QUALITY BASED COMPUTE-RESOURCE ALLOCATION IN REAL-TIME SIGNAL PROCESSING
Joseph Yeh and John Wawrzynek

University of California at Berkeley, Department of EECS, Berkeley, CA 94720
jyeh,johnw@eecs.berkeley.edu

ABSTRACT

We present a novel method for controlling the complex- Task 1
ity of real-time signal processing computational tasks, in or- 1
der to make sure that a total quality metric for all the signal Task 2
processing tasks is maximized. The method makes deci-
sions about how much compute power is allocated to each 'E';st”; . 8::2“
task through past observations of the input and output data :
of each task. We present preliminary results from filtering Task M
applications that demonstrate the ability of the system to
maximize the total quality of a large number of tasks under L
a real-time computational constraint.

—— Data

1. INTRODUCTION — Control

Evaluator

Although the performance of computing devices continues
to grow, new multimedia applications still arise to challenge
the capabilities of these devices, particularly media com-
pression algorithms such as H.264 and MPEG-4. At the
same time, recent technological and market trends are push-

ing devices, particularly portable wireless communications o instruction count for a given level of quality (equivalent
dey|ces, to hgndle g_larger number of computational tasksy¢ signal processing performance in [1]). We investigate
while consuming minimal power. Many of these computa- 5 gyal problem of maximizing quality for a given compu-
tional tasks have real time constraints, and therefore cannotgtional speed, corresponding to a constant level of power
afford to be delayed. We present a framework in which such ¢onsuymption in a conventional computer architecture. In
computational tasks can be performed at different levels of 5, formulation. there is no need for any extra hardware
quality, with higher levels of quality requiring more com- gyerhead to switch power on or off to processing units, mak-
putational resources in terms of percentage of CPU time INing it more versatile and architecture-independent.

scalar architectures and/or functional units in highly parallel 114 hext section describes the mathematical framework
architectures, where the levels are set by a evaluator which, 4 terminology used in our model. Section 3 then intro-

takes into account the_cqmputational constraint of the SYS-guces an example application for the system and section 4
tem, and the characteristics of the input and output signals. presents some preliminary results. Section 5 presents pos-

This framework needs to be robust to changes in the na-gjjjities for future directions and Section 6 concludes the
ture of the input signals and the overall computational con- paper.

straints. Therefore, it does not rely on angriori estimates

of quality for a given implementation. Instead, it relies on

observations of task inputs and task outputs to both estab- 2. FRAMEWORK

lish the current tradeoffs between computational costs and

quality and allocate computational resources among differ- The basic block diagram of the system is shown in Figure

ent tasks appropriately. Furthermore, the framework itself 1. The computational device is runnifig taskssimultane-

is computationally efficient. ously. Each of the tasks can be run at a certaiplemen-
Much work, by Goel [1] and Chandrasekharan [2] in tation leve] and each implementation level of each task has

particular, has been done to minimize power consumption acomputational cosdf ¢,, (1), wherem is the task number

Fig. 1. System Diagram

0-7803-7663-3/03/$17.00 ©2003 IEEE Il1-545 ICASSP 2003

and! is a non-negative integer corresponding to the imple-
mentation level of the task. The tasks are ordered so tha
¢m /(1) increases with. In a particular time period, the to-
tal costzf\i1 cm (1) of the selected implementations of all
tasks cannot exceed, the total amount of computation
available. While the device is running the tasks,ttheeoff
mechanisnmaintains state variablés, (1), which are esti-
mates of thébenefitoffered by each particular implementa-
tion level of each task. This benefit represents an abstrac

quantity whose meaning is dependent on our overall objec-

tive in allocating computational resources.

In a given time period, implementation levéls have

3. EXAMPLE
t
3.1. Setup

We demonstrate our system’s applicability by considering a
simple example where all tasks are FIR filters, and different
implementation levels involve different approximations to
an ideal filter. In this example, the computational resource
tbeing allocated is the number of shift-add combinations that
can occur to produce one output observation from each of
the filters. All the FIR filters are approximations to whiten-
ing filters matched to AR (auto-regressive) processes. Each

of the AR processes are generated by passing white noise

been chosen, and the inputs and outputs of each task arénrough a monic all-pole filtefd;,,, (¢?“’) (for convenience,

available to the tradeoff mechanism. For each time period,
for each taskm, we makel,, observations of the input
xm[n] andO,,, observations of the output,,[n]. After all
observations are made for the time period, we assess th
quality of each task through a functiép,, (z,.[n], ym[n]).

These observations are then used to adjust the imple

mentation levels of the tasks. Currently, we use a two phase
method to do this adjustment. First, based upon the qual-

ity assessment§),,,, we adjust benefit estimatés, () for

the implementation levels of each task. Then, we solve a

multiple-choice knapsack probleta determine which im-
plementation level$,, are chosen for the next time period.
More specifically, we try to choodg, for all tasks in order
to solve the following optimization problem:

maximize

1)

subject to

)

Although this is a NP-hard integer linear programming
problem, this particular optimization problem has been well-
investigated, and will not pose a significant burden on the
computing platform. Techniques by Pisinger [3] were able
to solve problems with 100 tasks and 100 implementation

levels for each task in 0.33 seconds on a 66 Mhz machine;aﬁlt

all the poles are located inside the unit circle), so each task
involves filtering a different AR process generated with a
different filter. We choose this particular application of re-
enoving a signal’s redundancy because a big portion of au-
dio and video compression revolves around exploiting the
redundancy inherent in natural phenomena.

For each task, the highest level implementation corre-
sponds to the ideal whitening filtéf,,, (/) = 1/ H;,,, (e’*),
with a time domain impulse respongg,[k]. We imple-
ment the filter as a cascade of second order (three tap) sub-
filters hpq[k], with H,,(e7“) = [], Hma(e’), in order

to maximize the overall mathematical precision for a given
wordlength [4]. We then break down the individual taps
in the subfilters into CSD (canonical signed digit) form [5],
representing them as sums and differences of powers of two;
each power of two term will represent a shift-add operation
required to implement that tap. We then generate lower level
implementations for each filter (constraining all implemen-
tations to have a first tap,,,[0] of one by constraining all
subfiltersh,,,,[0] to have first tap of one) by selecting pow-
ers of two to delete from the subfilter taps.

We perform this selection by calculating for each sub-
filter T4, the total powers of two itk,,,[1] and k.4 [2)
combined. For = 1 throughT,,,, we determine the best
t powers of two to delete by exhaustively searching over
all possible combinations dfpowers of two and selecting
one that minimizes an error function. After this is done for
all subfilters, we determine far = 1 through7,,, where
T = Y., Tma, the bestu powers of two to delete from
he filters collectively. Finally, for every filter, the im-

common qlesktop machines to_day have CI_OCk speeds mor%lementations are ordered based upon how many powers of
than ten times higher. Even if the machine performance y,q they contain. The more powers of two the filter has, the

does not scale as much, it will be feasible to solve the prob-
lem at least once per second.

In developing this system, we first consider systems in
which all tasks are similar an@,,, is the same function for

more it approximates the ideal filter.

3.2. Experimental Parameters

all m, as in the example presented below in Section 3, whereWe expect the variance of the filter output to be at a mini-

we define a specific kind d@,,, and method for modifying
b (1). We plan to eventually extend the system to consider
different tasks and quality metrics.

mum when the filter is at the highest level implementation.
The more the transfer function of the filter deviates from
the ideal, the greater the variance of the filter output will

Il - 546

be. Therefore, we define the quality of the filters to be the 10
negative of the estimated sample variance of the filter out-
puts; Q.,, = —(22’:1 y2,[n]) for a given time period. In
this example)V is equal to botH,,, andO,,, for all tasksm.
When utilizing the@,,, to modify thebd,,, (1) functions, we
normalize them by a factar to increase our confidence in 102
them as quality estimates.

For this example, we wish to have the overall objective 10
of achieving the same quality from all the tasks, or to have
the,, as close to each other as possible. Atthe startof our _ v
simulation, all of theb,, (1) are initialized to zero, and we g -or
modify them as such: -8

Standard Deviation

e Find task numbers ands such that), > @,, and 0 %0 100 150 200 20 300

Iteration Number

Qs < Q,, for all tasksm. (@)

107

e Calculated = (Q, — Qs)/«

=
O»
T

e Increasebs (1) by |d], for all I > " wherel’ is the
current implementation level for task

o
2
T

Standard Deviation

107

The intuition behind this scheme is that we want to give

task s, the worst performing task more computational re- 10t
sources so that it may possibly perform better. By increas- 2
ing the benefit levels of its higher implementation levels, we -ar
will select the higher implementation level if we can penal- g ol

ize other tasks without losing more thd| total estimated
benefit. We floor the quality differenaéin order to keep
the knapsack problem integer. -19 %0 100 50 200 250 300

Iteration Number

(b)

Fig. 2. Mean and standard deviation @f,, in simulations

We have simulated a system with 20 different filters, requir- of 20 filters with computational constraint of (a) 450 and (b)
ing from six to twelve non-trivial (not equal to one) taps 500 shift-add combinations
selected offline at random. At their highest (exact) imple-
mentation level, the filters take between 27 and 59 shift-add
combinations per output sample, and the whole system redterations. In the experiment with 500 shift-add combina-
quires 889 shift-add combinations to run each task at thetions, the standard deviation of thg,, is much smaller, av-
highest implementation level. Figure 2 shows results from eraging around 400 after an initial period of 120 iterations.
two experiments, one where our system has a constraint ofl his seems to imply that the more computational resources
450 shift-add combinations, and one where our system haghere are, the better our heuristic works in drivinghg to
a constraint of 500 shift-add combinations. In both exper- be equal, although the standard deviation averages an order
iments, we generat® = 40000 samples per time period of magnitude less than the mean in both experiments.
from each of the AR processes based upon filtering streams To demonstrate how well the system has learned the
of white noise with sample variance of one using the inverse resource-quality tradeoffs, we perform more simulations in
filters H;,,(e’*). The normalization factar used in calcu- which the overall computational constraint is changed at it-
lating the@,,, is set to 2000. All of our arithmetic is done eration 175. The results are shown in Figure 3. We first
in a fixed-point format with ten bits of precision beyond the perform a simulation where we increase the constraint from
decimal point. 450 to 500 shift-add combinations, resulting in an increase

We have plotted both the mean and standard deviation ofin total quality; the mean of th€),, increases, while the
the Q,,, versus the time period number. In the experiment standard deviation settles. We then perform another sim-
with 450 shift-add combinations, the standard deviation of ulation where we decrease the constraint from 500 to 450
the Q,, averages arountl® after an initial period of 120 shift-add combinations, resulting in a decrease in the mean

4. NUMERICAL RESULTS

Il - 547

.
Om

,_\
Q
T

H
Ou
T

Standard Deviation

10°

x10°

. . .
150 200 250
Iteration Number

(@)

I
100 300

10°

=
Oa
T

Standard Deviation
=
Q
T

10

. I .
150 200 250
Iteration Number

(b)

Fig. 3. Mean and standard deviation @f,, in simulations
of 20 filters with change of constraint at iteration 175 from
(a) 450 to 500 and (b) 500 to 450 shift-add combinations

I
100

300

of the @Q,,. The results show that the system is quick to

adapt. In the case where the constraint is increased, the sys-

tem settles immediately into a new average quality level. In

the case where the constraint is decreased, the system takﬁ]

about ten iterations to settle into a new average quality level.

5. FUTURE DIRECTIONS

Our eventual plan is to apply our framework to more com-

plicated problems, for instance, ones where the nature of

the input signals changes from throughout time andhe
metric needs to depend on both the input and output obser

vations instead of just output observations as in the above
example. One possible example where this might occur is[5] J. Coleman and A. Yardakul,

lowpass filtering (as in [1][2]) where the input signal might

have more or less signal energy in the stopband, causing

different@,,, to be measured for the same implementation

level.

We would also like to extend the framework to situations
where the tasks are completely different in nature, such as
the audio compression versus the video compression for the
same media stream. Another one of our eventual goals is to
use this framework on tasks which are interconnedted,
the output of one task is the input of another; an example
of this would be the motion estimation and the transform
coding in a MC-DCT hybrid video coder, where the pre-
diction error from the motion estimation is the input of the
DCT block transform. Both these tasks can be performed
at different quality levels, with the net effect of producing
different quality video at the decoder for the same encoded
bitrate.

6. CONCLUSION

We have presented a framework for running multiple real-
time tasks where the tasks themselves admit multiple im-
plementation levels of different quality. In this framework,
the implementation levels are changed based upon observa-
tion of the input and output data of the tasks. Using this
framework, we have constructed and simulated an example
system where multiple filters are running simultaneously to
demonstrate its ability to adapt to different computational
constraints.

Although the example is simple, and the actual compu-
tation overhead is small, we hope to extend this work to
tasks and applications that are challenging to current archi-
tectures. Examples of such tasks would be computational
kernels such as segmentation for VOP coding in MPEG-4
and transform coefficient prediction in H.264.

7. REFERENCES

[1] M. Goel and N. R. Shanbhag, “Low-power digital sig-
nal processing via dynamic algorithm transformations
(DAT),” in Asilomar Conference on Signals, Systems
and ComputersNovember 1998.

S. Nawab, A. Oppenheim, A. Chandrakasan, J. Wino-
grad, and J. Ludwig, “Approximate signal processing,’
J. VLSI Signal Processing Systemal. 15, no. 1/2, Jan-
uary 1997.

[3] David Pisinger, Algorithms for Knapsack Problems

Ph.D. thesis, University of Copenhagen, 1995.

[4] A. Oppenheim and R. Schafemiscrete Time Signal
Processing Prentice-Hall, 1989.

“Fractions in the
canonical-signed-digit number system,"@onf. on In-
formation Sciences and Systeriarch 2001.

Il - 548

