0 when l>i, k>j, (2) can be rewrite 
into:  

jk il
kjlkilij

jk il
kjlkilij

So the 2-D integer transform pair is: 

jk il
kjlkilijij

jk il
kjlkilijij

Where ij  is the integer output. In order to recover ij ,

all entries jkillk ,, must have already been 
recovered. So, for inverse transform, if the scan order is 
normal or zig-zag, the above transform is invertible. 
        Similarly, if the matrix multiplication is of the form 

, the transform pair is as follows:  

jk il
kjlkilijij       

jk il
kjlkilijij

The scan order of inverse transform must be inverted. The 
rounding error analysis of 2-D case can be performed 
similar to that in part 3, but is omitted here for lack of 
space. 
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5.  LEFT AND RIGHT PERMUTATION MATRICES 
AND INT-DCT 

The permutation matrix in the theorem 1 is used to 
guarantee the existence of factorization into UTMs. But in 
this part, we show that the permutation matrix affects the 
total rounding error. Rewrite the factorization as follows: 

RL

where L and R are left and right permutation matrices 
(LPM and RPM). Consider a 1-D matrix transform:  

dc
ba

                     

In 2 2 case, there are at most 4 permutation methods 
(considering that the corresponding denominator must not 
be zero). The four integer transforms are listed below: 

bBdbAaAB
bAaAbAB
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And the corresponding expectation of rounding error: 
2222

1 /12 bddb 2222
2 /12 caca

2222
3 /12 dbdb 2222

4 /12 acca
Thus, the left and right permutation matrices can be 

chosen to minimize the expectation of rounding error.  
A generalized formula of how to choose the best 

LPM and RPM has not been derived. The algorithm we 
could use now is exhaustive search. This does not cause 
any inconvenience if the transform matrix is fixed such as 
DCT etc. We only need to store the three UTMs. 

In many situations, say, wireless communication, 
there is a large demand for fast and integer DCT 
transform, which has been referred to as intDCT in 
literature.  

For 4 4 DCT, the best LPM and RPM and three 
UTMs chosen by the above method are listed below: 

0.2706-0.65330.6533-0.2706
0.50000.5000-0.5000-0.5000
0.6533-0.2706-0.27060.6533
5000.05000.05000.05000.0

4DCT

0001
0010
0100
1000

L

0010
0001
0100
1000

R            

108011.0213.0
0115142.0
0015142.0
0001

    

1000
0100

6065.07571.010
6533.05.0523.11

108011.01989.0
0110
0013935.0
0001

6. CONCLUSION  

In this paper, a new kind of matrix factorization method 
which is called lifting-like factorization is introduced.  
The theorem that every 2n-order real matrix with 
determinant norm 1 can be factored into products of one 
permutation matrix and at most three unitary triangular 
matrices is proved in a recursive manner. Rounding error 
is analyzed, and left and right permutation matrices are 
introduced to reduce expectation of rounding error. 2-D 
integer transform is studied as a foundation of 2-D 
correlated transform used in MDC. A useful application of 
this method to intDCT is discussed. 

7. APPENDIX

Proof of Lemma:  First, for any non-singular real matrix 
n2 , there must exist a permutation matrix P2n, such that:
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And S12 is a non-singular n n matrix. The following 
equation is easily shown to be true by directly expanding 
the right side:  
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where 1
2111

1
1222 )( . The remaining task is to 

show the existence of U and |det( 1
12 )| = 1. Observe 

the following identity:  

1
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By taking determinant on both side, we can get 
1|)| 1

12 , and U is obviously non-singular. 
Proof of Theorem1-1: Here we directly show the 
decomposition steps, which can be considered as the 
algorithm as well as a proof of the theorem. 

Let k = 1, according to lemma, we get: 
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Assume after k step, original matrix can be factored into: 
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Where 1|)(|
2 kn , knn 22

 is an upper UTM. 

According to Lemma, kn2
can be decomposed into: 
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1221 . So, the last but one matrix in 
(3) can be rewrite into:  
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So, (3) can be further factored into: 
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Multiplying matrices in (4) leads to: 
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Where 1)( 12 kn , 122 knn is an upper UTM. 

Because (5) has the same form with (3), the factorization 
can be finished after 1nk , and the theorem holds.  
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