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ABSTRACT

Under certain conditions an odd-order low-pass or high-pass
recursive digital filter can be decomposed into a sum of two all-
pass filters with real coefficients. This decomposition has the
atractive property that there exist for its implementation
structures where both the number of delays and the number of
multipliers are equal to the filter order, thereby making the
overal implementation very efficient. This paper develops some
all-pass filter structures that combine this advantage with those
of some low-sengitivity substitution and transformation blocks
for replacing unit delay elements. These combinations enable
one to generate multiplierless implementations for odd-order
recursive digital filters and even- order band-pass and band-stop
filters. Utilizing these structures along with alowing some
marginaly insignificant deviations in the specifications such as
in the pass-band and stop-band tolerances, the total number of
nonzero bits for multiplier coefficients, i.e.,, those of shifts and
adds and/or subtracts, becomes quite small, making this
approach very attractive. Alternatively, the overall filter can be
designed with marginaly dtricter tolerances than the desired
specifications in such a manner that it meets the criteria after
guantizing the filter coefficients.

1. INTRODUCTION

In multiplierless implementations of digital filters, the minimum
number of signed powers of two (MNSPT) or canonic signed
digits (CSD) representations of binary digits are extensively used
for representing the multiplier coefficient values. An MNSPT

representation of a coefficient valueis given by z 3 274 where
i

each g iseither 1 or —1 and t; isa positive or negative integer and
the multiplication can be performed with the aid of bit shifts and
adds and/or subtracts.

In the case of IIR filters, the structures such as a sum of two
all-pass filters, including attractive lattice wave digita (LWD)
filters, coupled with optimization methods have shown to yield
good results for multiplierless implementations. These sums of
all-pass filters are characterized by the attractive property that
there exist structures with the number of required multipliers
being equal to the filter order, thereby decreasing the number of
multipliers compared with conventional realization forms. (We
mention that due to paucity of space we are unableto list all the
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rdevant and related references. However, they can be traced
fromthelisted references).

Another interesting approach is the one that stems from
designing an odd-order eliptic minimal Q-factor analog filter
(EMQF) that has some specia properties. When using the
bilinear transformation, these filters can be implemented as a
sum of two all-pass filters [5] aong with an expanded design
parameters space such as the pass-band (stop-band) tolerances,
the edges, and the filter order.

In [1-4], the feasibility of implementing multiplierless
recursive digital filters based on low-sensitivity structures has
been demonstrated. It has been observed to be beneficial to
develop the al-pass filter structures combining the advantages of
the minimum number of multipliers and delays and the low pass-
band sensitivity of the all-pass structure along with the
advantages of those described in [1-4]. This combination would
result in a gross reduction in the total number of nonzero bits
(effectively the number of shifts and adds and/or subtracts
required). On one hand, the number of multipliers would be less
than in the case of the sum of two all-pass filters and, on the
other hand, the number of nonzero bits per multiplier would be
less due to low values of the modified coefficients. Of course,
the transfer function to berealized would have to be of odd order
and should fulfill the necessary conditions so as to be
decomposable into a sum of the two all-pass filters [7].
Furthermore, by applying suitable transformations, realizations
of multiplierless band-pass and band-stop filters become
feasible. The next section demonstrates that such an approach is
realizable.

2. PROPOSED STRUCTURESFOR THE
IMPLEMENTATION

If the conditions given in [7] are fulfilled, then an odd-order
transfer function H(2) can be decomposed as

H() = (Ho(@ +Hi(@) (1)

where Hg(z) and Hq(2) are all-pass transfer functions with

their orders differing by one. This necessitates the requirement
of implementing first-order and second-order all-pass filter
structures that could be cascaded as required for implementing
the two channels. Also, in the cases of band-pass filters (BPFs)
and band-stop filters (BSFs), there would be a need of using
second- and fourth-order all-pass filter sections when
transforming an odd-order low-pass filter (LPF) to an even-order
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BPFs or BSFs to gain the advantage of reducing the number of
multipliers.

In the cases of LPFs it is obvious that an Nth-order eliptic
filter would require N multipliers compared with approximately
(3N-1)/2 muiltipliers required by conventional cascade-form
structures as structures exist for implementing all-pass sections
with minimum number of multipliers and delays. Similarly, if an
Nth-order elliptic LPF with N odd is transformed into a 2Nth-
order BPF or BSF implemented as a cascade of second-order
sections, then one would require 3N multipliers. This figure
would reduce to (5N-1)/2 multipliers in the case of substitution
of unit delay by transformation block [4]. It should be mentioned
a this stage that one would require only 2N multipliers (the
minimum number of multipliers among the three cases) if one
decomposes the prototype LPF into a sum of two all-pass filters
first, followed by the substitution of unit delay by the
transformation block.

The proposed first-order (second-order) and second-order
(fourth-order) al-pass sections that combines the above-
mentioned advantages are depicted in Figs. 3 and 4, respectively.
We mention that the orders mentioned within parentheses are for
transforming the prototype LPF to a BPF/BSF. The
transformation blocks u™ implemented as shown in Figs. 1 and 2
are given by

ut=zt/a-k (&)
and

. ky(z2-azt)
1-a(l-kk)z ™ —kjkz 2

@

for implementing low-pass (high-pass) filters and for
transforming a LPF prototype to BPF or BSF, respectively.
Here, k; = -1 for BPFs and k; = 1 for BSFs, and k is a number
that can be represented by one bit or at the most two bits in the
MNSPT form. Its absolute value is either equal to or less than
unity. For example, k can be equa to 1, +0.5,etc. For most
cases, k = £1 (or one bit) will suffice. Furthermore, a is given
by

a = cod|(w, +wy/2)/cod](w, ~ /2] = coswy, (3)

where wg,w;, w,, and wg are for BPFs and BSFs the center

frequency, and the lower and upper passband edges, and the
sampling frequency, respectively in the cases of BPF and BSF.

v

Fig. 1. Transformation block u * for LPFs.
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Fig. 2. Transformation block u™ for BPFS/BSFs.
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Fig. 3. Thefirst-order (second-order) alpass structure.
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Fig. 4. The second-order (fourth-order) allpass structure.

Fig. 3 shows the redlization the following first order alpass
transfer function (or transformation to 2™-order BPF/BSF):
qz+1

Hig (2) = 4
(= )
and the relation of the modified coefficient is given by
aym =k+ay. ®)

In Fig. 4 therealization of the following second-order allpass
transfer function (or transformation to a4™-order BPF/BSF
section):

az 22 + a12+1

Hong (2) = 252272 (6)
z°+az+ay

is shown and the modified coefficients are given by
ayy, =2k+a; and a,y, =k? +ka, +ay,. @

3. RESULTSAND DISCUSSIONS

Quite a few odd-order dliptic filters were realized as a sum of
two all-pass filters with the aid of both the unmodified [6] and
the modified structures as depicted in Figs. 3 and 4. Also, some
even order BPFs and BSFs were redlized by transforming odd
order LPF prototypes to the desired transfer functions using the
schemes of Figures 2, 3, and 4. Table 1 illustrates the
implementation results for some of these filters. This table shows
the pass-band and stop-band and tolerances and the required
number of nonzero bits along with the type of structure used.
Figure 5 shows the amplitude responses of Filter 2 of Table 1 in
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Table 1. Requirement of nonzero bits for some filtersrealized as sum of allpass structures

Details of performance achieved

Filter Characteristics Number of Tolerances achieved
nonzero
bits Pass-band Stop-band Comments
(a 26 0.6dB 50.0dB Unmodified all-pass structures rae used; design is
Filter 1: L ow-pass; 5th-order: based on theinitial specifications of thefilter.
Pass-band edge=0.11t (b) 21 0.603 dB 494d8 | . Y
Stop-band edge=0.15m (c) 20 0.605 dB 478dB | . "
Pass-band ripple=0.6 dB (d) 18 0.631dB 498d8 | 0 e R
Stop-band attenuation= 50 dB () 16 0.750 dB 486dB8 | e
Number of multipliers= 5 . o
(H 13 0.52dB 51.26 dB Modified al-pass structures are used; design is
based on the revised specifications with pass-
band ripple = 0.5 dB and stop-band attenuation =
51 dB.
(a 36 0.05dB 50.0dB Unmodified all-pass structures are used; designis
Filter 2: L ow-pass; 5th-order: based on theinitial specifications of thefilter.
Pass-band edge=0.025mt (b) 33 0.051dB 4999d88 | .. Yo
Stop-band edge=0.05m (c) 30 0.054 dB 499%dB | 0 ... "
Pass-band ripple=0.05 dB (d) 27 0.055 dB 49630 | L. R
Stop-band attenuation= 50 dB (e) 23 0.068 dB 437d8 | L. R
Number of multipliers= 5
(f) 14 0.042dB 51.8dB Modified al-pass structures are used; design is
based on the revised specification with pass-band
ripple = 0.03 dB and stop-band attenuation = 51
dB.
(a) 66 0.6dB 50.0 dB Unmodified all-pass structures are used; design is
Filter 3: Band-pass: 10th-order based on initial specifications of thefilter.
Pass-band edges=0.11m, 0.211 (b) 56 0.6dB 4999adB | 0 . L
Stop-band edges=0.081t, 0.247t (c) 46 0.603 dB 496508 | R
Pass-band ripple=0.6 dB (d) 40 0.606 dB 478d8 | e RS
Stop-band attenuation =50 dB (e) 38 0.631dB 4r75dB | e
Number of multipliers=10
(f) 37 0.522 dB 51.55 dB
Modified al-pass structures are used; design is
based on the revised specification with pass-band
ripple = 0.5 dB and stop-band attenuation = 51
dB.
@77 0.6dB 50.0 dB Unmodified all-pass structures are used; design is
Filter 4: Band-stop; 10th-order based on initial specifications of thefilter.
Pass-band edges=0.11m, 0.2511 (b) 62 0.6dB 4999d8 | 0 L. Y
Stop-band edges=0.121,0.211t (c) 45 0.6dB 499%6dB | ... R
Pass-band ripple=0.6 dB (d) 38 0.602 dB 496208 | . R
Stop-band attenuation=50 dB (e) 35 0.62dB 4€92d8 | L. R
Number of multipliers=10
(f) 33 0.5dB 50.8 dB Modified al-pass structures are used; design is
based on the revised specification with pass-band
ripple = 0.5 dB and stop-band attenuation = 51
dB.
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Fig. 5. Amplitude responses for Filter 2 in Table 1 in two cases.
The dashed and solid lines show the initial design realized with
the unmodified all-pass structure and the realization with revised
specifications and modified all-pass structures requiring fourteen
nonzero bits.
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Fig. 6. Amplitude responses for the BPF's in Table 1 in two
cases. The dashed and solid lines represent the initial design
realized with the unmodified allpass structure and the realization
with the revised specification and modified allpass structures
requiring thirty-seven nonzero bits, respectively.

two cases. The dashed and solid line show the responses for the
initial design realized with unmodified all-pass structure and the
realization with revised specifications and using modified all-
pass structures requiring fourteen nonzero bits only for five
multipliers, respectively. Figure 6 depicts the results of
implementation of Filter 3in Table 1.

According to the results of Table 1, the low-sensitivity
property of the sum of the proposed all-pass filter structures is
well evidenced. It is seen from the slow degradation of pass-
band and stop-band tolerances with the reduction of number of
nonzero bits (that reflects the quantization levels).

It was observed that in the cases of BPFs or BSFs, by
alowing marginal deviations in the band-edges (by reducing the
number of nonzero bits for a —multipliers only), an additiona
reduction in the number of nonzero bits can be achieved. For
example, in the case of the BPF, 27 nonzero bits (a reduction of
two bit for each of the five a —multipliers) leads to thefilter with
the pass-band edges being located at 0.11771t and at 0.21811T

4. CONCLUSIONS

This paper has demonstrated how a concept devel oped earlier by
the authors (using low-sensitivity structures for multiplierless
implementations of recursive filters) for utilization in
multiplierless implementation of odd-order recursive digital
filter can be used in developing low-sensitivity al-pass filter
structures. The resulting structures have been used for
implementing odd-order low-pass filters as a parallel connection
of two all-pass filters. In addition, by employing the appropriate
transformations to the odd-order LPF prototype attractive
multiplierless redization of BPF/BSF are shown to be feasible.
Utilizing the resulting overall structures, in addition to a
reduction in the total number of multiplier coefficients, a gross
reduction in total number of nonzero bits is achievable, making
this approach very attractive. Several examples have indicated
that utilizing the approach outlined, multiplierless realizations
can be achieved by using around three and half nonzero bits per
multiplier on the average, without any increase in thefilter order.
Future work is devoted to applying optimization techniques to
further reducing the number of nonzero bits.
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