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ABSTRACT 
 
This paper explores alternatives for implementing multiplierless 
implementation of linear-phase finite-impulse response (FIR) 
digital filters by converting coefficient values to minimum 
signed powers-of-two (MNSPT) or canonic signed digit (CSD) 
forms. Our observation is that if one is willing to accept some 
deviations in the given specifications, the required number of 
nonzero bits becomes quite low, making multiplierless 
implementation feasible. Alternatively, one may start with a 
filter that exceeds the given criteria, at the expense of a slightly 
increased filter order, and then quantize the coefficient values 
into the desired representation forms such that the given overall 
criteria are still met. In many cases, this results in an overall 
implementation where the total number of nonzero bits is 
significantly less than that obtained by using the initial design. A 
fairly exhaustive investigation suggests that less than three 
nonzero bits per multiplier are quite sufficient along with a 
reduction in number of arithmetic operations and an attendant 
increase in the rate of the data throughput. 

 
1. INTRODUCTION 

 
In a multiplierless implementation of a digital filter, generally 
minimum number of signed powers-of-two (MNSPT) or canonic 
signed digits (CSD) representations of binary digits are 
extensively used for representing the coefficient values. An 
MNSPT representation of a coefficient value is given by 

∑ −

i

t
i

ia ,2 where each ai is either 1 or –1 and ti is a positive or 

negative integer. For instance, 1.93359375 can be realized as 
2−2−4−2−8. In this example case, the multiplication is achieved 
not by a nine-bit multiplier, but with aid of three bit shifts and 
two subtracts.  

For finite-impulse response (FIR) digital filters, the major 
approach for multiplierless implementations comprises of 
optimizing [5−8, 11] the filter coefficient values such that the 
resulting filter meets the given criteria with its coefficients 
values being expressible in MNSPT or CSD forms. For filter 
design being basically a problem of approximation due to the 
tolerances in specifications, optimization methods are used to 
find the optimal transfer functions under the given constraints. 
While optimization methods are considered to be quite 
satisfactory, one may not assure or guarantee that the optimal 
solution will always be found under the given constraints. The 
solution can be unsatisfactory, for example, in terms of the filter 

order, the given word-length of the multipliers, or the specified 
number of shifts and adds (in the case of multiplierless 
implementation), or some combination of them. In such cases, 
some parameters or characteristics of the filter have to be relaxed 
to obtain an acceptable design. 

Another approach is based on combining simple sub-filters 
[1, 2, 12] that can be implemented using only a few shifts and 
adds and/or subtracts. Although quite attractive, to make this 
approach as a viable one, a large database of such filters will 
have to be generated and some optimization method will have to 
be evolved in order to combine some of them to meet the desired 
specifications. 

In [3, 4] the feasibility of implementing multiplierless 
recursive digital filters based on low-sensitivity structures has 
been demonstrated. Allowing a marginally insignificant 
deviation in the specifications, a gross reduction in the number 
of nonzero bits (effectively the number of shifts and adds and/or 
subtracts required) has been seen to be feasible without any 
increase in the filter order. 

This paper investigates the feasibility of implementing 
multiplierless linear-phase direct-form FIR filters by allowing 
some deviations in the given specifications that would results in 
some increase in the filter length. We observe that a similar 
approach for multiplierless implementations is feasible where the 
increase in the filter length is offset by a gross reduction in the 
total number of nonzero bits and the number of arithmetic 
operations with an attendant increase in the data throughput. 

At this stage we digress to point out that a filter being 
implemented is a sub-system of some system that the system 
designer wants to implement and the requirement is not exactly 
rigid but generally flexible within limits. The considerations are 
that of the performance and the cost (or the performance vis-a-
vis the cost), and not necessarily the strict adherence to the initial 
specifications issued; most likely, a good amount of the design 
margin was included in the goal system. As such, the filter 
designer may find out all the options when consulting with the 
system designer. 

  
2. IMPLEMENTATION 

 
We consider the typical direct form structure [9, 10] for the 
linear-phase FIR filter system with transfer function given by 
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Both the symmetry (with the plus sign) and anti-symmetry (with 
the minus sign) conditions are incorporated in Eq. (2). The 
number of coefficients is L/2 or (L+1)/2 depending on the filter 
length is even or odd, respectively1. 

The steps leading to multiplierless implementation are 
carried out as follows: 
(a) Initially, the filter is designed to meet the given 

specifications using the Remez multiple exchange 
algorithm described in [9, 10] and implemented in the 
Signal Processing Toolbox of Matlab. 

(b) Performances, in terms of the degradations of the peak-to-
peak passband ripple, expressed as Ap decibels, and the 
minimum stopband attenuation As in decibels, with a 
gradual reduction (up to a certain level) in the number of 
bits after quantization of the coefficient values is noted. 
Also, the total number of nonzero bits after quantizing 
coefficient values to MNSPT or CSD forms is noted. 

(c) As mentioned earlier, there are parameters such as the filter 
length L, the passband ripple Ap, the stopband attenuation 
As, the passband edge ωp , and the stopband edge ωs, for 
which certain deviations may be allowed. Noting the pattern 
of degradations as in step (b) above one may allow certain 
deviations in the specifications and design a fresh filter with 
the same algorithm. For example, our observation shows 
that the rate of the degradation of stopband attenuation in 
the direct form realization is much more than the rate of that 
in the passband ripple. Hence, the specifications for the 
fresh filter the stopband attenuation should be much higher 
than that for the initial specifications. 

(d) As in step (b), the number of nonzero bits to meet the initial 
specification is noted. 

We note that that the total number of nonzero bits is 
considerably lower than that for the initial design and the results 
are better, as will be seen in the following section.  
 

3. RESULTS AND DISCUSSIONS 
 

Table 1 illustrates the results of the implementations for many 
representatives of linear-phase FIR filter designs. In this table, 
Nm, Nb, and Nbm indicate the number of coefficients, the total 
number of nonzero bits for the multipliers, and the average 
number of nonzero bits per multiplier coefficient, respectively. 
Figures 1, 2, 3, and 4 show the amplitude characteristics of some 
of the filters of Table 1. 

For the purpose of elaborating the contents of Table 1, we 
consider in more details, the case of Filter 1 with the following 
three stop-band attenuation levels: 40 dB, 39 dB, and 33 dB. 
First, the filter designed with the revised specifications is 
compared with that meeting the initial criteria in the 40-dB 
attenuation case (the first row for Filter 1 performance results). 
In this case, it is seen that the first one reduces Nb from 47 to 29 
compared with the second one at the expense of increasing the 
filter length by three. (32 compared with 29). In contrast in the 
39-dB and 37-dB cases, the opposite is true, that is, the 
requirements for Nb are much less in for degraded performances 
of the initial designs than for those of the revised specifications 
that are associated with marginal decreases in the filter lengths. 
The choices are obvious (the values of L, Nm, and Nb are shown 

                                                 
1 Strictly speaking, for a linear-phase FIR filter of odd length L and 
possessing an anti-symmetric impulse response, the central impulse 
response value is zero, thereby reducing the number of multipliers by 
one. 

in bold and italicized letters for the chosen ones) and confirm our 
earlier statements. Similar observations can be made for all the 
filter examples in Table 1. 

Further observation is made in respect of a substantial 
reduction in arithmetic operations like number of bit shifts and 
number of additions. The reduction can be computed as (L1− L2+ 
Nb1− Nb2− Nm1+ Nm2) additions and (Nb1− Nb2) bit shifts, where 
we have considered a case similar to the case of 40 dB stopband 
attenuation of Filter 1 (with subscript “1” refers to the initial 
design case and subscript “2” refers to the revised specification 
design case; we also mention that N nonzero bits imply (N−1) 
additions). This reduction in arithmetic operations is quite 
substantial in most cases and would provide an increase in 
throughput rate of data. We also observe that with increasing 
filter length, the reduction in arithmetic operations (for example, 
see the cases pertaining to Filter 4) increases.  
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Fig. 1. Amplitude responses of Filter 1 for the initial design 
(dashed line) and the alternative feasible design (solid line) that 
requires twenty-nine nonzero bits. 
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Fig. 2. Amplitude responses of Filter 5 (bandpass) for the initial 
design (dashed line) and the alternative feasible design (solid 
line) that requires fifty-three nonzero bits. 
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Table 1.    Results of some representative FIR filters indicating the options. 

 
Feasibility from 

initial design 
Alternatives feasible 
from revised design 

Revised design 
values of 

 
Filter 

specifications  
L 

 
Nm 

 
Nb 

 
Nbm 

 
Ap dB 

 
As dB 

 
L 

 
Nm 

 
Nb 

 
Nbm 

 
Ap dB 

 
As dB 

 
Ap dB 

 
As dB 

Filter 1: Low-pass: 
ωp = 0.15π, ωs = 0.3π,  
and Ap = 0.2 dB as  
well as As = 40 dB, 39 
dB, and 37 dB 

29 
" 
" 

 
 

15 
" 
" 
 
 

47 
37 
31 
 

3.13 
2.46 
2.07 
 
 

0.19 
0.205 
0.195 
 
 

40.35 
39.9 
37.0 
 
 

32 
28 
27 
 
 

16
14 
14 
 
 

29 
49 
51 
 
 

1.81 
3.5 
3.64 
 
 

0.16 
0.2 
0.192 
 
 

41.2 
39.32 
37.3 
 
 

0.15 
0.21 
0.2 

 

45.0 
39.0 
37.0 
 

Filter 2: Low-pass: 
ωp = 0.2π, ωs = 0.3π, 
and Ap = 0.5 dB as 
well as As = 50 dB, 39 
dB, and 35 dB 

42 
" 
" 
 
 

21 
" 
" 
 
 

78 
41 
34 
 
 

3.71 
1.95 
1.62 
 
 

0.42 
0.485 
0.48 
 
 

51.0 
39.5 
35.82 
 
 

44 
36 
31 
 

 

22 
18 
16 
 

 

59 
65 
41 
 
 

2.68 
3.61 
2.56 
 
 

0.49 
0.456 
0.49 
 
 

52.1 
39.4 
35.5 
 
 

0.5 
0.5 
0.5 

 
 

55.0 
39.0 
35.0 

 
 

Filter 3: Low-pass: 
ωp = 0.1π, ωs = 0.2π, 
and Ap = 0.3 dB as 
well as As = 60 dB, 50 
dB, and 49 dB 

54 
" 
" 
 
 

27 
" 
" 
 

 

107 
72 
63 
 

3.96 
2.67 
2.33 
 
 

0.275 
0.275 
0.288 
 
 

60.3 
53.4 
49.88 
 
 

62 
47 

" 
 

 

31 
24 
" 
 

 

83 
103 

" 
 

 

2.68 
4.29 

" 
 

 

0.272 
0.297 

" 
 

 

62.25 
50.2 

" 
 

 

0.3 
0.3 
" 
 

 

75.0 
50.0 

" 
 

 
Filter 4: Low-pass: 
ωp = 0.1π, ωs = 0.15π, 
and Ap = 0.1 dB as 
well as As = 50 dB and 
45 dB 

104 
" 
 
 

52 
" 
 
 

177 
108 

 
 

3.40 
2.07 
 

 

0.093 
0.098 
 
 

50.5 
45.2 

 
 

113
92 

 
 

57 
46 

 
 

135
176 
 
 

2.36
3.82 

 
 

0.095 
0.099 

 
 

52.01 
45.1 

 
 

0.09 
0.1 

 
 

60.0 
50.0 

 

Filter 5: Band-pass: 
ωp1 = 0.2π, ωp2 = 0.3π, 
ωs1 = 0.1π, ωs2 = 0.4π, 
and Ap = 0.5 dB, as 
well as As = 50 dB, 48 
dB and 45 dB 

42 
" 
" 

21 
" 
" 

71 
55 
44 

3.38 
2.62 
2.09 

0.496 
0.498 
0.499 

50.7 
48.78 
45.03 

49 
41 
40 

25 
22 
20 

53 
70 
72 

2.12 
3.18 
3.6 

0.45 
0.5 
0.5 

50.9 
48.1 
45.2 

0.5 
0.5 
0.5 

60.0 
48.0 
45.0 

Absolute error 
less than 

Absolute error 
less than 

Absolute error 
(Design value) 

 
 
Filter 6: Hilbert 
transformer: ωp1 = 

0.1π,  ωp2 = 0.9π, 
ωs1 = 0,  ωs2 = π. 

 
 
 

31 
" 

 
 
 

8 
" 

 
 
 

36 
21 

 
 
 
4.5 
2.62 

 
0.00278 

0.006 

 
 
 
39 
29 

 
 
 
10 
7 

 
 
 
25 
27 

 
 
 
2.5 
3.86 

 
0.00265 
0.0055 

 
0.000683 
0.00545 

Filter 7: Full-band 
differentiator: 

32 16 66 4.12 0.00604 36 18 38 2.11 0.00601 0.005065 

Filter 8: Partial-band 
differentiator: 
magnitude is 0.4π at 
ωp = 0.4π, and ωs = 
0.45π. 
 

 
51 
" 

 
26 
" 

 
116 
53 

 
4.46 
2.04 

 
0.0234 
0.024 

 
57 
… 

 
29 
… 

 
77 
… 

 
2.66 
… 

 
0.019 
…. 

 
0.0173 
…… 

 
 
Note:  For an odd length Hilbert transformer, every alternate multipliers are zero-valued. 
 
 
 
 
 

II - 519

➡ ➡



 
 

  0   .25π   .5π  .75π   π  
0

0.2

0.4

0.6

0.8

1
1.1

M
ag

ni
tu

de

frequency

  .1π    .3π    .5π    .7π    .9π
−3

−1.5

0

1.5

3

A
bs

ol
ut

e 
er

ro
r 

x 
10

3

frequency  
 
Fig. 3. Amplitude responses of the Filter 6 (Hilbert transformer) 
for the initial design (dashed line) and the alternative feasible 
design (solid line) that requires twenty-five nonzero bits. 
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Fig. 4. Amplitude responses of the Filter 7 (full band 
differentiator) for the initial design (dashed line) and the 
alternative feasible design (solid line) that requires thirty-eight 
nonzero bits. 
 

4. CONCLUSIONS 
 
This paper has shown that the multiplierless implementation of 
FIR filters, using the approach outlined above  and  evidenced 
over a large spectrum of FIR filters, is a feasible and attractive 
proposition. One can either accept deviations in the passband 
and stopband tolerance specifications compared with the initial 
infinite-precision design or one can start with a design with 
stricter specifications followed by the coefficient values being 
quantized to a level such that the given overall criteria are met. 
In both cases, some increase in the filter length is involved that is 
offset by a gross reduction in the total number of nonzero bits. In 
addition, there is a substantial reduction in the total number of 

arithmetic operations like number of additions and bit shifts, 
leading to an increase in the data throughput. Our analysis 
indicates that utilizing this approach, multiplierless realizations 
with less than three nonzero bits per multiplier can be achieved 
at the expense of about ten percent increase in the filter length. 
Furthermore, it has been seen that there is some reduction in the 
leakage of the energy through the stopband. Future work is 
devoted to applying optimization techniques for further reducing 
the number of nonzero bits. 
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