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ABSTRACT

The Cooley-Tukey FFT algorithm decomposes a discrete Fourier
transform (DFT) of size n = km into smaller DFTs of size k and
m. In this paper we present a theorem that decomposes a polyno-
mial transform into smaller polynomial transforms, and show that
the FFT is obtained as a special case. Then we use this theorem
to derive a new class of recursive algorithms for the discrete co-
sine transforms (DCTSs) of type Il and type I1. In contrast to other
approaches, we manipulate polynomial algebras instead of trans-
form matrix entries, which makes the derivation transparent, con-
cise, and gives insight into the algorithms’ structure. The derived
algorithms have a regular structure and, for 2-power size, minimal
arithmetic cost (among known DCT algorithms).

1. INTRODUCTION

The celebrated Cooley-Tukey fast Fourier transform (FFT) algo-
rithm [1] decomposes a discrete Fourier transform (DFT) of size
n = km into smaller DFTs of size k& and m. The algorithm’s in-
herent versatility—due to the degree of freedom in factoring » and
due to its structure—has proven very useful for its implementation
on a variety of diverse computing platforms. A recent example is
automatic platform adaptation of FFT software through algorith-
mic search [2, 3, 4].

In this paper we derive a new class of algorithms, analogous to
the FFT, for the discrete cosine transforms (DCTs) of type Il and
I11. The discovery of this class and its derivation is made possible
through an approach using polynomial algebras.

Algebraic Approach to the DCTs. There is a large number
of publications on fast DCT algorithms. With few exceptions (in-
cluding [5, 6, 7, 8]) these algorithms have been found by clever
manipulation of matrix entries, which provides little insight into
their structure or the reason for their existence. In [9, 10] we devel-
oped an algebraic approach to the 16 DCTs and DSTSs to remedy
this situation. We associate to each DCT (or DST) a polynomial
algebra, and derive known algorithms by manipulating these al-
gebras instead of transform matrix entries. This approach makes
the derivation transparent and provides the mathematical under-
pinning for these algorithms.

A New Class of DCT Algorithms. In this paper we present
a general theorem for decomposing polynomial algebras and show
that the Cooley-Tukey FFT is obtained as a special case. Then we
use this theorem to derive the analogous class of algorithms for the
DCTs of type Il and Ill. Thus, the term “analogous” is in a strict
mathematical sense.
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All algorithms in this class have a large degree of parallelism,
low arithmetic cost, and a regular, flexible, recursive structure,
which makes them suitable for efficient hardware implementation
or for automatic software generation and adaptation [2, 3]. Only
few special cases in this class are known from the literature. We
present the mathematical framework in Section 2; the algorithm
derivation and analysis is in Section 3.

2. POLYNOMIAL ALGEBRASAND TRANSFORMS

A vector space A that permits multiplication of elements such that
the distributive law holds is called an algebra. Examples include
C and the set C[z] of polynomials with complex coefficients.

Polynomial Algebra. Let p(z) be a polynomial of degree
deg(p) = n. Then, A = Cla]/p(x) = {q(z) | deg(q) < n},
the set of residue classes modulo p, is an n-dimensional algebra
with respect to the addition of polynomials, and the polynomial
multiplication modulo p. We call A a polynomial algebra.

Polynomial Transform. For the remainder of this paper, we
assume that the polynomial p(z) in A = Clz]/p(z) has pair-
wise distinct zeros a = (aw, ..., an—1). Then, the Chinese Re-
mainder Theorem decomposes .A into a Cartesian product of one-
dimensional algebras as

Clzl/p(z) — Clz]/(z — a0) @ ... @ Clz]/(z — an-1),
q(z) = (q(ao), .-, q(an-1)). @

If we choose b = (po,...,pn—1), deg(pi) < m, as a basis for
A, and b, = (2°) as the basis in each C[z]/(x — az), then the
decomposition in (1) is given by the polynomial transform

Po,a = [Pe(ar)]o<k,t<n- 2

As an example, every Vandermonde matrix [aé]o<x.e<n i known
to be a polynomial transform by choosing p; = «*.

Fast Algorithm. If p(z) decomposes into two polynomials,
p(z) = q(r(x)), then Py o, can be factorized as briefly explained
next (see [9, 10] for details). We assume deg(q) = k, deg(r) =
m, i.e., n = km, and denote with 3 = (Bo, ..., Bk—1) the zeros
of g and with o} = (.0, - .., @im—1) the zeros of r(z) — 3;, i.e.,
each a; ; is a zero ay of p.

Then C[z]/p(x) decomposes in the following steps.

Clzl/p(z) — @ Clal/(r(z) - 5i) ®)

0<i<k

- P P Chl/z-wy) @

0<i<k 0<j<m

— @ Clz]/(z — au). 5)

0<i<n
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Further, we choose a basis ¢ = (qo, - - - , gx—1) for Clz]/q(z), and
a basis d = (ro,...,rm—1) for each C[z]/(r(xz) — 8;) in (3).
Then
b = (rogo(r),...,Tm—1qo(r),
. (6)
rqufl(r), e ,7“7,L,1qk,1(7“))
is a basis of C[x]/p(z). The final factorization of P . is given by
the following theorem, in which we use the tensor (or Kronecker)
product and the direct sum of matrices A, B, respectively defined

by

A® B =|ake-B], forA=Jare, A®B= [A B]'
Theorem 1 Using previous notation,
Pb,a = P( @ Pdﬂég) (Pc,ﬁ ® Im)B’ (7)

0<i<k

where B is the base change matrix mapping b to b’, and the re-
maining three factors in (7) correspond (from right to left) to steps
(3), (4), and (5), respectively. In particular, P is a permutation
matrix mapping the concatenation of the o onto « in (5).

The usefulness of (7) as a fast algorithm for Py ., depends on the
matrix B; the other factors are sparse. The following example
shows that the Cooley-Tukey FFT is obtained as a special case of
(@).

Example: Cooley-Tukey FFT. The discrete Fourier trans-
form (DFT) of size n is defined by the matrix

DFTn - [Wﬁe]ogk,l<na Wn = eizﬂ\/jl/na

and, as a special Vandermonde matrix, is a polynomial transform
DFT, = Ps,q forthe algebra A = Clz]/(x" —1) w. r. t. the basis
b= (1,z,...,z" ") and the list of zeros o = (w9, ...,wn™1).

If n = km then 2™ — 1 = (z™)* — 1 decomposes and we can
apply (7). The zeros of the outer polynomial ¢(z) = z* — 1 are
givenby 3 = (wp,...,wr™1), the zeros of r(z) — B; = 2™ — w},
by of = (Wit ... wi ™~ 1k) Next we choose bases ¢ =
(Lz,...,2" ") of C[z]/(2* — 1) and d = (1,z,...,2™ ")
of C[z]/(z™ — wy,), and observe that &' = b in (6) and thus, in
(7), B = 1, is the identity matrix. In summary we obtain the
factorization

DFT, = Lj,( @ DFTn(wi))(DFTx 1), ()
0<i<k
where
Ly ijk+i—im+j, 0<i<k 0<j<m,

is the stride permutation, which orders the summands in step (5),
and DFT,, (wy,) is the polynomial transform for C[z]/(z™ — w},).
Using the definition, we observe that

DF Ty (w},) = DFTy, - diagg<p o, (Wi ), (9)
which yields the Cooley-Tukey FFT in its familiar form
DFT,, = L;, (I  DFT,,) T, (DFT, @ L), (20)

where T, is the diagonal twiddle matrix. By transposing (10) we
obtain a different recursion

DFT, = (DFTx ®1,) T (I @ DFT,,) Ly (11)

where we used (L7,)7 = (L%)~' = L?. Note that the degree
of freedom in factorizing » in (10) and (11) when applied recur-
sively, yields a large set of structurally different FFT algorithms.
Thus, it is more accurate to speak of the set of Cooley-Tukey FFT
algorithms. The degree of freedom in the recursion is used for
automatic software optimization [2, 3, 4].

3. RECURSIVE DCT Il AND Il ALGORITHMS

In [9, 10] we have shown that all 16 types of discrete cosine and
sine transforms are (possibly scaled) polynomial transforms, and
used this connection to derive and explain many of their known
algorithms by manipulating polynomial algebras rather than ma-
trices. In this section we extend this approach and use Theorem 1
to derive an entire class of recursive DCT type Il and 111 algorithms
based on Theorem 1, which are thus mathematically equivalent to
the Cooley-Tukey FFT (10) and (11). Only few special cases in
this class are known from the literature. \We start by identifying
the DCT type Il as polynomial transform.

DCT asPolynomial Transform. The (unscaled) DCT of type
111 is defined by the matrix

DCTY = [cos(k + 1/2)0r/n)o<k.i<n,

and the DCT of type Il is its transpose, DCT{) = (DCT{MT,
The DCT!" is a polynomial transform as has been recognized
already in [6]. To make this explicit we introduce the Chebyshev
polynomials defined by the recurrence
To=1,Ti =z, Th(z)=22Th—1(x)— Tn-2(z), n>2.

The polynomial T}, can be written in the closed form T,,(z) =
cosnf, cos@ = z, which can be used to verify the following
known properties of T,.

T, =T, (12)
7T, = (Tn+k + Tnfk)/z (13)

zerosof T, : ag, = cos(k+1/2)7/n, 0 <k <n (15)
T, — cosrm = 2" H (z — cos(r + 2i)7/n) (16)

0<i<n

Now, we can readily verify that DCT{" is a polynomial transform
for the algebra A = C[z]/T}, with basis b = (To,...,Tn-1),
namely

DCTY = [Ty(cos(k + 1/2)7/n)]o<k.e<n.

Initial Algorithm Derivation. To apply Theorem 1, we as-
sume n = km and use T,, = Tx(T,,) from (14). We choose
the basis ¢ = (To,...,Tk—1) for C[z]/T%; the zeros of T}, are
given by (15). Thus, in step (4) we need polynomial transforms
for Clz]/(Tm — cos(i + 1/2)w/k), which we define now.

Definition 1 Let p(z) = Ty (x) — cosrm with list of zeros o =
(cosrim,...,cosrp_1m), computed from (16), normalized to sat-
isfy 0 < r; < 1, and ordered as r; < r; for i < j. Further,
let d = ETO’ ..., Th—1) be the basis of C[z]/p(x). Then we
call DCTY (r1) = Py a skew DCT of type Ill. In particular,
DCT (7/2) = DCTUY.
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We start the derivation with the matrix B = B,, x, in (7). The basis
b’ in (6) is given by

Vo= (ToTo(Tm),- .-, T 1To(T),

TOkal(Tm)y s 7Tm71Tk71(Twn))
= (Tjm-i/2 + Tjm+i/2)o<i<m, 0<j<k;

Due to the structure of " we can easily read off the inverse of B,
i.e., the base change Bl fromb' tob.

-1
Bn - n,k”Dn,k’y

with
I Zm
L, Zm
Cn,k — )
L. Zn
L,
0
0 1
Lm = I , a7
0 1

and the diagonal matrix
Dy =Ly ®(Ik—1 ®diag(1,1/2,...,1/2)).

The matrices for steps (3) and (4) are straightforward; the final
permutation P in (7) is given by (without proof)

where Ji, is I, with the order of the columns (or rows) reversed.
In summary, we obtain

et =K, (@ DT (G +1/2)m/k))

0<i<k

(DOCTY" @1,,)D;, . Cr ke (18)

To obtain a complete recursive algorithm, we need an algorithm for
the occurring skew DCT('"*s, In contrast to (9) we do not translate
them into ordinary DCT!'""*s. Instead, we again use Theorem 1 to
decompose their associated algebra Clz]/(T,. — cos(rm)), pro-
vided m is composite, since T}, — cos(rm) decomposes exactly as
T, The derivation is analogous to above and yields the exactly
analogous factorization

pCT!(rr) = K. ( @ DCTY (rim))
0<i<k
(DCTY (rm) ® 1) D, . Co iy (19)
where r, r; are as in Definition 1.

To determine C;}C, we observe that C,, . is a direct sum of
matrices, conjugated by a suitable permutation Q.. » (conjugation:
AP = P~1AP), namely

Cor = ®Sk®...® S,)9mk,
(g & (L1 ®@Sk)) @k,

with the bidiagonal matrix

11
11
Sp = : (20)
11
1

Thus, C; ) = (It &(Im—1 ®S;, 1)) 9=+, The inverse of S can
be computed with k& — 1 recursive subtractions that have to be per-
formed in sequence, which increases the critical path of computa-
tion and thus runtime or latency (compare to Sy, in (20) where all
k — 1 additions can be done in parallel). To overcome this prob-
lem, we can either consider only small values of k, or invert (19),
which we do next.

Inversion. To invert (19), we define a skew DCT", moti-
vated by (DCTU) =1 = 2/n - diag(1/2,1,...,1) - DCT.

Definition 2 We define the skew DCT of type Il by
DCTY (r1) = n/2 - diag(2,1,...,1) - (DCTY (rx)) "
In particular, DCT{" = DCTW (7/2).

It turns out that with this definition, by inverting (19) the mul-
tiplications cancel each other, and we get the beautifully simple
form

DCTY (r1) = C, x (DCTW (r7) @ 1,,,)
(€D peTRm) My, (1)

0<i<k

where M} = (K2) ' =L (L T 0L @ Jp ®...).

Four Classes of Recursive Algorithms. By transposing (19)
and (21), we get a total of four different recursions, two for the
DCT of type 111 and two for type Il. We list these recursions in the
following using previous notation. The numbers r, r; are related
as explained in Definition 1.

For the DCT) we have

DOT = DOT (r/2),
peT(rm) = K5 ( € DCT (rim))

0<i<k
(DCTY (rm) ® Im) D, LCr ks (22)

and the inverse-transpose of (22)
DCTY = DT (7/2)7,

0<i<k
(OCTY (rm)" @ 1)Cr f. (23)

For the DCT), we have the transpose of (22)
DCT® = DCTW (7/2)7,
DCTY" (rm)" = €, 1 D, 1, (DCTL (rm)" @ L)
( [ DCTSLL')(W)T) r(24)

0<i<k
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and the inverse of (22)

DCTY = DCTY (7/2),
DCTY (r1) = C x (DCTW (r7) @ 1,,)

( D DCTS',?(W)> MP. (25)
0<i<k
The remaining problem is to find fast algorithms for the base cases,
i.e., for skew DCTs of prime size. We focus on the most important
case of a DCT of 2-power size n, which is eventually reduced
to skew DCTs of size 2 as base cases. These are given by (¢ =
cos(r;m/2))

DCTY"(rim) = Fa-diag(l,c),

DOTY(rim) = ding(1,1/(20)-F> 0

and their transposes, where Fo = [ ', ].

Analysis. We briefly investigate the four proposed algorithms
(22)(29).

The algorithms (23) for the DCT""Y and its transpose (25)
for the DCT" have a large degree of parallelism, and a simple,
very regular structure. For a 2-power n, the arithmetic cost of the
algorithms is independent of the chosen recursion and given by

o 3 logy(n)  (21)

A(n) = 5 logy(n) —n+1, M(n)=
additions and multiplications, respectively, and is thus among the
best ones known. The only possible drawback (for fixed point im-
plementations) is the large dynamic range of the occurring inverse
cosines from the base cases (26). We found only the special case
m = 2 (in which only skew DCTs of size 2 occur) in [11] in a
slightly different form. Namely, using (A ® Im)Lz’ = (I. ®A)
for any k& x k matrix A, we can write (23) also as
Ly
DCTY (rr)T = R:;( fany DCTE','J(mr)T>

0<i<k

(Im X DCT%”)( ) ) LZL Cn k> (28)

where Ry, = (Ie ®Je ® L @ Jp @ ...). Similarly, (25) can be
written as
DCTY (r) = Cpy i Ly (I, @ DCT (rr))
Lo
(@ petem) “Rp. (29)
0<i<k

Algorithms (22) and (24) suffer, as mentioned before, from the
k — 1 recursive subtractions to compute S:-1, and from the addi-
tional multiplications arising from D} » and are thus inferior to
their alternatives (23) and (25), unless we choose a small value of
k. As an advantage, these algorithms use only cosines as constants
(since only skew DCT"""s or their transposes occur). Further, for
small &, the multiplications in D} can be fused with the adjacent
skew DCTs. The case n = ¢”, k = g was derived in [12] using
Chebyshev polynomials, and again in [13] by complicated manip-
ulations of matrix entries. As an example, we consider the case
k = 2, derived in [5] and in [6], in both cases using Chebyshev
polynomials, but given only in iterative form. For k& = 2, (22)
takes after minor manipulation the form

DCT (rr) = K2 (DCTYW (7 /2)

@ DCTU (1 — r)7/2))(F2 @ Ln)An, (30)

with . 2

An - |: Cr Im :l ’
where ¢, = cosrn/2, I, = diag(1,2,...,2),and Z,, is defined
in (17). The arithmetic cost of (30) is equal to (27).

Summary. We derived a new class of fast algorithms for the
DCT type Il and I1l, by a stepwise decomposition of their associ-
ated polynomial algebras. The algorithms have minimal (known)
arithmetic cost and a simple, regular structure. The similarity in
structure to the Cooley-Tukey FFT provides the algorithms with
the same versatility that was the success of the FFT, with its many
variants optimized for, e.g., parallel and vector platforms [1]. Fur-
ther, the algorithms are amenable to automatic software generation
and adaptation as done in [2, 3, 4].
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