
FAST AUTOMATIC SOFTWARE IMPLEMENTATIONS OF FIR FILTERS

Aca Gačić, Markus Püschel, José M. F. Moura

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, U.S.A.
{agacic, pueschel, moura}@ece.cmu.edu

ABSTRACT

SPIRAL is a generator for platform-adapted libraries of DSP trans-
form algorithms. SPIRAL represents and automatically generates
fast algorithms as mathematical formulas and translates them into
programs. Adaptation is achieved by searching in the space of al-
gorithmic and coding alternatives for the fastest implementation.
In this paper we extend SPIRAL to generate platform-adapted im-
plementations of FIR filters. First, we present various filter al-
gorithms and introduce the mathematical constructs needed to in-
clude them into SPIRAL’s architecture. Then we use SPIRAL
to find fast filter implementations. The results show runtime im-
provements to a standard loop implementation of up to 70% using
different blocking techniques. Further, we show that the usefulness
of frequency-domain methods is not determined by the number of
operations.

1. INTRODUCTION

Designers of fast digital signal processing (DSP) algorithms are
usually concerned with reducing their arithmetic cost. However,
it is well known that the actual runtime of a software implemen-
tation of these algorithms is critically dependent on the architec-
ture, in particular on the memory hierarchy, of the computing plat-
form, and on the data flow pattern of the algorithm. Choosing the
right algorithm is a difficult problem that requires extensive test-
ing. Usually, the resulting code is obtained by hand-tuning to the
target platform. In many cases, the same code does not yield high
performance when used on a different machine.

SPIRAL, [1, 2], is a generator of libraries of fast software im-
plementations for DSP transforms. The SPIRAL generated code
is optimized and tuned to the actual computing architecture, and
it is competitive with the best code available developed by human
experts. As an example, [3] shows that the DFT (discrete Fourier
transform) code generated automatically by SPIRAL is faster than
the code provided by Intel’s Math Kernel library for DFT sizes up
to 213. Besides the DFT, SPIRAL generates optimized code for
the trigonometric transforms like the DCT and DST, the Hartley
and the Walsh-Hadamard transform, and many others.

In this paper, we extend SPIRAL to generate optimal platform-
adapted code for finite impulse response (FIR) filters. We demon-
strate the quality of the generated code on two common computer
platforms: the Intel Pentium 4 and the SUN UltraSPARC II.

This work was supported by DARPA through research grant DABT63-
98-1-0004 administered by the Army Directorate of Contracting.

-

�

�

Se
ar

ch
E

ng
in

e

Platform-Adapted Implementation

⇓

Performance
Evaluation

⇓

Formula
Translator

⇓

Formula
Generator

⇓
Signal Transform

Benchmarking
tools

Implementations
by domain specific

compiler

Algorithms in
uniform algebraic

notation

Fig. 1. The architecture of SPIRAL.

2. SPIRAL

The architecture of SPIRAL is shown in Fig. 1, [1, 2]. A given
transform is symbolically manipulated by the formula generator
in SPIRAL to generate many alternative algorithms for this trans-
form, represented as mathematical formulas. These are obtained
by using the properties of the constructs and by selective use of re-
cursive transformations, which are called breakdown rules in SPI-
RAL. The formula generator outputs a description of each algo-
rithm using a Lisp-type SPIRAL proprietary language called SPL
(signal processing language). The SPL program is then automati-
cally translated into a high-level language program (C or Fortran)
in the formula translator. The resulting code is timed, and the run-
time is used by a search engine to intelligently control the gener-
ation of new algorithms. Furthermore, the search engine controls
implementation options, such as the degree of loop unrolling. It-
eration of this loop yields a platform-adapted implementation for
the transform input into SPIRAL.

We now explain in more detail the structure of SPIRAL, which,
at the high level, captures numerous different transforms and their
algorithms in a compact mathematical framework that uses only a
small number of constructs and primitive symbols.

Transforms. A transform in SPIRAL is a class of parameter-
ized matrices that are typically highly structured. An example of a
transform is the DFT on input size n, given by

DFTn =
[

e−2πjk`/n
]

k,`=0,...,n−1
. (1)

Rules. A transform is structurally decomposed using break-

II - 5410-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

down rules. Rules are represented by using a set of mathematical
constructs and primitives. As an example, the tensor product is a
construct often found in rules for DSP transforms.

A ⊗ B = [ak,` · B] , where A = [ak,`] .

A well-known example of a rule is the mixed-radix Cooley-Tukey
(CT) rule for a DFT of size n = pq,

DFTn = (DFTp ⊗ Iq) Tn
q (Ip ⊗DFTq) Ln

p , n = p · q, (2)

where In is the n × n identity matrix, Tn
q is a diagonal matrix of

complex roots of unity, and Ln
p a stride permutation [4].

Algorithms. An algorithm is obtained by recursive applica-
tion of applicable rules until a base case is reached (i.e., no further
rules can be applied). For example, if n is a 2-power and only (2)
is used, then the base case is DFT2; one possible algorithm gen-
erated this way is the radix-2 decimation-in-time (DIT) algorithm
[4], for n = 8 given by

DFT8 = (DFT2 ⊗ I4) T8
4(

(DFT2 ⊗ I2) T4
2 (I2 ⊗DFT2) L2

4

)
L2

8 .
(3)

The number of algorithms for each transform is very large and
depends on the transform size and the number of available rules.
The rule framework makes algorithm generation fast and efficient
[2]. SPIRAL uses this set of different algorithms as a search space
to find a platform-adapted implementation. Since SPIRAL uses
high-level descriptions of the algorithms for DSP transforms, it is
easily extended with new transforms and new rules.

This paper extends SPIRAL to automatically generate fast im-
plementations for FIR filters. Filtering is interpreted as matrix-
vector multiplication, so that FIR filtering becomes a matrix trans-
form. Then, we represent fast algorithms as breakdown rules and
construct the algorithm space. We start by introducing the set of
necessary mathematical constructs and transforms.

3. TRANSFORMS AND CONSTRUCTS

FIR filter. A k-tap FIR filter is usually represented as the linear
convolution

ym =

k−1∑

i=0

hixm−i, (4)

where h = [h0 h1 . . . hk−1] are the filter coefficients.
For input size n, (4) can be represented as a matrix-vector

product y = Fn(h)x, where Fn(h) is a rectangular (n+k−1)×n
matrix, which we call FIR filter transform,

Fn(h) =

















h0
h1 h0
h2 h1 h0

...
...

...
. . .

hk−1 h0

hk−1

...
...

hk−1

. . .
...

hk−1

















︸ ︷︷ ︸

n columns

. (5)

We call k the filter length, and n the filter size. Our goal is to
generate fast implementations of Fn(h).

Circulant. The cyclic convolution on n points is given by

ym =

n−1∑

i=0

aix(m−i) mod n. (6)

In matrix representation, the cyclic convolution is given by the cir-
culant transform

C(a) =
[
a(i−j) mod n

]

i,j=0,...,n−1
, (7)

where a = [a0 a1 . . . an−1] are the convolution coefficients.
Toeplitz. The Toeplitz transform has the form

T (b) = [bi−j]i,j=0,...,n−1 . (8)

where the vector b =
[
b−(n−1) . . . b0 . . . bn−1

]
contains the defin-

ing entries from the first column [b0, . . . , b−(n−1)]
T , and the first

row [b0, . . . , bn−1].
Direct Sum. The direct sum of two matrices A and B is de-

fined as
A ⊕ B =

[
A

B

]

. (9)

Overlapped Direct Sum. We define the row overlapped di-
rect sum and the column overlapped direct sum of matrices A and
B as, respectively,

A ⊕k B =











A

B











, A ⊕k B =










A

B










,

where the parameter k provides the number of overlapping columns
or rows, respectively. In particular, A⊕0 B = A⊕0 B = A⊕B.

Overlapped Tensor Product. We define the column over-
lapped tensor product through the column overlapped direct sum:

Is ⊗
kA = A ⊕k A ⊕k · · · ⊕k A

︸ ︷︷ ︸

s-fold

, or (10)

Is ⊗
kA =











A
A

A
· · · · A











, (11)

The row overlapped tensor product Is ⊗kA is defined analogously.

4. BREAKDOWN RULES AND ALGORITHMS

Using the constructs defined in Section 3, we represent the filter
(5) in the concise form

Fn(h) = In ⊗k−1
h

T, (12)

where k is the filter length. Interpreted as an algorithm, (12) com-
putes Fn(h) column by column, using k − 1 additional additions
(the column overlap) in each step. This algorithm is a special case
of the overlap-add (OA) rule [5], which in our notation becomes

Fn(h) = In/b ⊗
k−1Fb(h), b|n. (13)

II - 542

➡ ➡

The OA rule divides a filter transform of size n into smaller filter
transforms of size b that operate on independent segments of the
input data (input locality). The dual version of the OA rule is the
overlap-save (OS) rule [5], which computes the filter transform as

Fn(h) = T (hL)⊕k−1 (Im/b ⊗k−1F
T
b (h))⊕k−1 T (hR), (14)

where m = n − k + 1. The Toeplitz matrices T (hL) and T (hR)
represent, respectively, the upper left and lower right k × k trian-
gle in (5). The remaining middle part is a transposed filter that is
again computed in blocks that produce independent segments of
the output vector (output locality).

As a compromise between the input and the output locality of
the previous two rules, we introduce the blocking rule, used in [6]
for arbitrary sparse matrices. It divides the filter matrix (5) into
square blocks with Toeplitz structure:

F T
n (h) = In/b ⊗v

dk/be
⊕b

i=1

T (hi) (15)

where b is the square block size, v = (dk/be − 1)b is the overlap,
and hi are segments of h overlapped on b−1 points. A similar rule
can be applied to the occurring Toeplitz matrices, thus enabling
multiple levels of blocking.

All of the above rules decompose the filter transform in the
time domain and lead to algorithms with the same arithmetic cost
as a computation by definition (4). The difference is in the order
of computation, which has a significant impact on runtimes as we
show later.

It is well known that filtering can be performed in the fre-
quency domain using the DFT, based on the fact that the DFT
diagonalizes the circulant matrix (7). To apply this algorithm to
a filter, we first extend (5) to a circulant matrix (7) by appending
k − 1 columns. Formally,

Fn(h) = C (Ek,n−1 · h) · En,k−1, (16)

where En,k−1 is a suitable padding matrix of size n+k−1×n+
k − 1. Then, the circulant matrix is decomposed using the DFT.
For real valued input data, the complexity of the standard fast DFT
algorithms can be reduced using the symmetry properties of the
DFT. There are several approaches in this direction. We use the
discrete Hartley transform (DHT) to decompose a circulant matrix
as

C(a) = DHT−1
n ·X(DHTn ·a) · DHTn . (17)

Here, X(DHTn ·a) represents an X-shaped matrix with the real
and imaginary parts of the vector DHTn ·a arranged on the diago-
nal and the opposite lower diagonal. For the DHT, we use a radix-2
rule [7].

5. EXPERIMENTAL RESULTS

We included the breakdown rules (13)–(17) into SPIRAL to gen-
erate and evaluate a large number of different filter transform algo-
rithms. In addition to this algorithmic degree of freedom, we also
included the degree of loop unrolling in the search space.

We ran experiments on two common computer architectures:
an Intel Pentium 4 (2.53 GHz, running Linux) using gcc 2.95, and
a SUN UltraSPARC II (450MHz) using the SUN Workshop 6 com-
piler. All algorithms were automatically generated, implemented
in C code, and benchmarked by SPIRAL.

As the baseline experiment, we use the algorithm built with
only one application of the rule (12): the OA rule with block size
b = 1, implemented as one loop with the loop body corresponding
to the columns in (5). We choose this algorithm as the baseline
since it leads to a straightforward implementation, most likely to
be chosen by a human programmer. This algorithm has maximal
input locality; each input sample is loaded only once.

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

input data size (log
2
n)

ru
nt

im
e

/ r
un

tim
e

of
 th

e
ba

se
lin

e
al

go
rit

hm
Pentium 4

Overlap−Add: arbitrary block size
OA + Overlap−Save
OA + OS + Blocking
Baseline: Overlap−Add with block size 1

0 5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SUN Ultrasparc 60

input data size (log
2
n)

ru
nt

im
e

/ r
un

tim
e

of
 th

e
ba

se
lin

e
al

go
rit

hm

Overlap−Add: arbitrary block size
OA + Overlap−Save
OA + OS + Blocking
Baseline: Overlap−Add with block size 1

Fig. 2. Runtime comparison (lower = better) of different time-
domain algorithms on Pentium 4 (above) and SUN (below).

We note that the runtime of a filter transform does not depend
on the actual values of the filter taps as long as they are nonzero.
In each experiment, we conduct a dynamic programming search
(provided by SPIRAL) using the set of rules considered.

Time-domain methods. In the first experiment, we compare
the different time-domain algorithms relative to the base method
for a filter length of k = 33 (see Fig. 2). We start with the gen-
eral overlap-add rule (13) with arbitrary block size b. The smaller
filter in (13) is computed row-wise using unrolled code. SPI-
RAL always finds the maximal possible block size (limited by the
code size the C compiler could process), improving the runtime
by about 50% relative to the base method (Fig. 2, circles). This
result indicates that output locality leads to faster code than input
locality; indeed, by including the OS rule (14) in the search, the
OA rule is not used (i.e., found) anymore, and we obtain further
runtime improvement (Fig. 2, triangles). Finally, by adding the

II - 543

➡ ➡

blocking rule (15), we obtain the best time-domain implementa-
tions on both platforms, up to 75% better than the base method
(Fig. 2, squares). The block size typically found is 2 or 4, allow-
ing for in-register computation. We remind the reader that each
of the time-domain algorithms has precisely the same arithmetic
cost (total number of additions and multiplications), namely n · k
multiplications and n · (k − 1) additions. Also worth noting is the
quantitative difference in the results on Pentium and SUN.

Frequency-domain methods. In the second experiment, we
include the frequency-domain rules (16) and (17) to expand the
search space. Fig. 3 shows the results on Pentium for filter input
sizes n = 21, . . . , 218 and different filter lengths 64, 128, and 256.
The base line this time is the best time-domain implementation
found before. For filter length 64 (and smaller, not shown), the
frequency-domain rules is not found in the search. For sizes 128
and 256 it improves runtimes by about 15% and 30%, starting with
input size 27 and 28, respectively. These results are surprising;
a comparison of time-domain and frequency-domain algorithms
based on arithmetic cost suggests that the latter are superior also
for smaller filter lengths.

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

1.1

input data size (log
2
n)

ru
nt

im
e

/ r
un

tim
e

of
 th

e
be

st
 ti

m
e−

do
m

ai
n

im
pl

em
en

ta
tio

n

Pentium 4

64−tap

128−tap

256−tap

128−tap filter
256−tap filter

Fig. 3. Runtime improvement using frequency-domain algorithms.

To investigate this discrepancy, we conduct a final experiment
with circulant matrices, comparing time-domain and frequency-
domain computation, shown in Fig. 4. First, we consider dense
circulant matrices of sizes n = 22, . . . , 27 (Fig. 4, triangles). We
display the quotient between the arithmetic cost for the DHT-based
method (using radix-2 given by 5n log2(n) − 13n/2 + 8) and for
direct computation (given by 2n2 − n), shown as a dotted line.
The result suggests that the DHT-based method is always prefer-
able. Comparing the actual runtimes, shown as solid line, how-
ever, shows that the time-domain computation is faster up to size
32. Since the circulant matrices constructed from rule (16) have
maximally half of their entries nonzero, we conduct the same ex-
periment for these “half-dense” circulant matrices (Fig. 4, circles).
The cross-over point between time- and frequency-domain algo-
rithms is, as expected, shifted to the right; around 16 for the arith-
metic cost, and beyond 64 for the actual runtimes, consistent with
Fig. 3.

Conclusion. We have shown that finding the best software im-
plementation of an FIR filter is not a straightforward task. Using a

4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pentium 4

circulant size (n)

R
el

at
iv

e
co

st
s

an
d

ru
nt

im
es

1/2 Dense Circulant: radix−2 DHT cost / direct cost
Dense Circulant: radix−2 DHT cost / direct cost
1/2 Dense Circulant: radix−2 DHT runtime / best time−domain
Dense Circulant: radix−2 DHT runtime / best time−domain

Fig. 4. Comparison of time and frequency based algorithms for a
dense and a half-dense circulant matrix.

combination of flexible blocking techniques and search, provided
by SPIRAL, a straightforward single-loop implementation can be
improved by up to 70% without reducing the arithmetic cost. Fur-
ther, frequency-domain methods are superior to time-domain al-
gorithms for larger filter lengths, but the cross-over point is not
exclusively determined by the arithmetic cost.

6. REFERENCES

[1] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna,
M. Püschel, and M. M. Veloso, “SPIRAL: Automatic Library
Generation and Platform-Adaptation for DSP Algorithms,”
1998, http://www.ece.cmu.edu/∼spiral.

[2] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson,
D. Padua, M. Veloso, and R. W. Johnson, “SPIRAL: A Gener-
ator for Platform-Adapted Libraries of Signal Processing Al-
gorithms,” Journal of High Performance Computing and Ap-
plications, 2003, to appear.

[3] F. Franchetti, M. Püschel, J. M. F. Moura, and C. W. Ueber-
huber, “Short Vector SIMD Code Generation for DSP Algo-
rithms,” in Proc. High Performance Embedded Computing
(HPEC), MIT Lincoln Labs, 2002.

[4] R. Tolimieri, M. An, and C. Lu, Algorithms for discrete
Fourier transforms and convolution, Springer, 2nd edition,
1997.

[5] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time
Signal Processing, Prentice-Hall, 2nd edition, 1999.

[6] E.-J. Im and K. Yelick, “Optimizing Sparse Matrix Computa-
tions for Register Reuse in SPARSITY,” in Proc. ICCS, 2001,
pp. 127–136, http://www.cs.berkeley.edu/ yelick/sparsity/.

[7] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley
Transform Algorithms: Application to Cyclic Convolution of
Real Data,” IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. ASSP-35, no. 6, pp. 818–824, June 1987.

II - 544

➡ ➠

