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ABSTRACT

Substituting a real valued linear transform with an integer-
to-integer mapping has become very important in lots of
applications. This paper introduces a new kind of matrix
decomposition method called lifting-like factorization,
which leads to a theorem: Every 2"-order real matrix
with determinant norm 1 can be expressed as the product
of one permutation matrix and at most three unit
triangular matrices. Rounding error of this method is
analyzed. Realization of 2-D integer transform is also
studied and it is shown that a 2-D integer-to-integer
transform cannot be realized by performing two 1-D
integer transforms separately. Left and right permutation
matrices are introduced to reduce rounding error and an
application of this method to intDCT is discussed.

1. INTRODUCTION

Linear transform is playing a very important role in signal
and image processing. Although the input of these
transforms are usually integers, the output are rarely so.
Constraining the output of an arbitrary transform to lattices
is very important in many applications, such as lossless
compression and hardware implementation. It is well
known that some integer transform can be realized by
factoring matrix into lifting steps. But the factorization is
not unique and so far no systematic method has been
proposed to find the optimal one. Furthermore, for image
processing, the input signal is usually 2-D, while previous
works mainly focused on of 1-D integer transforms.
Recently, multiple description coding (MDC) based
on correlating transforms has attracted a lot of attentions
[1][3]. In general, these linear transforms are real valued
and with determinant one. A cascade structure proposed in
[3] demand an optimal implementation of 2-D transforms
from integers to integers. One may argue that 2-D integer
transforms can be realized by performing two 1-D
transforms successively. But we will show this is not
optimal, which is quite different from float transforms.
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In literature, factor 2 X2 matrix into lifting steps has
been widely used. This kind of factorization is not unique,
and is usually constraint to size of 2X2. In this work, we
propose a new kind of factorization of 2"-order matrix
into at most three unit triangular matrices. The
factorization can be done in a recursive manner, and may
be considered as an extension of lifting method to higher
order condition. So, it can be called as lifting-like
factorization. In [8], similar but not the same theorem was
obtained and the factorization method is totally different.
In this paper, expectation of rounding error is analyzed.
Left and right permutation matrices are introduced not
only to guarantee the existence of factorization, but also to
further reduce the rounding error. Finally, an application
of the new factorization method to intDCT is discussed,
and example of 4 X4 DCT matrix is shown.

2. NEW FACTORIZATION AND MAIN THEOREM

The factorization procedure, which also forms a proof of
the theorem shown below, is described in appendix.
Lemma: Every even-order real matrix with determinant
norm 1 can have the following factorization:

T _P ]ﬂ 0 Bl‘l Cﬂ Il‘l O
A Al’l ]n 0 ]I’l Dll [I’l

where |det(B,)| =1, and P,, is a 2n X 2n permutation
matrix.
Proof: see appendix.
Theorem 1-1: Every 2"X2" real matrix with determinant
norm 1 has the following factorization:

T,=P-L-U-L

o
Where P is a permutation matrix, L, and L, are both lower
triangular matrices with diagonal entries 1, which is
always referred to as UTM (Unit Triangular Matrix). U is
an upper triangular matrix with diagonal entries 1 except
that the first entry may be —1, which is also called UTM in
this paper for convenience.
Proof: see appendix. Similarly we have:
Theorem 1-2: Every 2" X 2" real matrix with determinant
norm 1 also has the following factorization:
L,=PU-L-U,
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Where U, and U, are both upper UTMs. L is a lower
UTM.

3. ROUNDING ERROR ANALYSIS

It is well known that a Unit Triangular Matrix is very
suitable for integer transform. For example, assuming the
original transform matrix is L (UTM) with float entries.
The input is an integer matrix 4. Then the integer
transform pair is as follows:

B ;= Z['i,kAk,j +4;;

k<j

4;;=8;;~ zLi,kAk,./
k<j

where [ - ] denotes rounding. This kind of transform
is invertible.

In integer-to-integer transform, the properties of the
original transform need to be preserved, so the smaller the
rounding error, the better. Because multiplication with
permutation matrix does not introduce rounding error, we
assume the original floating point matrix be factored into:

T,=1-U-L

Where L,, L, and U are lower and upper UTMs with the
first entry of U may be —1. The realization of the integer
transform of 7 is then divided into three steps containing
one left-multiplication with a UTM and rounding each.
Denote A; =(A;1,A; 55 A;,) , m=2",i=1,23 as the
rounding error vector of each step if the input is an integer
vector. Obviously the total rounding error can be
calculated by:

O=A3+L-Ay+L,-U-A (1)
And A}, =A,, =A;, =0 For simplicity, we make the
assumption that all non-zero A, ;s are independently,

identically distributed (i.i.d.) with zero expectation and

variance o . The final expectation of rounding error can
be obtained by taking expectation of (1). This procedure
can be done by using the following algorithm:

1. Calculate the expectation of A ;8. For example:

2 If'there is any float entry in the
i-th row of L,.
Else

where o is always set to 1/12.
2. IfA ; 1s further multiplied by X, then the rounding
error is propagated to:

T 2
Z(X DLEA,
J

o
E(Ay) =

3. Calculate the total error expectation:

16 1P="Y EAy;+ D (LY EA, ;+ Y (L) LUY;EA,
i J J

More specifically, if the original transform matrix 7' is
orthogonal, then because 2,0/ = P 'TL," , we have:

&L Lo =P P =Y L
so:

1617=D"EAy;+ > (LTL)EA, ;+ Y (LY LY EA,
i J J

4. 2-D INTEGER-TO-INTEGER TRANSFORM

A 2-D float transform can be realized by performing two
1-D transforms separately. But in 2-D integer-to-integer
transform condition, this is not the case. Divide 2-D
integer transform into two separate 1-D integer transform
will generate more rounding steps and error.
The procedure of 2-D integer transform is described
below. A 2-D matrix transform can be expressed by:
y=r1,-x.1/
Factoring 7| and T, into three UTMs respectively using
the above method, the 2-D integer transform can also be
divided into three steps. Each step consists one of the
following matrix multiplications and rounding.
r=L-X-U
Yy=uv-X-1L
Where L is a lower UTM and U is an upper UTM.
For the first matrix multiplication:

Yzj:ZZLiZ'XIk'Ukj 2
ko1

Because Ly = 0,U; = 0 when />, k>j, (2) can be rewrite
into:
G= D3 Ly Xy Uy = Xy + D> Ly Xy U
k<j I<i k<j I<i
So the 2-D integer transform pair is:

Y =4 +[221ﬂ K 'Ukj:l Xy =Ey | 22 Uy

k<j I<i k<j I<i

Where 7, is the integer output. In order to recover X

ij i

all entries X,/ <i,k<j must have already been
recovered. So, for inverse transform, if the scan order is
normal or zig-zag, the above transform is invertible.

Similarly, if the matrix multiplication is of the form
YV =U-X-L,the transform pair is as follows:

V=Xt DD U Kol | - Xy =Fi= 3 Uy KoLy
k>j I>i k>j 1>

The scan order of inverse transform must be inverted. The

rounding error analysis of 2-D case can be performed

similar to that in part 3, but is omitted here for lack of

space.
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5. LEFT AND RIGHT PERMUTATION MATRICES
AND INT-DCT

The permutation matrix in the theorem 1 is used to

guarantee the existence of factorization into UTMs. But in

this part, we show that the permutation matrix affects the

total rounding error. Rewrite the factorization as follows:
T=P -L-U-L- P

where P; and Py are left and right permutation matrices

(LPM and RPM). Consider a 1-D matrix transform:

7 Al ja b4
A | e d| 4
In 2X2 case, there are at most 4 permutation methods

(considering that the corresponding denominator must not
be zero). The four integer transforms are listed below:

B, = A +[b-(4y +[(@a-1)4, /b)) N
By =A, + [(a ~1)4,/b]+[(d-1)B, /]

B2 = Ay +[c- (4 +[(d =14, /)] N
+[d —1)A2 Je]+[(a=1)B, /c]

32 [d-(4y +[(c+1)4,/d))]- 4 o
B, = A4, +[(c+1)4,/d]+[(b-1)B, /d]

B, =la-(4 +[(b+1)4,/a))]- 4, a0
B, = A +[(b+1)4, /a]+[(c-1)B, /d]

And the corresponding expectation of rounding error:
:(2+b2+d2+(d—1)2/b2) Ay = (2+a +c* +(a-1) /cz)
A3:(2+b2+d2+(b—1)2/d2) A4:(2+a2+c2+(c—1) /az)
Thus, the left and right permutation matrices can be
chosen to minimize the expectation of rounding error.

A generalized formula of how to choose the best
LPM and RPM has not been derived. The algorithm we
could use now is exhaustive search. This does not cause
any inconvenience if the transform matrix is fixed such as
DCT etc. We only need to store the three UTMs.

In many situations, say, wireless communication,
there is a large demand for fast and integer DCT
transform, which has been referred to as intDCT in
literature.

For 4 X4 DCT, the best LPM and RPM and three
UTMs chosen by the above method are listed below:

05000 05000 05000 05000 000 1
0.6533 0.2706 -0.2706-0.653 001 0
~10.5000-0.5000-0.5000 0.5000 7% = 0100
0.2706-0.6533 0.6533 -0.270 1000
0001 1 0 00
0 0 1 0 -05142 1 00
=110 00 Tl os142 -1 10
01 00 —-0213 080110 1

~1 1523 05 —0653 1 0 00
0 1 07571 06065 03935 1 00
U= L=
0 0 1 0 0 -1 10
0 0 0 1 ~0.1989 08011 0 1

6. CONCLUSION

In this paper, a new kind of matrix factorization method
which is called lifting-like factorization is introduced.
The theorem that every 2"-order real matrix with
determinant norm 1 can be factored into products of one
permutation matrix and at most three unitary triangular
matrices is proved in a recursive manner. Rounding error
is analyzed, and left and right permutation matrices are
introduced to reduce expectation of rounding error. 2-D
integer transform is studied as a foundation of 2-D
correlated transform used in MDC. A useful application of
this method to intDCT is discussed.

7. APPENDIX

Proof of Lemma: First, for any non-singular real matrix
T,, , there must exist a permutation matrix P,,, such that:

Sn Sk }
Sy Sy
And S, is a non-singular #» X n matrix. The following

equation is easily shown to be true by directly expanding
the right side:

TZn :PZn'S:PZn'{

I,,=P,  -S=P L 0
2n T % 2n 4 2n _5{21 +522 5{21 7

n

. 512'0_1 Si I, 0
0 ‘[n _Uil+51721511 ‘[n

where U = (§,5,'8,, —84,)""
show the existence of U and |det( .S, .U™")| = 1. Observe
the following identity:

{511 512}{0 I, }_{512 0}
Sy Sy, _szl'Sll Sy -u!

By taking determinant on both side, we can get

. The remaining task is to

|det (S, .U™") =1, and U is obviously non-singular.
Proof of Theoreml-1: Here we directly show the
decomposition steps, which can be considered as the
algorithm as well as a proof of the theorem.
Let k=1, according to lemma, we get:
T o-p L, 0
P - 4 Sy, S, T

o 1

Slz'U_l S Ly 0
0 I, U +858, I

Il - 551




o [ O TX e Jhe 0
2 (3] Izufl 0 ]2,,71 @3 -[2”71

Assume after & step, original matrix can be factored into:

I 0
_p (k) |Tonk
T2” B Pzn . l: * :|

1 Izn_zn—k

X, * I, 0
{OD}{I } (3)
2n72n—k 3 2n72n—k

Where |a’et(X2,,_k)|:1 , Dzn,zn—k is an upper UTM.

According to Lemma, X ik can be decomposed into:

X, . =P k'Yn 4, _p k.]zn‘k“ 0
2" "\ Iy 2 2 Iz”*"*l

Zzn—k—l ‘VIZ 1
0 Izn—k—l

zn—k—l 0
¢2 Izn—k—l
Where det(Z 1) =*1 , @, =1V, 41,15, @, =

— Y, V5' Y, + Y, + 15, . So, the last but one matrix in
(3) can be rewrite into:

|:X2nk >l<2 } _ I:Pan 0 :l
0 Dzn 7211—k 0 Izn 72n—k

I k-1 0 0 ASEEE § .
q Izn—k—l : 0 [zn—k—l
L 0 on_on—k 0 Dzn _on—k
_[ on—k—1 0 0 1
QZ 1 2n7k -1
L 0 I on_pn—k
Where:

71 —
*_ Iz’”"’l 0 P;—kil‘* — IZ”’k’l 0 kT'*
@ Lpa| ? 2 | & Lyga [ 27 2

So, (3) can be further factored into:

7 —p®, [2"71‘ 0 . P2"7k 0
2" 2 *1 I n_,n—k 0 I n_on—k
2"-2 2" -2

I zn—k—l 0 0
¢1 I n—k—1 . 0

Z 2n4c—1 Yl 2
I zn—k—l

o _pn—k 0 D Nk

*

Because

(k)
p,®.

_p W, F onk 0
P T

on 72n—k

_p (k) .|:P2n—k 0 :”: [2n—k 0 :l
n * .
2 0 [2”,2"_1‘7 1 Pzn—k ]2}1 _on—k

—p UeD) ]2”‘k 0
y *1 'P2n—k Izn_zn—k

Multiplying matrices in (4) leads to:

7o—p KD Lok 0
2/1 - 2)1 *! [
1 2n72n—k—1

*'
) Zzn—k—l 2 ]2}’;—,](—1 0 (5)
0 Dzn _pn—k-1 3 Izn_2n—k—l

Where de t(Zz,,,,H) ==1, 02,, nk-1 is an upper UTM.

Because (5) has the same form with (3), the factorization
can be finished after £k = n—1, and the theorem holds.
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