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ABSTRACT 
 

Under certain conditions an odd-order low-pass or high-pass 
recursive digital filter can be decomposed into a sum of two all-
pass filters with real coefficients. This decomposition has the 
attractive property that there exist for its implementation 
structures where both the number of delays and the number of 
multipliers are equal to the filter order, thereby making the 
overall implementation very efficient. This paper develops some 
all-pass filter structures that combine this advantage with those 
of some low-sensitivity substitution and transformation blocks 
for replacing unit delay elements. These combinations enable 
one to generate multiplierless implementations for odd-order 
recursive digital filters and even- order band-pass and band-stop 
filters. Utilizing these structures along with allowing some 
marginally insignificant deviations in the specifications such as 
in the pass-band and stop-band tolerances, the total number of 
nonzero bits for multiplier coefficients, i.e., those of shifts and 
adds and/or subtracts, becomes quite small, making this 
approach very attractive. Alternatively, the overall filter can be 
designed with marginally stricter tolerances than the desired 
specifications in such a manner that it meets the criteria after 
quantizing the filter coefficients. 
 

1. INTRODUCTION 
 
In multiplierless implementations of digital filters, the minimum 
number of signed powers of two (MNSPT) or canonic signed 
digits (CSD) representations of binary digits are extensively used 
for representing the multiplier coefficient values. An MNSPT 
representation of a coefficient value is given by ∑ −

i

t
i

ia ,2 where 

each ai is either 1 or –1 and ti is a positive or negative integer and 
the multiplication can be performed with the aid of bit shifts and 
adds and/or subtracts. 

In the case of IIR filters, the structures such as a sum of two 
all-pass filters, including attractive lattice wave digital (LWD) 
filters, coupled with optimization methods have shown to yield 
good results for multiplierless implementations. These sums of 
all-pass filters are characterized by the attractive property that 
there exist structures with the number of required multipliers 
being equal to the filter order, thereby decreasing the number of 
multipliers compared with conventional realization forms. (We 
mention that due to paucity of space we are unable to list all the 

relevant and related references. However, they can be traced 
from the listed references). 

Another interesting approach is the one that stems from 
designing an odd-order elliptic minimal Q-factor analog filter 
(EMQF) that has some special properties. When using the 
bilinear transformation, these filters can be implemented as a 
sum of two all-pass filters [5] along with an expanded design 
parameters space such as the pass-band (stop-band) tolerances, 
the edges, and the filter order.  

In [1−4], the feasibility of implementing multiplierless 
recursive digital filters based on low-sensitivity structures has 
been demonstrated. It has been observed to be beneficial to 
develop the all-pass filter structures combining the advantages of 
the minimum number of multipliers and delays and the low pass-
band sensitivity of the all-pass structure along with the 
advantages of those described in [1−4]. This combination would 
result in a gross reduction in the total number of nonzero bits 
(effectively the number of shifts and adds and/or subtracts 
required). On one hand, the number of multipliers would be less 
than in the case of the sum of two all-pass filters and, on the 
other hand, the number of nonzero bits per multiplier would be 
less due to low values of the modified coefficients. Of course, 
the transfer function to be realized would have to be of odd order 
and should fulfill the necessary conditions so as to be 
decomposable into a sum of the two all-pass filters [7]. 
Furthermore, by applying suitable transformations, realizations 
of multiplierless band-pass and band-stop filters become 
feasible. The next section demonstrates that such an approach is 
realizable. 
 

2. PROPOSED STRUCTURES FOR THE 
IMPLEMENTATION 

 
If the conditions given in [7] are fulfilled, then an odd-order 
transfer function H(z) can be decomposed as 

               ( ))()(
2
1)( 10 zHzHzH +=  ,                       (1) 

where )(0 zH  and )(1 zH  are all-pass transfer functions with 
their orders differing by one. This necessitates the requirement 
of implementing first-order and second-order all-pass filter 
structures that could be cascaded as required for implementing 
the two channels. Also, in the cases of band-pass filters (BPFs) 
and band-stop filters (BSFs), there would be a need of using 
second- and fourth-order all-pass filter sections when 
transforming an odd-order low-pass filter (LPF) to an even-order 
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BPFs or BSFs to gain the advantage of reducing the number of 
multipliers.  

In the cases of LPFs it is obvious that an Nth-order elliptic 
filter would require N multipliers compared with approximately 
(3N−1)/2 multipliers required by conventional cascade-form 
structures as structures exist for implementing all-pass sections 
with minimum number of multipliers and delays. Similarly, if an 
Nth-order elliptic LPF with N odd is transformed into a 2Nth-
order BPF or BSF implemented as a cascade of second-order 
sections, then one would require 3N multipliers. This figure 
would reduce to (5N−1)/2 multipliers in the case of substitution 
of unit delay by transformation block [4]. It should be mentioned 
at this stage that one would require only 2N multipliers (the 
minimum number of multipliers among the three cases) if one 
decomposes the prototype LPF into a sum of two all-pass filters 
first, followed by the substitution of unit delay by the 
transformation block.  

The proposed first-order (second-order) and second-order 
(fourth-order) all-pass sections that combines the above-
mentioned advantages are depicted in Figs. 3 and 4, respectively. 
We mention that the orders mentioned within parentheses are for 
transforming the prototype LPF to a BPF/BSF. The 
transformation blocks u−1 implemented as shown in Figs. 1 and 2 
are given by 
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for implementing low-pass (high-pass) filters and for 
transforming a LPF prototype to BPF or BSF, respectively. 
Here, k1 = −1 for BPFs and k1 = 1 for BSFs, and k is a number 
that can be represented by one bit or at the most two bits in the 
MNSPT form. Its absolute value is either equal to or less than 
unity. For example, k can be equal to ±1, ±0.5, etc. For most 
cases, k = ±1 (or one bit) will suffice. Furthermore, α  is given 
by 
 

( )[ ] ( )[ ] 01212 cos2cos2cos ωωωωωα =−+= ,    (3) 
 

where ,, 10 ωω 2ω , and sω  are for  BPFs and BSFs the center 
frequency, and the lower and upper passband edges, and the 
sampling frequency, respectively in the cases of BPF and BSF. 

    

Fig. 3 shows the realization  the following first order allpass 
transfer function (or transformation to 2nd-order BPF/BSF): 
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and the relation of the modified coefficient is given by 
      11 aka m += .                                       (5) 
In Fig. 4 the realization  of the following second-order allpass 
transfer function (or transformation to a 4th-order BPF/BSF 
section): 
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=                                 (6) 

is shown and the modified coefficients are given by 
          11 2 aka m +=   and 21

2
2 akaka m ++= .           (7) 

 
3. RESULTS AND DISCUSSIONS 

 
Quite a few odd-order elliptic filters were realized as a sum of 
two all-pass filters with the aid of both the unmodified [6] and 
the modified structures as depicted in Figs. 3 and 4. Also, some 
even order BPFs and BSFs were realized by transforming odd 
order LPF prototypes to the desired transfer functions using the 
schemes of Figures 2, 3, and 4. Table 1 illustrates the 
implementation results for some of these filters. This table shows 
the pass-band and stop-band and tolerances and the required 
number of nonzero bits along with the type of structure used. 
Figure 5 shows the amplitude responses of Filter 2 of Table 1 in 

Fig. 4. The second-order (fourth-order) allpass structure. 
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Fig. 3. The first-order (second-order) allpass structure. 
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Fig. 1. Transformation block u −1 for LPFs. 
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Fig. 2. Transformation block u−1 for BPFs/BSFs. 
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Table 1. Requirement of nonzero bits for some filters realized as sum of allpass structures 
 

Details of performance achieved 

Tolerances achieved 
 

 
 

Filter Characteristics Number of 
nonzero 
bits   Pass-band Stop-band Comments 

 
 

Filter 1: Low-pass; 5th-order: 
   Pass-band edge = 0.1π 
   Stop-band edge = 0.15π 
   Pass-band ripple = 0.6 dB 
   Stop-band attenuation =  50 dB 
   Number of multipliers =  5 

 
(a) 26 

 
(b) 21 
(c) 20 
(d) 18 
(e) 16 

 
(f) 13 

 
0.6 dB 

 
0.603 dB 
0.605 dB 
0.631 dB 
0.750 dB 

 
0.52 dB 

 
50.0 dB 

 
49.4 dB 
47.8 dB 
49.8 dB 
48.6 dB 

 
51.26 dB 

 
Unmodified all-pass structures rae used; design is 
based on the initial specifications of the filter. 

….."….. 
….."….. 
….."….. 
….."….. 

 
Modified all-pass structures are used; design is 
based on the revised specifications with pass-
band ripple = 0.5 dB and stop-band attenuation = 
51 dB. 

 
 

Filter 2: Low-pass; 5th-order: 
   Pass-band edge = 0.025π 
   Stop-band edge = 0.05π 
   Pass-band ripple = 0.05 dB 
   Stop-band attenuation =  50 dB 
   Number of multipliers =  5 

 
(a) 36 

 
(b) 33 
(c) 30 
(d) 27 
(e) 23 

 
(f) 14 

 
0.05 dB 

 
0.051 dB 
0.054 dB 
0.055 dB 
0.068 dB 

 
0.042 dB 

 
50.0 dB 

 
49.99 dB 
49.96 dB 
49.63 dB 
43.7 dB 

 
51.8 dB 

 
Unmodified all-pass structures are used; design is 
based on the initial specifications of the filter. 

….."….. 
….."….. 
….."….. 
….."….. 

 
Modified all-pass structures are used; design is 
based on the revised specification with pass-band 
ripple = 0.03 dB and stop-band attenuation = 51 
dB. 

 
 
Filter 3: Band-pass: 10th-order 
   Pass-band edges = 0.1π, 0.2π 
   Stop-band edges = 0.08π, 0.24π 
   Pass-band ripple = 0.6 dB 
   Stop-band attenuation = 50 dB 
   Number of multipliers = 10 

  

 
(a) 66 

 
(b) 56 
(c) 46 
(d) 40 
(e) 38 

 
(f) 37 

 
0.6 dB 

 
0.6 dB 

0.603 dB 
0.606 dB 
0.631 dB 

 
0.522 dB 

 
50.0 dB 

 
49.99 dB 
49.65 dB 
47.8 dB 
47.75 dB 

 
51.55 dB 

 
Unmodified all-pass structures are used; design is 
based on initial specifications of the filter. 

….."….. 
….."….. 
….."….. 
….."….. 

 
 
Modified all-pass structures are used; design is 
based on the revised specification with pass-band 
ripple = 0.5 dB and stop-band attenuation = 51 
dB. 

 
 

Filter 4: Band-stop; 10th-order 
   Pass-band edges = 0.1π, 0.25π 
   Stop-band edges = 0.12π, 0.21π 
   Pass-band ripple = 0.6 dB 
   Stop-band attenuation = 50 dB 
   Number of multipliers = 10 

 
 

 
(a) 77 

 
(b) 62 
(c) 45 
(d) 38 
(e) 35 

 
(f) 33 

 
0.6 dB 

 
0.6 dB 
0.6 dB 

0.602 dB 
0.62 dB 

 
0.5 dB 

 
50.0 dB 

 
49.99 dB 
49.96 dB 
49.62 dB 
49.2 dB 

 
50.8 dB 

 
Unmodified all-pass structures are used; design is 
based on initial specifications of the filter. 

….."….. 
….."….. 
….."….. 
….."….. 

 
Modified all-pass structures are used; design is 
based on the revised specification with pass-band 
ripple = 0.5 dB and stop-band attenuation = 51 
dB. 
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Fig. 5. Amplitude responses for Filter 2 in Table 1 in two cases. 
The dashed and solid lines show the initial design realized with 
the unmodified all-pass structure and the realization with revised 
specifications and modified all-pass structures requiring fourteen 
nonzero bits. 
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Fig. 6. Amplitude responses for the BPF’s  in Table 1 in two 
cases. The dashed and solid lines represent the initial design 
realized with the unmodified allpass structure and the realization 
with the revised specification and modified allpass structures 
requiring thirty-seven nonzero bits, respectively. 
 
two cases. The dashed and solid line show the responses for the 
initial design realized with unmodified all-pass structure and the 
realization with revised specifications and using modified all-
pass structures requiring fourteen nonzero bits only for five 
multipliers, respectively. Figure 6 depicts the results of 
implementation of Filter 3 in Table 1. 

According to the results of Table 1, the low-sensitivity 
property of the sum of the proposed all-pass filter structures is 
well evidenced. It is seen from the slow degradation of pass-
band and stop-band tolerances with the reduction of number of 
nonzero bits (that reflects the quantization levels). 

It was observed that in the cases of BPFs or BSFs, by 
allowing marginal deviations in the band-edges (by reducing the 
number of nonzero bits for α −multipliers only), an additional 
reduction in the number of nonzero bits can be achieved. For 
example, in the case of the BPF, 27 nonzero bits (a reduction of 
two bit for each of the five α −multipliers) leads to the filter with 
the pass-band edges being located at 0.1177π  and at 0.2181π. 

 
4. CONCLUSIONS 

 
This paper has demonstrated how a concept developed earlier by 
the authors (using low-sensitivity structures for multiplierless 
implementations of recursive filters) for utilization in 
multiplierless implementation of odd-order recursive digital 
filter can be used in developing low-sensitivity all-pass filter 
structures. The resulting structures have been used for 
implementing odd-order low-pass filters as a parallel connection 
of two all-pass filters. In addition, by employing the appropriate 
transformations to the odd-order LPF prototype attractive 
multiplierless realization of BPF/BSF are shown to be feasible. 
Utilizing the resulting overall structures, in addition to a 
reduction in the total number of multiplier coefficients, a gross 
reduction in total number of nonzero bits is achievable, making 
this approach very attractive. Several examples have indicated 
that utilizing the approach outlined, multiplierless realizations 
can be achieved by using around three and half nonzero bits per 
multiplier on the average, without any increase in the filter order. 
Future work is devoted to applying optimization techniques to 
further reducing the number of nonzero bits. 
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