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ABSTRACT

In this paper, we consider the stability robustness prob-
lem of a digital filter implemented with finite word
length (FWL). Based on the pole modulus sensitivi-
ties, a new stability robustness related measure is de-
rived. This measure is less conservative than that de-
rived with the classical pole sensitivity measure. It is
shown that the normal realizations are a set of opti-
mal realizations that maximize this proposed stability
robustness measure. The stability performance of the
generalized direct-form II transposed (DFIIt) structure
is analysed using this measure. The optimal general-
ized DFIIt structure problem is defined as to identify
those DFIIt structures that maximize the proposed sta-
bility measure, which is solved using exhaustive search-
ing method. Numerical examples are given to show the
design procedure.

1. INTRODUCTION

Finite Word Length (FWL) effects have been consid-
ered as one of the most important issues in actual im-
plementation of digital filters. In fact, the actual per-
formance of a given filter may be greatly degraded due
to the FWL errors. See, e.g., [1]. It is well known
that any linear system can be represented with differ-
ent structures such as state-space realizations. These
structures are theoretically equivalent since they yield
the same system. The important point is that they
have different numerical properties. The optimal struc-
ture problem is to identify those realizations that min-
imize the degradation of the filter performance due to
the FWL effects.

A stable filter may become unstable when imple-
mented with FWL. The stability issue in the FWL en-
vironment is usually investigated in terms of pole sen-
sitivity measures. See, e.g., [3]. Recently, pole sensi-
tivity based stability measures were derived for closed-
loop systems [4]-[6]. In [5], a pole modulus sensitivity
based stability measure was proposed and it is shown
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that this measure is better than those derived using the
pole sensitivities.

The main objective in this paper is two-fold. The
first one is to derive a pole modulus sensitivity based
stability measure for digital filters and to study the
corresponding optimal realization problem. The op-
timal structures are usually fully parametrized, which
increases the implementation complexity. From a prac-
tical point of view, it is desired to implement the digital
filter with such a realization that not only has a large
stability robustness measure but also possesses as many
trivial parameters.! Recently, the direct-form IT trans-
posed (DFTTt) structures have been studied by several
authors [7]-[10]. A generalized DFIIt structure in delta-
operator was studied in [10], where it is shown that
such a structure, though simple, has very nice numeri-
cal properties. Motivated by [10], a more general DFTTt
structure was derived based on the so-called polyno-
mial operator approach in [11]. The second objective
in this paper is to analyse the stability behavior of this
generalized DFIIt structure with the proposed stability
measure and then find the optimal DFIIt structures in
terms of maximizing this measure.

2. CLASSICAL POLE SENSITIVITY BASED
STABILITY MEASURE

Let H(z) be the transfer function of a discrete-time lin-
ear time-invariant filter of order N, and let (A4, B, C,d)
be a state space realization of this filter, that is

z(t+1) =
yt) =

with H(z) =d+ C(z2I — A)~'B. It is well known that
the realizations (A, B, C, d) satisfying the above equa-
tion are not unique, they form a realization set, de-
noted by Sg. In fact, (I'"'AT, T~'B, CT, d) is also
a realization of H(z) for any real nonsingular 7T

Ax(t) + Bu(t)
Cz(t) + du(t), (1)

1Here, trivial parameters mean those that are 0,=+1, which
can be implemented exactly and produce no rounding errors.
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When (1) is implemented with finite precision, the
well designed stable filter may become unstable since
some of the eigenvalues of the FWL implemented A-
matrix may go outside the unit circle. Let Af,; =
A+ AA be the FWL implemented A-matrix with AA =
{Aayy,} the perturbation matrix. Denoting

(AA) max |Aayy], (2)
one has the following classical stability robustness prob-
lem:

to(A) 2 inf{u(AA): A+ AA is unstable}. (3)
It is very hard to compute po(A). This is still an open
problem.

Denote A(M) the eigenvalue set of a matrix M, then
the poles { A} of H(z) are the eigenvalues of A, {A\;} =
A(A). The deviation of each pole is proportional to
the pole sensitivity. In [4], under the assumption that
A matrix is fully parametrized the following stability
related measure was adopted for closed loop control
systems

S
/*Ll(A)_m]:n N\/\I/_k

which can be considered as a lower bound of po(A4),
where

(4)

A 8)\k
2% @
with ||.||F denoting the Frobenius norm:

m,n

M7= M3, 5)

i,5=1

= tr(MM™) = tr(M" M),

where tr(.) denotes the trace operation for any matrix
M e Ccmxm,

Unlike pg, g1 can be computed easily with the pole
sensitivity evaluated using the following well known re-
sult (see, e.g., [1], [2]):

Theorem 1 : Let {Ax} = A(A) and zj, be a right eigen-
vector corresponding to Ag. Denote X = (z1 -+

- xn). Assume that A has a full set of linearly
independent eigenvectors and denote Y & xH -
(y1 -+ Yk -+ yn) with H denoting the transpose-
conjugate operator, then

Oy

(ﬁ)T = zryp, (6)

where 7 denotes the transpose operator.
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Let (A, B,C) be obtained from the initial realiza-
tion (Ag, By, Co) € Sy with similarity transformation
matrix 7" and z9 be a right eigenvector and y?, the
reciprocal left eigenvector, of Ag, corresponding to A,
then

P Tﬁlmg, Yk = TTy,? (7)

are a right eigenvector and the reciprocal left eigenvec-
tor of A, respectively. Therefore, different realizations,
though having the same poles, have different pole sensi-
tivity measures and hence different stability measures
p1. From a stability point of view, it is desired to
implement the filter using a realization that has the
maximal 1. Tt was shown (see, e.g., [1], [2]) that ¥y
is bounded from below by one and that this bound is
achieved for all £ = 1,2, ..., NV if and only if A is normal
(i.e., AAT = AT A), which is equivalently to

Yk = llzal [ 2. (8)

That means that all normal realizations achieve the
maximal 7. In [3], an analytical expression was given
for the similarity transformations 1" that transform Ag
to normal A =T 1 A4,T.

3. A NEW STABILITY RELATED MEASURE
AND MINIMIZATION

With a first order approximation, the deviation of the
modulus of Ay can be evaluated with

which leads to

a‘)‘k| ‘2

[A[AR]l <N ZI AA).

Clearly, the kth pole is inside the unit circle if

O|A
NS o < 1,

)

Therefore, we have the following lower bound of g

a1 — A
where
a\)\k| Ikl \7 9 k]




and it can be shown that

o 1 AN

Remark: It is easy to see that for a given realization
®, < Wy and hence pz(A) > pi(A), which means
t2(A) is less conservative than g (A).

Let Mg = AL+ jAL, o = o +j2t and y, = ¥ +5yL.
With some manipulations, one can show

(3\)\k|
0A

= el R T+ 2
Qg roi JAN
AL zhyn” — 2y 1 = Qre (12)

It follows from (7) that Qr = T'QT, where QY is
given by (12) but corresponding to 9 and y.
It turns out that

& = tr(P'QUPQY), P=TT7. (13)

Like g1, po is a function of T or equivalently of P.
Therefore, we have the following optimal stability real-
ization problem:

: 14
max iz (14)

First of all, let us consider the following optimal
pole sensitivity minimization problem.

min . 15
P=TT7 >0 k (15)

s : o 0%y
The necessary condition for solutions to (15) is F7 =

0. Noting azggl = —M‘l%M_l, where the non-

singular matrix M is a function of variable w, it can be
shown with some manipulations that

od _ - _
S5 = QP - PIQRPQY P (16)

Based on the above, we can present one of our main
results to be given in Theorem 2. To prove this theo-
rem, we need the following technical lemma:

Lemma 1 : Let X be a right eigenvector matrix of 4 €
RNXN and Y = X, the reciprocal left eigenvector
matrix. If A\ is complex, then the corresponding x) =
x, + jzi and yi = y§ + jy. satisfy

rT . r 3T 1
LT Y =Tk Y =

S =

(17)

iy =ailyp =
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Proof: From X™Y = I, one has :z:?fyk = 1, which
leads to

i +al v =
oy -2y = 0 (18)
Since A is real and Ay is complex, there exists kg #

k such that zy, = x} = x}, — jzi. Tt then follows from
a:?oyk = 0 that

o yn - al = 0
oy ral vk = 0 (19)
The lemma follows from (18) and (19). [ |

Now, we can present our main result.

Theorem 2 : The normal realizations are solutions to
(15), for which

. 1
qpk{ l
2

Proof: First of all, let us take a normal realization as
the initial realization. According to (8), we have y) =
||29||z22%. In order to avoid complicated notations, in
the proof we drop the superscript “0”, which indicates
the initial realization.

If Ay is real, there exists x; which is also real. Then

with (11) we have Q) = ‘i—ilﬂxkﬂgzxkxg Clearly,

QLQT = kTQk, which means %%‘"P:] = 0, that is,
the normal realizations are solutions to (15). And &) =
tr(QrQY) = 1.

Tf Ak is complex, it follows from (12), (17) and y,, =

||z || 2o, that

Qr =

if Ap is real

if Ap is complex (20)

Vel e [P 2k + @ |

Ay — aray )
and

1 .
w72y, = o', = 5o}, 237 a) =0,

from which one obtains with direct computation
1 o
T T - T T
QQk = QL Qx = 5llzell” [wrai” + ziat)

and ®;, = % The former implies %DHP:T =0, that is,

the normal realizations are solutions to (15). ]

Therefore, normal realizations are solutions to (14).
It should be pointed out that the optimal realizations
are usually fully parametrized. In the next section, we
will analyse the stability behavior of the generalized
direct-form II transposed structure that was proposed
in [7]-[11].




4. STABILITY ANALYSIS OF THE
GENERALIZED DFIIT STRUCTURE

The generalized DFIIt structure with polynomial oper-
ators was studied in [11], where the kth shift operator
in the traditional DFIIt structure was replaced by

AA with {Ay} to achieve the l3-scaling to avoid over-

Z=n
flow oscillation and v taking values from {-—1,0,1}.

This generalized DFITt is the 6DFITt structure in [10]
when v, = 1, Vk.

It can be shown that the equivalent state-space re-
alization of this structure is sparse and the elements
of the A-matrix, denoted as A,, are all zeros except
Ay(1,1) =y —Arag and A,(m, 1) = —Ajan,, Ay(m,
m+1)=Apq1, Ap(m,m) =, form=2,--- | N.

Noting that {vx} can be implemented exactly, the
poles are affected by FWL errors of the parameters
{ak, Ax}. So, the corresponding stability measure is
given by

1T — Akl
ol
ARVETSS ST eI

= 1
to = mm ] (21)

e

=

Ok |
Oam

and M. Denote ey, as the kth elementary (column)
Vector Whose elements are all zero except the kth one
which is 1. It is easy to see that

To evaluate the above us, one has to compute

OMn 7 O

M = maA 61A1 TYL:],"',N
m = €,— 18A €my TYL—2N

aAk aAk

_ = — cee —— 29
oA, (ar OéN)aApel (22)

For a given digital filter and a fixed set {vx} with
v € {—1,0,1}, one can compute {ay} and hence the
corresponding lp-scaling factors {Ag} with the proce-
dure in [11]. With gjxk, evaluated with (6), one can
compute ps using (21). The interesting problem is to
maximize po with respect to {~x}:

ma 23
{“/A)}(NQ 23)

This problem can be solved using exhaustive searching
method.

5. NUMERICAL EXAMPLES AND SIMULATIONS

Several numerical examples and simulations are per-
formed to illustrate the design procedure. Due to the
limited space, they will be presented on the conference.
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