SHORT VECTOR CODE GENERATION AND ADAPTATION FOR DSP ALGORITHMS

Franz Franchetti*

Applied and Numerical Mathematics
Vienna University of Technology
Vienna, Austria
franz.franchetti @tuwien.ac.at

ABSTRACT

Most recent general purpose processors feature short vector SIMD
instructions, like SSE on Pentium I11/4. In this paper we automat-
ically generate platform-adapted short vector code for DSP trans-
form algorithms using SPIRAL. SPIRAL represents and generates
fast algorithms as mathematical formulas, and translates them into
code. Adaptation is achieved by searching in the space of algo-
rithmic and coding alternatives for the fastest implementation on
the given platform. We explain the mathematical foundation that
relates formula constructs to vector code, and overview the vector
code generator within SPIRAL. Experimental results show excel-
lent speed-ups compared to ordinary C code for a variety of trans-
forms and computing platforms. For the DFT on Pentium 4, our
automatically generated code compares favorably with the hand-
tuned Intel MKL vendor library.

1. INTRODUCTION

Short Vector Extensions. Recent generations of general purpose
processors feature short vector SIMD (single instruction multi-
ple data) extensions of their instruction set to speed up integer
and floating-point computation. Examples include SSE on Pen-
tium 111/4 and Athlon XP, SSE2 on Pentium 4, and Motorola Al-
tiVec. These instructions provide parallel operation on short vec-
tors (currently of length v = 2 or v = 4) of floating-point num-
bers, and have thus the potential to considerably speed up appli-
cations. The most important short vector extensions are shown in
Table 1.

Unfortunately, taking advantage of these instructions poses a
major challenge to developers of high performance software for
the following reasons: 1) Automatic vectorization by a compiler is
limited to code of very simple structure; thus, hand coding is re-
quired to achieve optimal performance. 2) There is no common C
programming interface for different vector extensions; thus, writ-
ten code is not readily portable. 3) Hand writing vector code re-
quires a high level of programming expertise.

In this paper we present our research on automatically gen-
erating short vector implementations of DSP transforms including
the discrete Fourier transform (DFT), the discrete cosine transform
(DCT), the Walsh-Hadamard transform (WHT), and many others.
Our approach builds on and extends the library generator SPIRAL
to overcome the problems mentioned above.

This work was supported by the Special Research Program SFB F011
“AURORA” of the Austrian Science Fund FWF and by DARPA through
research grant DABT63-98-1-0004 administered by the Army Directorate
of Contracting.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il -537

Markus Piischel

Electrical and Computer Engineering
Carnegie Méllon University
Pittsburgh, U.S.A.
pueschel @ece.cmu.edu

| vendor [name | v | precision | processor |
. Pentium 111/4,
Intel SSE 4 single Athlon XP
Intel SSE?2 2 double Pentium 4
AMD 3DNow! | 2 single K6, K6-I1, Athlon
Motorola | AltiVec | 4 single G4

Table 1: Short vector extensions.

DSP transform (user specified)

' _controls
algorithm generation

Formula Generator

fast algorithm
as SPL formula
. controls
implementation options

Formula Translator

L~ Search Engine

runtime on given platform

adapted implementation

Figure 1: The architecture of SPIRAL.

SPIRAL. The architecture of SPIRAL is displayed in Fig-
ure 1. The user specifies a transform she wants to implement
and its size, e.g., a DFT of size 256. The rule based Formula
Generator generates one out of many possible fast algorithms,
represented as mathematical formulas in the SPIRAL proprietary
language SPL (signal processing language). The SPL program is
compiled by the Formula Translator (or SPL compiler) into a
program in a common language such as C or Fortran. Directives
to the Formula Translator control implementation choices such as
the degree of unrolling or scheduling. Based on the runtime of the
generated program, the Search Engine triggers the generation of
additional algorithms and their implementations using possibly di-
rectives. Iteration of this process produces a program adapted to
the given computing platform. In summary, SPIRAL searches in
the space of structurally different algorithms and the space of their
possible implementations for the best match to the given target ar-
chitecture. For more information on SPIRAL we refer the reader
to[1, 2,3, 4].

Short Vector Extension of SPIRAL. In this paper we focus
on vector code generation with SPIRAL, which is made possi-

ICASSP 2003

ble through two main advances: 1) The mathematical framework
that relates mathematical (SPL) formulas to vector code and that
provides manipulation rules to modify formulas for vectorization.
2) The implementation of this framework as an extension to the
SPL compiler to generate vector code. Intuitively, by approaching
vectorization on the “higher” mathematical level, we have access
to all structural information necessary to generate very fast code;
by using SPIRAL’s search mechanism, we find the algorithm that
can take best advantage of vector instructions, and is thus fastest
on the given platform.

Experimental results show that our automatically generated
vector code achieves excellent speed-ups compared to state-of-the-
art C code (FFTW [5], or SPIRAL generated), and, for the DFT,
outperforms the results from [6] and compares favorably with the
hand-tuned Intel vendor library MKL.

A predecessor of our approach is in [7]; further details on vec-
tor code generation with SPIRAL can be found in [8].

2. MATHEMATICAL BACKGROUND

We give an overview on SPIRAL’s mathematical foundation. The
key concept is the representation of fast transform algorithms as
mathematical formulas, which can be efficiently generated and
manipulated. We use the discrete Fourier transform (DFT) as il-
lustrative example, noting that the framework captures all linear
transforms.

Transforms. The current scope of SPIRAL is the domain of
linear DSP transforms, which are represented as matrices. Exam-
ples include the DFT, discrete cosine transforms (DCTSs), Walsh-
Hadamard transform (WHT), filters, and many others.

Algorithms: Rules and Formulas. To capture fast transform
algorithms, SPIRAL uses mathematical constructs and primitives.
Examples for constructs include the tensor or Kronecker product
of matrices, and the direct sum, respectively defined by

A@BZ[CL&['BL fOI’A:[akyz], A@B:[AB],
and the conjugation A” = P~'AP by a permutation matrix P.
Examples of primitives include diagonal matrices, rotation matri-
ces, and permutation matrices, such as the stride permutation

Ly jk+i—im+j, 0<i<k 0<j<m.
Fast algorithms are recursive, like the Cooley-Tukey FFT, written
as

DFTn = (DFT,, ®1,) T (L, @ DFT,) L™, (1)

where T7*™ is diagonal [9]. An equation like (1) is called rule;
a rule expands a transform into other, usually smaller transforms.
Another example for a rule is the row-column computation of an
arbitrary 2-dimensional transform T%.gim:

Todim = T1-dm @ T1cim-

Recursive application of rules, until all transforms are expanded,
yields a formula, which represents a fast algorithm. Using rules,
formula generation is efficient and fast [4].

Algorithm Search Space. The degree of freedom in recur-
sively expanding a transform leads to a large number of struc-
turally different formulas. This is the algorithmic search space
SPIRAL uses for optimization. Examples for search methods in-
clude dynamic programming and an evolutionary algorithm [4,
10].

Complex Arithmetic. Several transforms, e.g., the DFT, in-
cluded in SPIRAL are complex, whereas short vector extensions
provide only real arithmetic. Thus, we translate complex formu-
las into real ones, by replacing every complex number a + bj by
the matrix (¢ "), which corresponds to the interleaved format.

b a
This translation can be done formally using an operator (-) using
mathematical properties. Examples include

A=A®I, Areal, 2

An @l = (An @1z ®1U)(I% ®L§"),

@)
Formula Manipulation. Formulas can be automatically ma-
nipulated using mathematical identities. Examples include

LEmm — (LM @ 1,) (I, @ L), (4)
(Bm ® An) = (An @ Bp)™". (5)

Formula manipulation is crucial for generating efficient vector
code. It provides the means to change the structure of an algorithm
with the goal to improve data access patterns and exhibit maximal
subformulas that can be vectorized (see Section 3). Formula ma-
nipulation is one key distinction between our approach and vec-
torizing compilers, which do not have access to the mathematical
structure and thus produce suboptimal code (see Section 4).

Standard Code Generation. Within SPIRAL, formulas are
represented in the language SPL (signal processing language). The
SPL compiler translates formulas into code, using the natural cor-
respondence between formula constructs and coding constructs
[3]. For example, tensor products with identity matrices are trans-
lated into loops. Diagonals and rotations are translated into arith-
metic operations while permutation matrices determine the data
access. Vector code generation is more challenging and explained
in the next section.

3. GENERATING EFFICIENT VECTOR CODE

In this section we present the vector code generation using the SPI-

RAL system. Three key elements are required:

e A portable SMD API to hide platform specifics of short vector
extensions. The API is a set of C macros that provides all vec-
tor operations needed to implement DSP transforms, and can
itself be implemented on any current short vector architecture.
Examples are given in Table 2.

e Formula vectorization manipulates a given formula, or algo-
rithm, to obtain a structure suitable for mapping to vector code.
This technique is the main distinction to vectorizing compilers,
which do not have access to the mathematical structure.

e \ector code generation maps the manipulated formula into C
code using, to the extent possible, the short vector instructions
provided by the SIMD API.

We expand on the last two bullets in the following. Further details

are provided in [8].

Formula Vectorization. The goal of this first step in the
code generation is to manipulate a given formula to exhibit max-
imal subformulas that can be mapped into short vector code. Our
method is based on the observation that the prototypical short vec-
tor construct is given by

A®]1,, (6)

Il1-538

[Macro | Operation
VEC ADD(c, a, b) vector addition
LOAD VECT(r, *m load vector

declare vector constant
load two vectors and
permute using L3 (v = 2)

DECLARE_CONST(¢)
STORE_L_4_2(*n0,
*ml, r0, rl)

Table 2: Some operations provided by the portable SIMD API.

where v is the vector length. Vector code for (6) is obtained by
generating scalar code for A and replacing any scalar operation by
the respective vector operation. Extending from (6), the following
more general construct can be completely vectorized:

PD(A®1,)EQ, 0

with permutation matrices P and @ and scaling matrices D and
FE that originate from real and complex diagonals or direct sums
of rotations. Most formulas, i.e., algorithms for DSP transforms
do not directly match (7), and thus have to be manipulated accord-
ingly. We provide a few examples.

The construct T, ®A is transformed into (A ® 1,)" using
identity (5). Both complex diagonals and direct sums of rotation
matrices D of length v (which are due to the bar operator essen-
tially the same) are manipulated as

— — 2v
D = D(L"), D = diag(co,...,cv—1), ¢; € C.

Theresult D’ is structurally equivalent to A®T, with a2 x 2 matrix
A (although the actual numbers vary). Larger diagonals are con-
verted into direct sums of diagonals of length v and transformed
blockwise.

Equation (4) provides a way of factoring stride permutations
into two permutations: a permutation L™ ® I,,, of blocks, and a
permutation I, ® L;;'" that operates within blocks. When k, m,
and n are appropriate, the first permutation can be implemented
by renaming vector variables while the second permutation is im-
plemented using primitives provided by the portable SIMD API.
Factoring the occurring permutations in the right way is the key
to performance. Note that not all permutations can be factored
into these two classes of operations while keeping the number of
operations low.

Using formula manipulation, DFTs, WHTSs, and multidimen-
sional transforms of 2-power size can be built exclusively from
constructs that match equation (7) and can thus be completely vec-
torized [8].

Generating Vector Code. In this final step, manipulated for-
mulas are translated into short vector code. Any formula at this
stage consists of two types of constructs: 1) vectorizable constructs
that match equation (7), and 2) non-vectorizable constructs. The
non-vectorizable constructs are translated into standard C code uti-
lizing the standard FPU. In the remainder of this section we briefly
discuss how vectorizable constructs are translated into code.

As explained above, the implementation of A ® I,, is straight-
forward by generating scalar code for the construct A using the
scalar SPL compiler [3], and then replacing all scalar operations
by their respective vector operations using the SIMD API.

Both permutation matrices and scaling matrices in (7) are han-
dled as pre- or postprocessing operations to the memory access.
This uses the facts, that vector loads and stores have to be issued

explicitly, and that any permutation and scaling matrix is by con-
struction close to such an operation as provided by the portable
SIMD API.

Efficient implementation of permutations across different short
vector extensions is one of the main challenges in obtaining fast
vector code. All current short vector extensions support some (and
different) in-vector permutations in their hardware. Some exten-
sions support unaligned memory access and some types of sub-
vector memory access with moderate performance penalty while
on other extensions unaligned access and sub-vector access has to
be built from multiple aligned vector memory access operations
leading to extreme performance degradation. The portable SIMD
API handles these problems efficiently.

4. EXPERIMENTAL RESULTS

We benchmarked SPIRAL generated vector code on three differ-
ent 1A-32 compatible machines with very different architectures:
a 1 GHz Pentium Il (Coppermine core), a 2.53 GHz Pentium 4,
and a 1.73 GHz Athlon XP 2100+. All three machines feature
the four-way single-precision SSE extension; the Pentium4 ad-
ditionally features the two-way double-precision SSE2. We ran
experiments for 2-power problem sizes for DFTs, WHTSs and 2D-
DCTs (type I1) on all machines for problem sizes that fit into the L2
cache. For all experiments the Intel C++ Compiler 6.0 was used.
The SPIRAL generated code was found by dynamic programming
searches including a search for the threshold for loop unrolling.
The performance results are given in Figure 2, for the DFT2n
in pseudo Gflop/s (5n2™ /runtime), else in Gflop/s; thus, higher
is better. For all transforms we compared (legend identifier, line
style): SPIRAL generated C code (SPIRAL C, solid, diamond);
SPIRAL generated C code with C compiler vectorization (SPI-
RAL C vect, dotted, bullet); SPIRAL generated SSE or SSE2
code (SPIRAL SSE or SSE2, solid, square); for the DFT, (a)—(d),
we included FFTW 2.1.3 C code (FFTW, dash-dotted, x) using
the built-in adaptation; and Intel MKL 5.1 SSE/SSE2 code (MKL
SSE/SSE2, dashed, triangle); for DFT on Pentium 4, (a), we in-
cluded the runtimes from [6] (Rodriguez, dash-dotted, star), lin-
early scaled up from 1.4 GHz to 2.53 GHz, as we could not get the
code for benchmarking. We summarize the main observations.

e Using C compiler vectorization in tandem with SPIRAL C code
generation (SPIRAL C vect) in general improves performance,
but is far from being optimal. (As an aside, compiler vectoriza-
tion of FFTW does not improve its performance.)

e SPIRAL generated vector code achieves excellent speed-ups
over the fastest scalar codes on all platforms for all consid-
ered transforms. For real four-way extensions (SSE on Pen-
tium I11 and Pentium 4) we achieve up to a factor of 3.3, and for
two-way extensions (including SSE on the Athlon XP, which
is implemented on top of 3DNow!) we achieve up to a factor
of 1.8. The best performance was measured for a DFT25 on
Pentium 4 with 6.25 pseudo Gflop/s (single precision SSE).

e For the DFT, with few exceptions, our generated code outper-
forms the Intel vendor library across platforms and across the
sizes considered. We note that the MKL computes the DFT in-
place (SPIRAL code is out-of-place) and also uses prefetching
instructions.

In a final experiment we demonstrate the necessity for platform-
adaptation. We cross-timed SPIRAL generated code—found for
different platforms/datatypes—on a Pentium 4, implemented in SSE.
Figure 3 shows the slowdown factors (i.e., the penalty payed by

Il1-539

DFT Pentium 4 SSE DFT Pentium 4 SSE2

DFT Pentium Ill SSE

9 . . . 5 . 2.5 . . .
= SPIRAL SSE —— SPIRALC -
8t (a.) -&- MKL SSE J (b) o SPIRAL C vect (C) e
—— SPIRALC —=— SPIRAL SSE2 o SPIRAL G vect
7t - FFTW | 4 -4 MKL SSE2 i o SPIRALG
® SPIRAL C vect == FFTW 2r — PETW
6t -*- Rodriguez = SPIRAL SSE2 exhaust

ul

. N
A’ s,
, 'A

N

pseudo Gflop/s
pseudo Gflop/s

3r . —'3":“""“'“':‘f‘:'-s-—-»-.i

pseudo Gflop/s

2%
1t &°
* 0.5%"]
0 R R 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ R R
4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12 13
DFT Athlon XP SSE WHT Pentium 4 SSE 2-dim DCT Pentium 4 SSE
T T T T T T T T T 45 T
+ SPIRALC - SPIRALC
3.5¢ (e) e SPIRAL C vect 1 2 (f) e SPIRAL C vect ||
—=— SPIRAL SSE —=— SPIRAL SSE
)
g 2
o
o
5
@1'5‘ 4 ~A- MKLPIII
4+ ~v- MKL P4
,4 -~- FFTW
[T —=— SPIRAL SSE
(/ —— SPIRALC
r's @ SPIRAL C vect
05 L L L L L L L L 05 L L L L L L L L L 05) L L L L
4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 2 3 4 5 6
Figure 2: Performance results: (a)—(d): DFTzn, < 12/13 (pseudo Gflop/s); (e): WHT2n, < 14 (Gflop/s); (f) 2D-

DCTanxon, 2 < n < 7 (Gflop/s). Platforms: 1 GHz Pentlum 111, 2.53 Ghz Pentium 4, and 1.73 Ghz Athlon XP 2100+, Higher is better.

DFT Cross Tlmlng on Pentium 4 SSE

+ F'enuurn 4 SSE

—6— Pentium 4 SSE2
a4 -4 . Athlon XP SSE 4
~% . Pentium Ill SSE
‘-- Pentium 4 float

[3]
H
[4]
[5]
Figure 3: Slowdown factor of the best algorithms for DF T'an, 4 <
n < 13, found for different architectures and data types, measured
on Pentium 4, implemented using SSE. [6]
adapting to another platform and/or datatype and implementing on [7]

Pentium 4, SSE). As expected, the scalar formulas and the SSE2

formulas performed very bad. However, it is intriguing that the

SSE optimized formulas, found for Pentium 111 or Athlon XP, per- 8]
formed up to 1.6 times slower than the Pentium4 SSE adapted

formulas.

9]
5. REFERENCES

[1] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua,
V. Prasanna, M. Pischel, and M. M. \eloso, “SPIRAL: [10]
Automatic Library Generation and Platform-Adaptation for
DSP Algorithms,” 1998, http://www.ece.cmu.edu/~spiral.

Il - 540

a5 ‘ ‘ [2] M. Pischel, B. Singer, J. Xiong, J. M. F. Moura, J. John-

son, D. Padua, M. Veloso, and R. W. Johnson, “SPIRAL: A
Generator for Platform-Adapted Libraries of Signal Process-
ing Algorithms,” to appear in Journal of High Performance
Computing and Applications, 2003.

J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL:
A Language and Compiler for DSP Algorithms,” in
Proc. PLDI, 2001, pp. 298-308.

M. Piischel, B. Singer, M. \eloso, and J. M. F. Moura, “Fast
Automatic Generation of DSP Algorithms,” in Proc. ICCS
2001, LNCS 2073, pp. 97-106, Springer.

M. Frigo and S. G. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in Proc. ICASSP, 1998, vol. 3, pp.
1381-1384, http://www.fftw.org.

P. Rodriguez, “A Radix-2 FFT Algorithm for Modern Sin-
gle Instruction Multiple Data (SIMD) Architectures,” in
Proc. ICASSP, 2002.

F. Franchetti, H. Karner, S. Kral, and C.W. Ueberhu-
ber, “Architecture Independent Short Vector FFTs,” in
Proc. ICASSP, 2001, vol. 2, pp. 1109-1112.

F. Franchetti and M. Puschel, “A SIMD Vectorizing
Compiler for Digital Signal Processing Algorithms,” in
Proc. IPDPS, 2002.

R. Tolimieri, M. An, and C. Lu, Algorithms for discrete
Fourier transforms and convolution, Springer, 2nd edition,
1997.

B. Singer and M. Veloso, “Stochastic Search for Signal Pro-
cessing Algorithm Optimization,” in Proc. Supercomputing,
2001.

