
PERFORMANCE ANALYSIS OF HARDWARE ORIENTED ALGORITHM
MODIFICATIONS IN H.264

Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang and Liang-Gee Chen

DSP/IC Design Lab,

Graduate Institute of Electronic Engineering,
Department of Electrical Engineering,

 National Taiwan University

ABSTRACT

H.264 [1] is initiated by ITU-T as H.26L and will become
a joint standard of ITU-T and MPEG. The coding
complexity of H.264 is much higher than MPEG-4 simple
profile and advance simple profile algorithms. In order to
achieve real-time encoding, hardware implementation is
required.
The original test model of H.264 (JM) [2] is designed to
achieve high coding performance. Some algorithms of the
test model require lots of operations with little coding
efficiency improvement. And some algorithms create data
dependencies that prevent parallel hardware accelerations.
This paper presents analysis of H.264 video coding
algorithm in a hardware-oriented viewpoint. Intra
prediction, hadamard transform and motion estimation
algorithms are reviewed and modified to a hardware
friendly configuration. The rate distortion penalties of
these modifications are simulated and shown in this paper.

1. INTRODUCTION

H.264 is the next generation video coding standard that
provides ultra high coding efficiency and network friendly
functionalities. It has been a hot candidate for future’s
video streaming and communications. Although the
coding performance of H.264 is good, more than four
times of the algorithm complexity prevents its practical
real-time implementation.
Several previous papers and documents[3-5] have
addressed the coding complexity of this new state of art
video coding algorithm. All of these papers use software-
profiling techniques to retrieve the complexity of the
H.264 algorithm. Although the profiling result is accurate
for software implementation, the potential of parallel
processing in hardware design can’t be easily captured by
this result.
In this paper, we reviewed the H.264 algorithm and look
for the crucial points for hardware implementation. We
modified the algorithm to enable efficient hardware

implementation. Our algorithm modifications are all made
in the prediction part, which occupies more than 90% of
total computations. In addition, the hardware-oriented
algorithm modifications are simulated through various
video sequences to clarify the effects of the coding
performance.

2. H.264 ALGORITHM

The block diagram of H.264 algorithm is shown in Fig 1.
Video frames are captured into intra prediction and inter
prediction parts. If the frame type is intra, the inter
prediction part will be disabled. Multiple reference frames
and variable block size motion estimation is used for inter
prediction. The best mode among these prediction modes
is chosen in the mode selection block. The input frame is
then subtracted from the prediction and forms the residual
blocks. The residual blocks are transformed by 4x4
integer DCT for luminance and 2x2 transform for
chrominance DC coefficients. Scan and quantization
procedures are then applied to the coefficients. The
entropy coder receives these quantized coefficients and
generates output codewords. The mode information is also
transformed by the mode tables and fed into the entropy
coder. The reconstruction loop includes the
dequantization, inverse transform and deblocking filter.
Finally, the reconstruct frame is written to the frame
buffer for motion estimation.

Spatial
Predictionvideo

Mode
Select

Temporal
Prediction

(ME)

-
+

-
Transform
4x4 or 2x2

Entropy C
oding

Mode
Table

Q/S

Reference Frames Deblocking
Filter

Header

inter mode
IS/IQ,
IDCT
MC

Spatial
Predictionvideo

Mode
Select

Temporal
Prediction

(ME)

-
+

-
Transform
4x4 or 2x2

Entropy C
oding

Mode
Table

Q/S

Reference Frames Deblocking
Filter

Header

inter mode
IS/IQ,
IDCT
MC

Fig 1. H.264 algorithm block diagram

II - 4930-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

The algorithm modifications applied to JM4.0d are mainly
on the prediction parts (spatial prediction and temporal
prediction) since the computations of these two prediction
parts consume almost all the computation power. In the
experiences of HW/SW partition, these two parts should
be allocated as a hardware implementation and thus need
to be modified to a hardware-oriented manner.
Our hardware model is a MB (macroblock) processing
engine, which encodes MB by MB in a sequential manner.
There may be MB pipeline in the encoding system, so the
reconstructed process may not complete when the next
MB’s prediction process begins. Many commercial video
encoders that uses MB engine can be fitted into this
hardware model.

3. INTRA PREDICTION

The algorithm block diagram in Fig.1 is similar to
previous video coding standards like H.261, H.263 and
MPEG-4. The main difference of H.264 algorithm to
other video coding standards is the intra prediction part,
which consists nine 4×4 and four 16×16 intra prediction
modes. Intra prediction requires reconstructed image
pixels for prediction. In a typical MB engine,
reconstructed data only can be obtained after coding. This
data dependency results in difficulties for hardware
implementation.

3.1. 4×4 intra prediction
The data dependency of 4×4 intra prediction mode is
shown in Fig. 2. The pixels from a to p is predicted from
A-N and Q. Pixels labeled in upper case are reconstructed
pixels. Because there are 16 4×4 blocks in a MB,
predictor can’t get the reconstructed pixels when previous
blocks are not coded. JM uses two-pass algorithm to code
these blocks. It requires all the blocks passing the
transform, quantization, dequantization and inverse
transformation loop to do a 4×4 intra prediction, which is
too complex for the hardware implementation.
We modified this algorithm as follows: we replace the
entire reconstructed pixel by the original input pixels.
With this modification, 4×4 intra prediction and transform
can be processed in a pipelined manner without bubbles.

Q A B C D E F G H
I a b c d
J e f g h
K i j k l
L m n o p
M
N

Q A B C D E F G H
I a b c d
J e f g h
K i j k l
L m n o p
M
N

Fig.2 4×4 intra prediction

3.2. 16×16 intra prediction
Fig. 3 shows the data dependency of 16×16 intra
prediction. The current MB is predicted by the 17 pixels
from upper MBs and 16 pixels from the left MB. Since
the reconstructed pixel of the left MB may not ready when
the current MB’s prediction process begins. The pixels of
the left MB (light gray part of Fig. 3) are replaced by
original pixels.

MB Boundary

MB Boundary

MB Boundary

MB Boundary

Fig.3 Data dependency of 16×16 intra prediction

3.3. Mode decision problem
The simple replacement of reconstructed pixels to original
pixels may cause mode decision problem. Fig.4 show a R-
D curve of the intra prediction modification. The
simulation sequence is “Claire” at 10fps. The curve
marked as “org_intra” is the coding performance of the
intra prediction modification. The great degradation of
PSNR is caused by errors from the mode decision. The
original pixels are much correlated than reconstructed
pixels since they belong to the same frame. The prediction
error in the modified intra prediction will be much less
than original version. In order to reduce the error rate of
the mode decision, we modified the error cost function by
adding an error term.
The error term represents the mismatch between original
pixels and reconstructed pixels. Its value is related to QP
because QP affects the mismatch between original pixels
and reconstructed pixels. The quantization effect in H.264
increases exponentially while QP increases linearly. In
order to match the quantization effect in H.264,we choose
the error term in the form of a/b(51-QP), where a and b are
parameters to be determined.
Theoretically, the parameter b should be set to 1.12 to
match the increasing of quantization effect in H.264
because H.264 increases 12% quantization effect in each
QP step. Because the cost function is calculated in the
hadamard transform domain, each coefficient is scaled
and not equal weighted. And the probability distribution
of each transformed coefficient varies. In contrast with
using the theoretical value, we use experiments to
determine this parameter.
By experiments, we set 80 to a and 1.07 to b for 4×4 intra
prediction. For 16×16 intra prediction, a is set to 400 and
b is set to 1.07. This parameter set is test throughout
various sequences and obtained good result in every

II - 494

➡ ➡

sequence. The R-D curve of this modification is shown as
“mod_intra” curve in Fig.4. The mode decision errors are
eliminated and the PSNR performance is almost the same
as original JM.

27

31

35

39

43

47

0 20000 40000 60000 80000 100000
Bitrate

P
S

N
R

Y

JM40d

org_intra

mod_intra

Fig. 4 R-D Curve of “Claire” sequence

4. MOTION ESTIMATION

H.264 uses variable block size, quarter pixel precision and
multiple reference frames motion estimation. JM uses full
search scheme with original searching point adjusted to
motion predictor. At the integer precision stage, distortion
is calculated using SAD. A compensated term for motion
vector data will be added to the distortion to get better
performance. Full search motion estimation is supported
by various hardware architectures. But the choices of
search range and motion predictor in JM are not practical
for hardware design.

4.1. Search Range
Hardware motion estimator usually uses internal memory
to reduce the requirement of external memory bandwidth.
A typical search range data reuse scheme is shown in
Fig.5. The search range is –16 - +15. The left 3×3 blocks
in Fig.5 represent the search range of current MB’s
motion estimation process, while the right 3×3 blocks
represent search range of the next MB’s motion
estimation process. The overlapped area is the data reused
in this scheme.

4848

Fig. 5 Search range reuse scheme

In order to fit JM to this data reuse model, the search
range original should be located at (0,0). This restriction
results video quality degradation only if the true motion
vector is out of the search range.

4.2. Motion Predictor
JM uses motion predictor to determine bits for the motion
vector data and calculate coding penalty of the motion
vector data. The penalty will be considered at all motion
estimation stage to get better rate distortion performance.
Fig.6 shows the dependency of the motion predictor. P1 to
P4 are previous coded MBs. The motion vectors from P1
to P4 are used for motion predictor calculation. The
motion predictor calculation problem rises if there is a
MB pipeline in the MB processing engine. The motion
vector of P1 will be unavailable when motion estimation
performs on current MB (C in Fig.6).
In order to break the dependency in the motion predictor
calculation, Only P2 to P4 are used in our modification
algorithm. The final motion vector will be coded using
predictor calculated from P1 to P4. The modification only
affects motion estimation penalty calculation. Thus, our
modification algorithm is still compatible to standard.

C P1

P2 P3 P4
MB boundary

P1

P2 P3 P4
MB boundary

Fig. 6 Motion predictor data dependency

4.3. Quarter Pixel Precision Motion Estimation
In H.264, half pixel used for motion estimation is
generated through a 2D 6-tap interpolation filter. 2D filter
requires line buffer to perform transpose operations. The
line buffer is large in hardware implementation. Motion
compensation scheme requires this interpolation filter
because the motion compensation is in the coding loop.
But direct interpolation method can be used in motion
compensation hardware because the motion vector is
assigned.
One option to reduce hardware cost is using simpler
method to generate quarter pixel precision data. The data
used for motion estimation is not required to be the same
with motion compensation, but some mismatch will occur
and reduce the coding performance. We used bilinear
interpolation for half pixel interpolation in this paper to
evaluation this option.

4.4. Hadamard Transform
Hadamard transform performs simple transform to
estimate bit generated after transform. It is used to replace
SAD of prediction part. This additional option can be
turned off if we want to design a low cost hardware.

II - 495

➡ ➡

5. SIMULATION RESULT

The software simulation is performed on the
“Foreman”, ”grandma”, ”salesman”, and “carphone”
sequences. The frame rate is 10 frames per second. The
reference frame number is set to one. And R-D
optimization mode is turned off for hardware
consideration. Because JM has no rate control method in
version 4.0d, the rate distortion curve is generated by QP
sweeping. The rate-distortion curve is shown in Fig7-8
and Table 1-2.
From the simulation results, we found that the PSNR
degradation is small in our modified intra prediction. The
PSNR reduces little in integer motion estimation
modification with slow moving sequences. The QME
modification results in 0.4 to 0.6 db PSNR degradation on
average. This modification should be considered only in
low cost system. From Table 1, the PSNR of each mode at
64kbps will decrease no more than 0.58 db.

Table 1. PSNR(Y) of algorithm modifications at 64kbps

 Foreman Grandma Salesman Carphone
JM4.0d 34.68 41.14 39.61 35.81
Intra_mod 34.64 41.14 39.58 35.65
IME_mod 34.36 41.11 39.45 35.71
IME+QME 34.10 40.78 39.24 35.40
Hadamard off 34.36 40.95 39.28 35.55

Table 2. PSNR(Y) of algorithm modifications at 32kbps

 Foreman Grandma Salesman Carphone
JM4.0d 31.28 37.91 35.55 32.40
Intra_mod 31.20 37.91 35.50 32.20
IME_mod 30.95 37.83 35.47 32.25
QME_mod 30.65 37.57 35.18 32.05
Hadamard off 30.94 37.71 35.22 32.10

6. CONCLUTION

In this paper, hardware oriented H.264 algorithms
modifications are presented. Based on these modifications,
parallel processing could be realized in MB based
processing hardware. The impacts of these algorithm
modifications are clarified through software simulations.
Results show the video quality degradations of intra
prediction and integer precision motion estimation
modifications are nearly unnoticed. QME modification
and turning off hadamard transform may be a solution for
low cost encoder.

[1] Committee Draft of Joint Video Specification (ITU-T Rec.
H.264| ISO/IEC 14496-10 AVC) , July. 2002.

[2] Joint Video Team (JVT) software JM4.0d, August, 2002.

[3] Tu-Chih Wang, Hung-Chi Fang, Wei-Min Chao, Hong-Hui
Chen and Liang-Gee Chen, “An UVLC encoder architecture for
H.26L “, Proceeding of ISCAS, May, 2002.

[4] Minhua Zhou, ”Benchmark Analysis of H.26L Decoder
Functional Blocks”, ITU-T, VCEG-N23, Sept., 2001.

[5] “Main Results of the AVC Complexity Analysis”, ISO/IEC
JTC1/SC29/WG11 N4964, July, 2002.

22

24

26

28

30

32

34

36

0 20000 40000 60000 80000 100000Bitrate

P
S

N
R

Y

JM40d mod_intra

No Hadmard mod_IME

mod_QME

Fig. 7 Foreman QCIF 10fps

22

24

26

28

30

32

34

36

38

0 20000 40000 60000 80000 100000
Bitrate

P
S

N
R

Y

JM40d mod_intra

no hadmard mod_IME

mod_QME

Fig. 8 Carphone QCIF 10fps

II - 496

➡ ➠

