
A Simulation Based Approach for Incorporating Virtual Components IP
Cores into Multimedia Systems Design
Adel Baganne 1 , Imed Bennour 2, Mehrez Elmarzougui 2 , Eric Martin 1

1 L.E.S.T.E.R Lab -UBS 56325 Lorient - France
2 E.µ.E Lab -FSM 5019 Monastir - Tunisia

ABSTRACT
Growing requirements on the correct design of high performance
multimedia systems in a short time force us to use IP's blocks in
many designs. However, their correct integration in a design
implies more complex verification problems. In this paper, we
present a C++/SystemC based simulation flow at multiple levels
of abstraction. Our approach is to use SystemC to describe both
application and a set of algorithmic IP cores to be incorporated
throughout the design flow. Our methodology supports design
refinement through four main abstraction levels, offers
verification techniques at each level and allows the use of EDA
co-verification tools. The use of C++/SystemC to model all parts
of the system provides great flexibility and enables faster
simulation compared to existing methodologies. An illustrative
case study for wavelet based compression system design shows
that our methodology supports efficient algorithmic
specification, where IP models can be easily incorporated,
modified and simulated in order to quickly evaluate alternative
system implementation.
Keywords
Application modeling, Multi-level simulation, Architecture
modeling, IP core reuse, Multimedia systems.

1. INTRODUCTION
High performance systems-on-chip (SoC) designs today are
approaching 20 Million gates and 0.5 to 1 GHz operating
frequency. To implement these systems, designers are
increasingly relying on reuse of intellectual property (IP) blocks
that are available in various forms ranging from soft cores to
hard cores. These components represent functions of specific
domains like signal processing (DCT, FFT), telecommunication
(Viterbi, Turbo codes) multimedia application (MPEG2,
MPEG4, JPEG) etc. The IP cores are integrated in a SOC that
includes digital signal processors (DSP), shared memories, bus
controller and a set of hardware IP blocks connected to the
system bus through specific interfaces or wrappers.
Since IP blocks are pre-designed and pre-verified, the designer
can concentrate on the complete system without having to worry
about the correctness or performance of the individual
components. In practice, however, assembling a SoC using IP
blocks is still an error-prone, labor-intensive and time-consuming
process. Actually, even if cores are pre-verified, it does not mean
the whole system will work when they are put together. A
successful IP integration requires the system designer to take into
account the main following tasks:
- Synchronization: components have to be synchronized on

different aspect such as global execution, data exchanges and
protocols.

- Protocol conversion: Assure the protocol conversion between
blocks that use incompatible protocols. Wrappers can be used
for this purpose but introduce overhead that should be taken
into account with the timing constraints.

- I/O buffer synthesis: data may be buffered to ensure the system
behavior and to meet timing constraints.

Various interface and timing issues can cause the systems to fail
even when the individual cores are correct. So, the diversity of
applications coupled with the ever-diminishing time to market is
creating the need for new tools and design methodologies to
support rapid SoC design and verification at some levels of
abstraction above the register-transfer level.
In this paper we briefly describe our co-simulation design flow
for IP based design and. Our approach is to use SystemC
environment to describe an entire system efficiently at different
levels of abstractions for simulation and towards synthesis.
Besides, the proposed design flow allows the use of industrial co-
verification and simulation tools. The rest of the paper is
organized as follows. In Section 2, we present our design flow. In
Section 3, we give experimental results relative to image
compression system design with 1D Wavelet transform IP Core.
Finally, in Section 4, we state our conclusions.

2. MULTI-LEVEL SIMULATION
The methodology essentially starts with a very high, behavioral-
level design of the system that can be simulated. The design
process allows: (i) incorporating range of IP models at multiple
level of abstraction (ii) system specification refinement and (iii)
multi-level simulation. IP Cores can be generally categorized
into three main flavors: Soft, Firm and Hard cores [2]. In our
case, we assume that designer has -for each IP block to be
integrated, a set of simulation models provided by IP creator.
These models cover all abstraction levels previously described
and may be relying on different Models of Computations
(MOCs) [12] such as FSM, CFSM, SDF, DDF etc.
In our case, we used a set of communication principles and
design guidance provided by standardization organization VSIA
[3] and OSCI [4]. Thus, our design flow is built around four main
abstraction levels: Untimed Functional, Timed Functional, Bus
cycle accurate and Cycle Accurate levels [8].

• Untimed Functional level : At this level, algorithms are most
easily captured and verified using untimed functional models.
Only the application behavior is considered for simulation and
algorithm optimization. For example communication systems
can be simulated to optimize transmission and reception over
simulated real world.

• Timed Functional level : At this level some functional models
are annotated with processing or communication delay. This
level of abstraction is used for analyzing latency effects system
behavior and exploring system architecture in the early stages
of the design process. Timing is typically expressed as a
number of clock ticks relative of system clock(s).

• Bus Cycle Accurate (BCA) level : At this level the
communication architecture is fixed by designer as a set of
components (memory, shared bus, interrupt controller etc.). So
BCA level is used to model the communication.

II - 5250-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

• Cycle accurate (CA) level : This is the lowest abstraction level
we consider. Hardware models are described as detailed cycle
accurate structures or RTL models including hardware
registers, clocks, latches and combinatorial logic. Software
models targeting a processor are described at instructions set
level while hardware-software interactions are also specified at
low level.

3. CASE STUDY : 1DDWT WAVELET IP
INTEGRATION
The application of the case study is a compression application
(see Fig. 1) based on 1D Discrete Wavelet Transform (1DDWT).
We have chosen this application because it is not too
complicated, but has enough features to illustrate the problem of
IP integration and the usefulness of our multilevel simulation
flow.

3.1 The DDWT IP
DDWT is a compression technique used in signal coding
applications. This technique is widely used due to its perfect
wavelet analysis and synthesis properties, and the absence of
perceptual degradation after reconstruction (using DDWT-1). One
dimension (1_D) wavelet codes one- dimension signals, such as
speech and still pictures. Two- dimensions (2_D) wavelet codes
two- dimensions data, such as video sequences. The IP
considered here is 1_D, with multi-stages coding, using
Daubechies filters [16]. Each stage contains one filter High and
one filter Low and stages are connected to each other as shown
in Fig.1.c. The IP’s features are:

 configurable number of stages (from 1 to 6 stages) in the
wavelet tree;

 configurable filter’s length: 6, 8 or 10. Two least asymmetric
filters are also supported with length 8 and 10;

 configurable data bus width, varying from 8 to 16 bits;
 fixed point representation;
 2’s complement arithmetic;
 Fully synchronous.

D D W T
IP

Q ua ntifica tio n.
+

C od ing
D D W T -1

Im age com p re ss ion

(a)

clk

start

reset

data_in
Nbr_bit

Nbr_bit

FPH_1

Nbr_bit

FPH_2

Nbr_bit

FPH_3

Nbr_bit

FPH_4

Nbr_bit

FPH_5

Nbr_bit

FPH_6

Nbr_bit

FPL

read

W
rite_S1

W
rite_S2

W
rite_S3

W
rite_S4

W
rite_S5

W
rite_S6

busy

W1D6S16B

(b)

H

L

2

H

L
 H

L

2

2

2

2

2
Stage_1

Data_in

S_3

S_2

(c)
Fig.1: (a) Image compression application (b) 1D DWT IP (c) IP

internal structure

3.2 Integration and simulation steps
3.1.1 Integration of the DDWT at the UT level
The model of the DDWT used at the untimed level is the
synchronous data-flow (SDF) network model, a special case of
Khan process networks. A SDF is a collection of functional
nodes that are connected and communicate over unidirectional
FIFO queues. Nodes commonly called actors perform
computation that maps input data into output data, the data are
divided into tokens treated as indivisible units.

d d d d d

* * * * **
α3 α4 α6α5α2α1

+ + + + + pl

* * * * **β2

+ + + + + ph

in
β3 β4 β5 β6β1

2

2

64

Stage_1

S_3

S_2

2

2

2

1

1

1

1

1

1

64

DDWT IP

Sender
Receiver1 1

Fig.2 : SDF model

A connection between actors represents both the flow of data and
the sequence of tokens, from a producer actor to a consumer one.
Figure 2 shows the SDF of the DDWT. At each iteration the
DDWT consumes a block of 64 pixels and produces 64 values, a
stage inside the DDWT consume two tokens and produces one
token on each of its outputs, while the sender and the receiver
produces and consumes one token at each iteration, respectively.
The number of tokens consumed and produced can be used to
unambiguoudly define the minimal of firings that return the
queues to their original size: in SDF models, deadlock and
boundedness are decidable at compile time. The integration
objectives using this model are to validate the IP functionality, its
genericity and its functional performance, to select the adequate
number of stages for the target application, and to define
adequate filter’s coefficients for the target application. To reach
these objectives, which all are timing independent, we setup a
simple simulation framework composed of three sequential and
untimed (zero delay) processes: a transmitter process sending
blocs of pixels to the IP, the functional model of the IP, and a
receiver process implementing the wavelets backward transform
(DDWT-1). Processes are connected to each other through two
unbounded and non-blocking fifos: a fifo_in from the producer to
the IP and a fifo_out from the IP to the receiver. All processes
are written in SystemC using its native abstract fifo channels for
communication.
The second row of Table 1 shows the simulation speed for
different image sizes. The fast simulation speed is due to the
absence of synchronization between processes (no concurrency)
and due to the use of abstract communication. Noting that a
special attention should be done towards the non-determinism of
the SystemC scheduler. For instance, when we replaced in the
same design unbounded fifos by bounded and blocking fifos
deadlock problems have occurred due to this non-determinism.

3.1.2 Integration at the Timed Functional Level
The timed functional model of the DDWT is a SystemC module
composed of concurrent processes describing a pipelined
implementation of stages with the notion of time. Prior to start
the communication synthesis, the first objective was to verify the
functionality and the features of the new model. This was
achieved by replacing in the previous simulation design the
untimed model of the IP by the timed one, while keeping the rest
of the design untouched and using the same testbenches.

II - 526

➡ ➡

The third row of Table 1 shows the simulation speed, which stills
fast due to the use of abstract communication.

- Communication synthesis : The objectives at this step are
(i) to validate the synchronous communication protocol of the
DDWT IP, (ii) to synthesis the communication model between
the IP and its surrounded blocks, and (iii) to synthesis an initial
version of the software scheduler. Based on the following design
choices: the signal sampling process, the quantifier and the coder
are mapped to Sw running on an ARM7_TDMI processor, the
DDWT is mapped to hardware, and a point-to-point
communication mode is used between the DDWT and the rest of
the design. At this level, we use a network of FSMs describing
the communication of the system while abstracting its behavior.
Figure 3 shows this model composed of: an FSM of the DDWT
describing its communication protocol while abstracting its
behavior and its implementation, an FSM for the input FIFO, an
FSM for the output fifo, an FSM for the controller unit that
drives the FIFOs and generates an interrupt each time the DDWT
produce a data - interrupts are handled by the scheduler, an FSM
for the scheduler, an FSM for the sender, and an FSM for the
receiver. Once the communication have been synthesized, we
combine the FSMs network -describing the communication, with
the SDF network -describing the computation behavior. As
sequential processes are executed into zero delay under SystemC,
to each sw process Pi is assigned a delay ∆i and a wait(∆i)
statement is added at the end of each iteration. Software
processes and hardware processes are driven by different clock
frequencies.

- Timing and interdependency modeling: The transactions
between sw tasks (sender and receiver) and the hw one (IP
DDWT) are processed through buffered interface (fifos).

idle read &  empty

read &empty

read

reset

write

write & full

write &  full

reset

idle

write

reset

 start_Ps

 /end_Ps

reset

not_threshold/write

idle read &  empty

read &empty

read

reset

write

write & full

write &  full

reset

idle

read

reset

 start_Pr

 /end_Pr

reset

 empty/read

 . /start_Ps

Ps

idle

Pl

Pr

  int int/. start_Ps

reset

end_Ps

 . /start_Pl

 end_Ps

 end_Pr

end_Pr

idle . / read

start=0

write

./write_ph1
i++

read
write

write

 . / read

reset

read

(i mod 4==1)/write_ph2

(i mod 16==1)
/write_ph3

write_pl3

(i mod 64 == 1)

 . / read

reset

read

write

write

write_ph1write_ph2write_ph3write_ph3

start

status

idle

write

reset
reset

write_ph1or write_ph2 or
write_ph3 or write_pl3
/write

int status
/start

wait

 status

status
/start

./start

int

read

start_Pr

/end_Pr

start_Ps/end_Ps

DDWT IP FSM

FIFO_in FSM

Sender
FSM

Scheduler FSM

Receiver FSM

Controller FSM

FIFO_out FSM

Fig.3: FSMs network model

Figure 4 illustrates timing execution of tasks with their
interdependency. The DDWT task receives data from fifo_in and
produces results to fifo_out at regular rate. Note that fifos
empty/full states will generate waiting delays for the IP and other
processes. Hence, the whole system execution performance may
be affected and the IP integration can fail.

Time

IP Core
DDWT

��
��
��
��
��
��
��

Sender
Process

(SW)
Interface

Fifo_in

δ

Receiver
Process

(SW)
Interface
Fifo_out

δ

����������

Fifo buffering

Computation

Waiting delay

Fifo Empty�����
�����
�����
����� Fifo Full

����������
δ

Fig. 4 : Software - IP transactions and waiting delays : an illustrative
example

Our simulation environment which abstracts yet the target
processor has allowed validating the timing performance of the
IP (e.g. latency, throughput, etc.) for different fifos sizes,
scenarios, and synthesis the control unit at a bus cycle accurate
level. Simulation speed is given in the fourth row of Table 1; we
can note the impact of the communication abstraction on the
performance (row three and row four).

3.1.3 Integration at the Cycle Accurate Level
The goal at this level of integration is to refine the results
obtained in the previous step by using a synthesizable RTL
model of the IP and an Instruction Set Simulator (ISS) of the
ARM7. We setup a hw-sw co-simulation environment composed
of the Seamless_CVE hw/sw co-simulation tool, an ARM7-ISS
and the VHDL Modelsim simulator. The SeamlessCVE tool
allows to link the hardware simulator to the software running on
the ISS through the bus interface model (BIM) of the ARM7 (see
Fig 5). The BIM is modeled in HDL and connected from one
side to the hw code and to the sw code from another side. Fifo_in
is connected to the system bus, and each time the sw executes a
write instruction to fifo_in there will be simulation of the
equivalent bus cycle by the BIM. Fifo_out is connected to the
ARM through an I/O port and data transmission is performed by
an interrupt mechanism. The processor clock frequency is 33
MHz, and the DDWT clock frequency is 10 MHz.
In order to identify possible deadlocks and to evaluate the impact
of DWT IP integration, we parameterized the software execution
with a stochastic model.

processingProcessor

 IP) toprocessor (from sransactionEmission t
=R

This ratio that varies from 0 to 100% allows us to identify and to
explore critical situations. Typically, the DDWT IP -that is
supposed to work intensively may accuse waiting delays when
few data are sent from the processor and vice-versa. Too low
sizing of fifos has important effect -on both IP and the whole
system execution, in terms of resources access. Figures 7 and 8
show the waiting delays – obtained by co-simulation, relative to
empty or full fifos states (fifo-in, fifo-out) and for size ranging
from 8 to 256 points. First, we observe that for fifo_in = 128 the
IP waiting delay due to input data is reduced significantly for all
values of parameter R.

II - 527

➡ ➡

S_1
S_3 inter. CU

Se
am

le
ss

C
VE

 ISS
(ARM7)

 BIM
(ARM7)

Ps

Pr

sched. Pp DDWT IP

Fifo_In

Fifo_Out

Fig. 5: Cycle Accurate IP integration with Seamless-CVE tool

Second, simulation results shows that –for different fifo-out sizes
and R values, there is always waiting delay due to output fifo
(see Fig. 8). Execution rates difference between the ARM7 and
the DDWT IP is the origin of this overhead. In our experiments,
co-simulation has allowed: (i) to determine the size, threshold
min and threshold max values of fifos, and the maximum
processor load for this application (ii) the verification of
functional and cycle accurate DDWT IP integration.
Co-simulation speed depends on both the hw simulator
performance and the sw simulator performance. In our design,
the slow co-simulation speed for the CA level (fig 6) is due
mainly to the cycle by cycle coordination between the ISS and
the HDL simulator. Noting that the instruction fetch cycles have
not been simulated.

Table 1. Multilevel Simulation time

Image size (octets)Abstraction Level

16385 100 K 500 K 1 M

Untimed Functional (UT). 0.1 s 0.6 s 2.9 s 5.8 s

Timed Functional (TF) 2.4 s 15.0 s 70 s 146 s

Bus cycle Accurate (BCA) 52.7 s 312 s 1581 s 3192 s

Cycle Accurate CA. 1H23:2 3H23 10H50 17H20

0
10000
20000
30000
40000
50000
60000
70000

Sim ulation
T im e

(seconds)

16385 100 K 500 K 1 M

Im age Size

CA
BCA
TF
UT

Fig. 6: Simulation time

4. CONCLUSIONS
In this paper, we described a multi-level system modeling and
simulation flow for SoCs that allows incorporating IP cores at
different levels of abstraction. This flow allows the use of a set of
design and simulation techniques for system verification and
Hw/Sw co-simulation. Integration overhead and timing features
relative to IP core execution constraints can be simulated and
reduced by optimizing some design parameters.. Multi
abstraction levels are also a key solution for the simulation speed
bottleneck occurring in complex systems. In our case study, even
though it is not so complex, the simulation speed is reduced by at
least a factor of twenty from one level of abstraction to another
(see Table 1).

8
16

32
64

128
256

R
=3

0%

R
=4

0%

R
=5

0%

R
=6

0%

R
=7

0%

R
=8

0%

R
=9

0%0

5000

10000

15000

20000

25000

30000

35000

40000

45000

IP
waiting delay

(ms)

Fifo-in Size

RATIO

Fig. 7: IP waiting delay due to fifo-in sizing (Ratio)

8
16

32
64

12 8
25 6

R
=3

0% R
=5

0% R
=7

0% R
=8

0% R
=9

0%

0

10 00

20 00

30 00

40 00

50 00

60 00

70 00

80 00

90 00

10 000

IP W a itin g
D e la y
(m s)

F ifo -o u t s ize

R a tio

Fig. 8: IP waiting delay due to fifo-out sizing (Ratio)

5. REFERENCES
[1] H. Chang, L. Cooke, al., ''Surviving the SOC revolution, A

guide to Platform-Based Design", ", KAP publishers, 1999
[2] M Keating, P Bricaud, "Reuse Methodology Manual for

System-On-A-Chip Designs" KAP, Boston, 1998
[3] Virtual Socket Interface Alliance, http://www.vsi.org
[4] Open SystemC Initiative, http://www.osci.org
[5] Sonics Inc, "Sonics µnetworks Technical Overview", June 2000
[6] K. Van Rompaey, D. Verkest, al. "CoWare A design

environment for heterogeneous hw/sw systems", in Proc of
EURODAC, 1996.

[7] Cadence VCC 2001,
http://www.cadence.com/datasheets/vcc.html.

[8] Cocentric System Studio, http://www.synopsys.com/
[9] Seamless CVE , http://www.mentor.com/seamless/
[10] G. Cyr, al., "Synthesis of communication Interfaces for SOC

using VSIA recommendation", in Proc. of DATE, 2001,
[11] G. Nicolescu, S. Yoo, and A. A. Jerraya "Mixed-Level

Cosimulation for Fine Gradual Refinement of Communication
in SoC Design" Proc. DATE 2001.

[12] Stephen Edwards, Luciano Lavagno, al. "Design of Embedded
Systems: Formal Models, Validation, and Synthesis" Proc. of
the IEEE , 1997

[13] R. Gupta, "Co-Synthesis of Hardware ond Software for Digital
Embedded Stystems", KAP, 1995.

[14] P. Coussy, A. Baganne, E. Martin, " A Design Methodology
For IP Integration ", in Proc. of ISCAS 02, Phoenix. USA.

[15] J. Staunstrup, W. Wolf "Hardware/software Co-design
Principles and practice", Kluwer academic publishers 1997.

[16] I. Daubechies, W. Sweldens "Factoring Wavelet Transforms
into Lifting Steps", in Jour. of Fourier Analysis and App., Vol
4, Nr 3, 1999

II - 528

➡ ➠

