
QUALITY BASED COMPUTE-RESOURCE ALLOCATION IN REAL-TIME SIGNAL PROCESSING

Joseph Yeh and John Wawrzynek

University of California at Berkeley, Department of EECS, Berkeley, CA 94720
jyeh,johnw@eecs.berkeley.edu

ABSTRACT

We present a novel method for controlling the complex-
ity of real-time signal processing computational tasks, in or-
der to make sure that a total quality metric for all the signal
processing tasks is maximized. The method makes deci-
sions about how much compute power is allocated to each
task through past observations of the input and output data
of each task. We present preliminary results from filtering
applications that demonstrate the ability of the system to
maximize the total quality of a large number of tasks under
a real-time computational constraint.

1. INTRODUCTION

Although the performance of computing devices continues
to grow, new multimedia applications still arise to challenge
the capabilities of these devices, particularly media com-
pression algorithms such as H.264 and MPEG-4. At the
same time, recent technological and market trends are push-
ing devices, particularly portable wireless communications
devices, to handle a larger number of computational tasks
while consuming minimal power. Many of these computa-
tional tasks have real time constraints, and therefore cannot
afford to be delayed. We present a framework in which such
computational tasks can be performed at different levels of
quality, with higher levels of quality requiring more com-
putational resources in terms of percentage of CPU time in
scalar architectures and/or functional units in highly parallel
architectures, where the levels are set by a evaluator which
takes into account the computational constraint of the sys-
tem, and the characteristics of the input and output signals.

This framework needs to be robust to changes in the na-
ture of the input signals and the overall computational con-
straints. Therefore, it does not rely on anya priori estimates
of quality for a given implementation. Instead, it relies on
observations of task inputs and task outputs to both estab-
lish the current tradeoffs between computational costs and
quality and allocate computational resources among differ-
ent tasks appropriately. Furthermore, the framework itself
is computationally efficient.

Much work, by Goel [1] and Chandrasekharan [2] in
particular, has been done to minimize power consumption

Task 1

text

t

t
t

Evaluator

Task 2

Task M

Data
Control

Output
Data

Input
Data

Fig. 1. System Diagram

or instruction count for a given level of quality (equivalent
of signal processing performance in [1]). We investigate
a dual problem of maximizing quality for a given compu-
tational speed, corresponding to a constant level of power
consumption in a conventional computer architecture. In
our formulation, there is no need for any extra hardware
overhead to switch power on or off to processing units, mak-
ing it more versatile and architecture-independent.

The next section describes the mathematical framework
and terminology used in our model. Section 3 then intro-
duces an example application for the system and section 4
presents some preliminary results. Section 5 presents pos-
sibilities for future directions and Section 6 concludes the
paper.

2. FRAMEWORK

The basic block diagram of the system is shown in Figure
1. The computational device is runningM taskssimultane-
ously. Each of the tasks can be run at a certainimplemen-
tation level, and each implementation level of each task has
a computational costof cm(l), wherem is the task number

II - 5450-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

andl is a non-negative integer corresponding to the imple-
mentation level of the task. The tasks are ordered so that
cm(l) increases withl. In a particular time period, the to-
tal cost

∑M
i=1 cm(l) of the selected implementations of all

tasks cannot exceedC, the total amount of computation
available. While the device is running the tasks, thetradeoff
mechanismmaintains state variablesbm(l), which are esti-
mates of thebenefitoffered by each particular implementa-
tion level of each task. This benefit represents an abstract
quantity whose meaning is dependent on our overall objec-
tive in allocating computational resources.

In a given time period, implementation levelslm have
been chosen, and the inputs and outputs of each task are
available to the tradeoff mechanism. For each time period,
for each taskm, we makeIm observations of the input
xm[n] andOm observations of the outputym[n]. After all
observations are made for the time period, we assess the
quality of each task through a functionQm(xm[n], ym[n]).

These observations are then used to adjust the imple-
mentation levels of the tasks. Currently, we use a two phase
method to do this adjustment. First, based upon the qual-
ity assessmentsQm, we adjust benefit estimatesbm(l) for
the implementation levels of each task. Then, we solve a
multiple-choice knapsack problemto determine which im-
plementation levelslm are chosen for the next time period.
More specifically, we try to chooselm for all tasks in order
to solve the following optimization problem:

maximize
M∑
i=1

bi(li) (1)

subject to
M∑
i=1

ci(li) ≤ C (2)

Although this is a NP-hard integer linear programming
problem, this particular optimization problem has been well-
investigated, and will not pose a significant burden on the
computing platform. Techniques by Pisinger [3] were able
to solve problems with 100 tasks and 100 implementation
levels for each task in 0.33 seconds on a 66 Mhz machine;
common desktop machines today have clock speeds more
than ten times higher. Even if the machine performance
does not scale as much, it will be feasible to solve the prob-
lem at least once per second.

In developing this system, we first consider systems in
which all tasks are similar andQm is the same function for
all m, as in the example presented below in Section 3, where
we define a specific kind ofQm and method for modifying
bm(l). We plan to eventually extend the system to consider
different tasks and quality metrics.

3. EXAMPLE

3.1. Setup

We demonstrate our system’s applicability by considering a
simple example where all tasks are FIR filters, and different
implementation levels involve different approximations to
an ideal filter. In this example, the computational resource
being allocated is the number of shift-add combinations that
can occur to produce one output observation from each of
the filters. All the FIR filters are approximations to whiten-
ing filters matched to AR (auto-regressive) processes. Each
of the AR processes are generated by passing white noise
through a monic all-pole filterHim(ejω) (for convenience,
all the poles are located inside the unit circle), so each task
involves filtering a different AR process generated with a
different filter. We choose this particular application of re-
moving a signal’s redundancy because a big portion of au-
dio and video compression revolves around exploiting the
redundancy inherent in natural phenomena.

For each task, the highest level implementation corre-
sponds to the ideal whitening filterHm(ejω) = 1/Him(ejω),
with a time domain impulse responsehm[k]. We imple-
ment the filter as a cascade of second order (three tap) sub-
filters hma[k], with Hm(ejω) =

∏
a Hma(ejω), in order

to maximize the overall mathematical precision for a given
wordlength [4]. We then break down the individual taps
in the subfilters into CSD (canonical signed digit) form [5],
representing them as sums and differences of powers of two;
each power of two term will represent a shift-add operation
required to implement that tap. We then generate lower level
implementations for each filter (constraining all implemen-
tations to have a first taphm[0] of one by constraining all
subfiltershma[0] to have first tap of one) by selecting pow-
ers of two to delete from the subfilter taps.

We perform this selection by calculating for each sub-
filter Tma, the total powers of two inhma[1] andhma[2]
combined. Fort = 1 throughTma, we determine the best
t powers of two to delete by exhaustively searching over
all possible combinations oft powers of two and selecting
one that minimizes an error function. After this is done for
all subfilters, we determine foru = 1 throughTm, where
Tm =

∑
a Tma, the bestu powers of two to delete from

all the filters collectively. Finally, for every filter, the im-
plementations are ordered based upon how many powers of
two they contain. The more powers of two the filter has, the
more it approximates the ideal filter.

3.2. Experimental Parameters

We expect the variance of the filter output to be at a mini-
mum when the filter is at the highest level implementation.
The more the transfer function of the filter deviates from
the ideal, the greater the variance of the filter output will

II - 546

➡ ➡

be. Therefore, we define the quality of the filters to be the
negative of the estimated sample variance of the filter out-
puts; Qm = −(

∑N
n=1 y2

m[n]) for a given time period. In
this example,N is equal to bothIm andOm for all tasksm.
When utilizing theQm to modify thebm(l) functions, we
normalize them by a factorα to increase our confidence in
them as quality estimates.

For this example, we wish to have the overall objective
of achieving the same quality from all the tasks, or to have
theQm as close to each other as possible. At the start of our
simulation, all of thebm(l) are initialized to zero, and we
modify them as such:

• Find task numbersr ands such thatQr ≥ Qm and
Qs ≤ Qm for all tasksm.

• Calculated = (Qr −Qs)/α

• Increasebs(l) by bdc, for all l > l′ wherel′ is the
current implementation level for tasks.

The intuition behind this scheme is that we want to give
task s, the worst performing task more computational re-
sources so that it may possibly perform better. By increas-
ing the benefit levels of its higher implementation levels, we
will select the higher implementation level if we can penal-
ize other tasks without losing more thanbdc total estimated
benefit. We floor the quality differenced in order to keep
the knapsack problem integer.

4. NUMERICAL RESULTS

We have simulated a system with 20 different filters, requir-
ing from six to twelve non-trivial (not equal to one) taps
selected offline at random. At their highest (exact) imple-
mentation level, the filters take between 27 and 59 shift-add
combinations per output sample, and the whole system re-
quires 889 shift-add combinations to run each task at the
highest implementation level. Figure 2 shows results from
two experiments, one where our system has a constraint of
450 shift-add combinations, and one where our system has
a constraint of 500 shift-add combinations. In both exper-
iments, we generateN = 40000 samples per time period
from each of the AR processes based upon filtering streams
of white noise with sample variance of one using the inverse
filtersHim(ejω). The normalization factorα used in calcu-
lating theQm is set to 2000. All of our arithmetic is done
in a fixed-point format with ten bits of precision beyond the
decimal point.

We have plotted both the mean and standard deviation of
the Qm versus the time period number. In the experiment
with 450 shift-add combinations, the standard deviation of
the Qm averages around103 after an initial period of 120

10
2

10
3

10
4

10
5

S
ta

nd
ar

d
D

ev
ia

tio
n

0 50 100 150 200 250 300
−10

−8

−6

−4

−2
x 10

4

Iteration Number

M
ea

n

(a)

102

103

104

105

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

0 50 100 150 200 250 300
−10

−8

−6

−4

−2
x 104

Iteration Number

M
ea

n

(b)

Fig. 2. Mean and standard deviation ofQm in simulations
of 20 filters with computational constraint of (a) 450 and (b)
500 shift-add combinations

iterations. In the experiment with 500 shift-add combina-
tions, the standard deviation of theQm is much smaller, av-
eraging around 400 after an initial period of 120 iterations.
This seems to imply that the more computational resources
there are, the better our heuristic works in driving theQm to
be equal, although the standard deviation averages an order
of magnitude less than the mean in both experiments.

To demonstrate how well the system has learned the
resource-quality tradeoffs, we perform more simulations in
which the overall computational constraint is changed at it-
eration 175. The results are shown in Figure 3. We first
perform a simulation where we increase the constraint from
450 to 500 shift-add combinations, resulting in an increase
in total quality; the mean of theQm increases, while the
standard deviation settles. We then perform another sim-
ulation where we decrease the constraint from 500 to 450
shift-add combinations, resulting in a decrease in the mean

II - 547

➡ ➡

102

103

104

105

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

50 100 150 200 250 300
−5

−4.8

−4.6

−4.4

−4.2

−4
x 104

Iteration Number

M
ea

n

(a)

102

103

104

105

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

50 100 150 200 250 300
−5

−4.8

−4.6

−4.4

−4.2

−4
x 104

Iteration Number

M
ea

n

(b)

Fig. 3. Mean and standard deviation ofQm in simulations
of 20 filters with change of constraint at iteration 175 from
(a) 450 to 500 and (b) 500 to 450 shift-add combinations

of the Qm. The results show that the system is quick to
adapt. In the case where the constraint is increased, the sys-
tem settles immediately into a new average quality level. In
the case where the constraint is decreased, the system takes
about ten iterations to settle into a new average quality level.

5. FUTURE DIRECTIONS

Our eventual plan is to apply our framework to more com-
plicated problems, for instance, ones where the nature of
the input signals changes from throughout time and theQm

metric needs to depend on both the input and output obser-
vations instead of just output observations as in the above
example. One possible example where this might occur is
lowpass filtering (as in [1][2]) where the input signal might
have more or less signal energy in the stopband, causing
differentQm to be measured for the same implementation

level.
We would also like to extend the framework to situations

where the tasks are completely different in nature, such as
the audio compression versus the video compression for the
same media stream. Another one of our eventual goals is to
use this framework on tasks which are interconnected,i.e.
the output of one task is the input of another; an example
of this would be the motion estimation and the transform
coding in a MC-DCT hybrid video coder, where the pre-
diction error from the motion estimation is the input of the
DCT block transform. Both these tasks can be performed
at different quality levels, with the net effect of producing
different quality video at the decoder for the same encoded
bitrate.

6. CONCLUSION

We have presented a framework for running multiple real-
time tasks where the tasks themselves admit multiple im-
plementation levels of different quality. In this framework,
the implementation levels are changed based upon observa-
tion of the input and output data of the tasks. Using this
framework, we have constructed and simulated an example
system where multiple filters are running simultaneously to
demonstrate its ability to adapt to different computational
constraints.

Although the example is simple, and the actual compu-
tation overhead is small, we hope to extend this work to
tasks and applications that are challenging to current archi-
tectures. Examples of such tasks would be computational
kernels such as segmentation for VOP coding in MPEG-4
and transform coefficient prediction in H.264.

7. REFERENCES

[1] M. Goel and N. R. Shanbhag, “Low-power digital sig-
nal processing via dynamic algorithm transformations
(DAT),” in Asilomar Conference on Signals, Systems
and Computers, November 1998.

[2] S. Nawab, A. Oppenheim, A. Chandrakasan, J. Wino-
grad, and J. Ludwig, “Approximate signal processing,”
J. VLSI Signal Processing Systems, vol. 15, no. 1/2, Jan-
uary 1997.

[3] David Pisinger, Algorithms for Knapsack Problems,
Ph.D. thesis, University of Copenhagen, 1995.

[4] A. Oppenheim and R. Schafer,Discrete Time Signal
Processing, Prentice-Hall, 1989.

[5] J. Coleman and A. Yardakul, “Fractions in the
canonical-signed-digit number system,” inConf. on In-
formation Sciences and Systems, March 2001.

II - 548

➡ ➠

