RAPID PROTOTYPING OF JPEG ENCODER USING
THE ASIP DEVELOPMENT SYSTEM: PEAS-III

Shinsuke Kobayashi, Kentaro Mita

Graduate School of Engineering Science,
Osaka University
{s-kobays,k-mita} @ics.es.osaka-u.ac.jp

ABSTRACT

In this paper, JPEG encoder application, one of the DSP appli-
cations, was implemented using the ASIP development system:
PEAS-III. Instructions for JPEG encoder, such as DCT instruc-
tion, and butterfly instructions, were added to the initial design.
Area, performance, and execution cycles of processors were cal-
culated using generated HDL description, compiler, and assembler
by PEAS-III. From experimental results, 12 architectures can be
designed in 160 hours, and designer can select an optimal archi-
tecture that satisfies design constraints considering hardware cost,
clock frequency and execution cycles.

1. INTRODUCTION

There are two approaches to realize application domain specific
embedded systems. One is to use general purpose processors and
ASICs (Application Specific Integrated Circuits), and the other
is to use ASIPs (Application Specific Instruction set Processors).
One of the advantages of the second approach is that better imple-
mentations can be realized by introducing cost-effective instruc-
tions suitable for specific applications. In the ASIP design, it is
also important to search for a processor architecture that matches
the target application. To achieve this goal, it is essential to esti-
mate design quality of architecture candidates that have different
instruction sets, pipeline stage counts, and combinations of hard-
ware resources. Here, design quality means area, performance,
and power consumption of a design. Because there are many ar-
chitectural parameters, there exist a huge number of processor ar-
chitecture candidates, which makes it difficult to find an optimal
architecture in a short design time. In this case, the ASIP devel-
opment system plays an important role to estimate design quality
and develop target processors.

In this paper, JPEG encoder application was designed using
the ASIP design methodology. Instructions for JPEG encoder,
such as DCT instruction, and butterfly instructions, were added
to the initial design. Area, performance, and execution cycles of
processors were calculated using HDL descriptions, compiler, and
assembler. From experimental results, various architectures can
be designed in a short time, and designers can select an optimal
architecture that satisfies design constraints.

The rest of this paper is organized as follows. In section 2, re-
lated work is surveyed, and the PEAS-III system, one of the ASIP
development systems, is introduced. The case study and experi-
mental result are discussed in section 3, and examined in section

Thanks to Japan Novel and ACE Associated Compiler Experts bv for
providing the CoSy compiler Kkit.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-485

Yoshinori Takeuchi, Masaharu Imai

Graduate School of Information Science
and Technology, Osaka University
{takeuchi, imai} @ist.osaka-u.ac.jp

4. Finally, section 5 concludes this paper and future work is de-
scribed.

2. ASIP DEVELOPMENT SYSTEM

2.1. Related Work

Conventional approaches to ASIP development can be classified
into two kinds. First one is a “parameterized generic processor
core” such as PEAS-I[1], Satsuki[2], MetaCore[3], CASTLE[4],
Xtensa[5] and so on. Their processor models usually have basic
instruction sets and a synthesizable ASIP description is generated
by adding predefined or user defined instructions to the basic in-
struction set. Architectures of these processors ease to develop the
parameterized retargettable compiler, but in many cases have little
flexibility on pipeline structure and instruction variations. Hence,
the variety of architecture candidates by these systems is limited
with respect to pipeline stage count, instruction format and micro-
operation for each pipeline.

Another approach is based on “processor specification lan-
guages” such as nML[6], ISDL[7], LISA[8], FlexWare[9], EX-
PRESSION [10], AIDL[11], and Hamabe, et al.[12]’s approach.
The processor specification languages nML, ISDL, LISA, FlexWare
and EXPRESSION are originally developed to design a compiler,
simulator and other tools for software development. The instruc-
tion behavior and the structure of the target processor are described
in these specification languages. Compiler and other tools can be
generated using these languages, but it is difficult to generate syn-
thesizable HDL descriptions from these languages. Because it is
not enough resource specification including timing specification,
control signal information and so on to generate HDL descriptions.
On the other hand, AIDL and Hamabe, et al.’s approach are devel-
oped to produce HDL descriptions. The instruction behavior, the
timing relations of pipeline stages and the structure of the proces-
sor core are described in these languages. Using these languages,
HDL descriptions of the target processor can be generated. How-
ever, the modification cost is larger than those of other approaches
based on processor specification language, because detail informa-
tion is described when designers use these languages.

2.2. PEAS-III

The PEAS-III system [13, 14] is one of the ASIP development
systems, which generates not only synthesizable HDL descriptions
but the target compiler and the target assembler. PEAS-III is based
on processor specification language approach. Hence, wide range
of processor architecture can be described using the PEAS-III sys-

ICASSP 2003

Architecture Application
Specification Program
Flexible . Input Environment I 3
Hardware Model ’

Management System
Compiler

Flexible Software Development . Assembler
Hardware Model . HDL Generator | Environment Generator ?Jle"i];j;;cerr
Behdvior Levei ¥
(S — $
RT Level
Architecture ’ Design Quality Object
e Information Estimator ‘ Code
GateLevel "
Layout Level .

Behavior Model Hardware Cost
HDL Descri Max Frequency
Report Power
Cycle Accurate .
Model HDL Desc. Execution Cycle

Synthesizable
HDL Description

Fig. 1. Overview of the PEAS-III system.

tem. The PEAS-III system has well parameterized resource mod-
els, Flexible Hardware Models (FHM). FHM-DBMS (DataBase
Management System) produces the resource specification to gen-
erate HDL and the target compiler. When designers would like
to change the features of resources, they only change the parame-
ters of FHM. Moreover, designers describe processor specification
through the PEAS-III input environment using GUIs. Resources
and other architecture parameters are specified using GUIs. These
features reduce the modification cost and encourage design reuse.

Overview of the PEAS-III system is shown in Fig. 1. Proces-
sor architecture specification is written in the input environment,
which encourages efficiently input. The processor specification
description includes: (1) architecture parameters such as pipeline
stage counts, the number of delayed branch slots, (2) declaration
of resources included in the processor, such as ALUs and register
files, (3) instruction format definitions, (4) behavior and micro-
operation descriptions of instructions, and (5) interrupt definitions
including cause conditions and micro-operation description of in-
terrupts. The architecture description is given from the input envi-
ronment to the HDL generator and the software development envi-
ronment generator. The HDL generator and the compiler generator
uses FHM, which is parameterized resource model. Since FHM is
used in HDL and compiler generation, designers can change the
characteristics of resource only by changing the parameters of each
resource.

It is the advantage of the PEAS-III design that a processor
architect can design the synthesizable HDL and the target compiler
rapidly. Since execution cycles, clock frequency and hardware cost
can be evaluated in the early design step, designers can find an
optimal architecture in the short design time.

3. CASE STUDY

3.1. Architecture Candidates

Several kinds of parameters are defined in JPEG specification. In
this case study, 8 bit precision baseline algorithm was selected.
Huffman coding was selected as VLC and VLD. In the following
section, architecture candidates are described, and experimental
results are explained.

DCT and IDCT are implemented using Chen DCT algorithm
[15], which is one of the famous algorithms reducing multiplica-
tions and additions. Data flow of Chen DCT is shown in Fig. 2.

MADD3 MADD1

[57

MADD1 ADD1

Fig. 2. Data Flow of Chen DCT (1-dimensional 8 points).

quantization (short int xinput,
short int xoutput,
short int xqtable) {
short int *inputPtr = input;
for (; inputPtr < input + 64; inputPtr++) {
if (*inputPtr > 0) {
xoutput = (xinputPtr + (xqtable >> 1)) / xqtable;

}else {

xoutput = (xinputPtr - (xqtable >> 1)) / xqtable;

output++; qtable++;

Fig. 3. C Source Code of Quantization.

Here, the x(i) denotes element of input matrix, X(i) denotes trans-
formed element. Cij and Sij denote cos(“;—.) and sin(“;."),
respectively. Using Chen algorithm, multiplication times are re-
duced from 64 to 16, and addition times are reduced from 56 to 26
in 1 dimensional 8 points DCT. IDCT can be implemented using
inverse of DCT. Hence, multiplication and addition times in IDCT
are reduced as much as those of DCT.

In DCT and IDCT implementation, several approaches exist,
and there approaches were studied in this case study: Sequen-
tial Instructions Approach is software approach that stands for
software implementation. All of the algorithm is processed by
primitive instructions of processors. DCT Instruction Approach
is hardware approach that stands for hardware unit implementa-
tion. All of the algorithm is processed by hardware. Butterfly
Instructions Approach is hybrid approach that stands for imple-
mentation using fine grain instructions. The part of the algorithm is
processed by hardware, and the other part of the algorithm is pro-
cessed by primitive instructions of processors. These approaches
are expected to have trade-offs between hardware cost and perfor-
mance.

In quantization implementation, several approaches exist, which
is the same as DCT implementation. Fig. 3 shows the C source
code of quantization. From Fig. 3, quantization divides the ele-
ment by the element of quantization table. Hence, the performance
of divider affects the execution cycles of quantization. In this case
study, the implementation algorithm of divider was changed.

Il - 486

Data address

Data Read and Write
base address

2 data read/write or
1 data read/write
on 32 bits data bass

selector

Fig. 4. DCT/IDCT Unit.

3.2. Input Image

In this evaluation, a standard image (Lenna) was used as an input
image. The image size was 256 x 256 pixels and the sampling
factors of each component were as follows: horizontal sampling
factors of Y, U, V were 4, 1, 1, and vertical sampling factor were
4, 1, 1, respectively.

3.3. DCT/IDCT Unit

Fig. 4 shows the DCT/IDCT unit that processes 2 dimensional (2-
D) 8 points DCT/IDCT. The DCT/IDCT unit fetches the data from
the data memory to the internal registers. Calculation units are
executed sequentially using these registers. Each block processes
the data in one cycle, then DCT/IDCT is executed in four steps.
Because this unit processes 2-D 8 points DCT/IDCT, each step is
executed twice.

3.4. Additional Instructions

Additional Instructions are as follows: (1) DCT instruction exe-
cutes the procedure of DCT. This instruction uses the DCT unit
described in section 3.3. (2) MADDI1 instruction calculates the
MADDI1 block in Fig. 2. MADDI instruction takes 2 operands
as input and write back to same operand registers. (3) MADD2
instruction calculates the MADD2 block in Fig. 2. MADD?2 in-
struction takes 2 operands as input and write back to same operand
registers. (4) MADD3 instruction calculates the MADD?3 block in
Fig. 2. MADD?3 instruction takes 4 operands as input and write
back to same operand registers. MADD3 unit has 2 operation
mode to change coefficients.

3.5. Processor Organization

Processor organization in this case study is shown in Table. 1.
Normal denotes base instruction set that is sub set of MIPS-R3000
instruction set. DCT insns denotes instruction set added MADDI,
MADD?2 and MADD3 instructions. DCT denotes instruction set
added DCT instruction. The implementation algorithm of multi-
plier is sequential type that executes 32 cycles and array type that
executes 1 cycle. On the other hand, the implementation algorithm
of divider is sequential type that executes 34 cycles, and array type
that executes 1 cycle.

65
o
'g.*leo + Normal
5 DCT Insns
255 = | |
L 2 = A DCT
5 e
G0 e
55 al
=) b =
3,
230 0 12
dgg i
20 !

30 40 50 60 70 80 90 100 110
Hardware Cost (K gates)

Fig. 5. Trade-offs Between Hardware cost and Execution Cycles
When JPEG Encoder was Executed.

Table 2. Design Time.
| | Time (hour) |

C source code implementation 130
DCT unit design 60
Total 190

[Base processor design | 12 |
Registration of DCT unit and Convolu- 1
tion blocks to FHM-DBMS
Instruction addition 1
Implementation algorithm selection 0.1
Others 150

[Total | 164.1 |

3.6. Experimental Results

Fig. 5 shows trade-offs between hardware cost and execution cy-
cles when JPEG encoder has been executed. Horizontal axis is
hardware cost, and vertical axis is execution cycles. The number
of each point corresponds to Table 1. From Fig. 5, the trade-off
between hardware cost and execution cycles exists when instruc-
tions are added and the hardware unit implementation algorithms
are changed.

The design time of the case study is shown in Table 2. From
table 2, about ten hours were spent using the PEAS-III system.
Here, the reason why the implementation algorithm selection time
is short is only changing FHM parameters to select implementa-
tion algorithm. From this result, the hardware description and the
target compiler can be designed in a short design time. 130 hours
were spent implementing JPEG codec using C source code. 60
hours were spent DCT unit design. Others include debug time
and simulation time and synthesizing time to evaluate the proces-
sor core. The time of JPEG codec implementation and DCT unit
design do not depend on our environment.

4. DISCUSSION

When an application such as DSP application is implemented us-
ing ASIPs, designers consider trade-offs between hardware cost
and performance. In this case study, Normal (1, 2, 3, 4) and DCT
(10, 12) architecture candidates can be selected when these pro-

Il - 487

Table 1. Processor Cores and Their Execution Cycles of JPEG Application.

| | multiplier | divider [area (K gates) | Max Freq. (MHz) [Exec Cycles (M cycles)]
1. Normal seq(32) seq(34) 39.43 151 61.28
2. Normal seq(32) array 52.1 22.5 51.19
3. Normal array seq(34) 57.59 44.5 44.54
4. Normal array array 70.19 433 34.45
5. DCT insns seq(32) seq(34) 57.3 149 53.57
6. DCT insns seq(32) array 70.0 23.0 43.48
7. DCT insns array seq(34) 75.5 44.5 43.52
8. DCT insns array array 88.0 23.0 33.43
9. DCT seq(32) seq(34) 71.17 151 39.62
10. DCT seq(32) array 89.35 22.4 29.53
11. DCT array seq(34) 83.86 433 36.25
12. DCT array array 101.93 43.3 26.17

cessors execute the same clock frequency. Generally, it is well
known that the design time of hardware description, compiler and
assembler requires several months or at least several weeks. How-
ever, it is too long to meet a requirement of the design time in
design space exploration. On the other hand, when designers use
the ASIP development systems that have been explained in section
1, either software development environment or hardware descrip-
tion is produced in a short time, but the other part, for example
processor cores for software development environment, must be
developed separately. The advantage of the PEAS-III system is
that compiler, assembler and hardware description are generated
at the same time. Furthermore, the modification cost of the de-
sign is low, and hardware modules such as DCT unit can be reused
easily, because designers only select modules from FHM-DBMS
as resources. Using the PEAS-III system, designers can evalu-
ate processors and select an optimal architecture in a short design
time.

5. CONCLUSION

In this paper, JPEG encoder implementation using the PEAS-III
system is described, which is one of the ASIP development sys-
tem. Instructions for JPEG encoder, such as DCT instruction, and
butterfly instructions, were added to the initial processor. Area,
performance, and execution cycles of processors were calculated
using the generated HDL description, compiler, and assembler.
From experimental results, 12 architectures can be designed in a
short time. Moreover, the design quality of each processor includ-
ing hardware cost, execution cycles of application, and clock fre-
quency was evaluated using the PEAS-III system efficiently. Fu-
ture work includes instruction set simulator, profiler, and debugger
generation.

6. REFERENCES

[1] J. Sato, A. Y. Alomary, Y. Honma, T. Nakato, A. Shiomi, N. Hikichi,
and M. Imai, “PEAS-I: A Hardware/Software Codesign System for
ASIP Development,” IEICE Trans. Fundamentals, vol. E77-A, no.
3, pp. 483-491, Mar. 1994.

[2] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi, H. Tomiyama,
and H. Yasuura, “Satsuki: An Integrated Processor Synthesis and
Compiler Generation System,” IEICE Trans. Inf. & Syst., vol. E79-
D, no. 10, pp. 1373-1381, Oct. 1996.

[3] Jin-Hyuk Yang, Byoung-Woon Kim, Sang-Jun Nam, Jang-Ho Cho,
Sung-Won Seo, Chang-Ho Ryu, et al., “MetaCore: An Application

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Il-488

Library: 0.14 ym CMOS Standard Cell Library.

Specific DSP Development System,” in 35¢th DAC, 1998, pp. 800—
803.

Raul Campasano and Jorg Wilberg, “Embedded System Design,”
Design Automation for Embedded Systems, vol. 1, no. 1-2, pp. 5-50,
Jan. 1996.

Tensilica, “Xtensa,” http://www.tensilica.com.

Andreas Fauth, “Beyond tool-specific machine descriptions,” in
Code Generation for Embedded Processors. 1995, pp. 138-152,
Kluwer Academic Publishers.

George Hadjiyiannis, Pietro Russo, and Srinivas Devadas, “A
methodology for accurate performance evaluation in architecture ex-
ploration,” in 36th Design Automation Conference, June 1999, pp.
927-932.

Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich
Meyr, “LISA - Machine Description Language for Cycle-Accurate
Models of Programmable DSP Architecture,” in 36th Design Au-
tomation Conference, 1999, pp. 933-938.

Pierre G. Paulin, Clifford Liem, Trevor C. May, and Shailesh
Sutawala, “Flexware: A flexible firmware development environment
for embedded systems,” in Code Generation for Embedded Proces-
sors, 1995, pp. 65-84.

Ashok Halambi, Peter Grun, Vijay Ganesh, Asheesh Khare, Nikil
Dutt, and Alex Nicolau, “EXPRESSION: A Language for Archi-
tecture Exploration through Compiler/Simulator Retargetability,” in
DATE 99, Mar. 1999, pp. 485-490.

T. Morimoto, K. Saito, H. Nakamura, T. Boku, and K. Nakazawa,
“Advanced Processor Design Using Hardware Description Language
AIDL,” in ASP-DAC’97, 1997, pp. 387-390.

M. Hamabe, A. Nose, N. Togawa, M. Yanagisawa, and T. Ohtsuki,
“A Generation System for Hardware Description of Pipelined Pro-
cessors,” in Tech. Report of IEICE, VLD97-117, 1997, pp. 3340, (in
japanese).

Makiko Itoh, Shigeaki Higaki, Jun Sato, Akichika Shiomi, Yoshinori
Takeuchi, Akira Kitajima, and Masaharu Imai, “PEAS-III: An ASIP
design environment,” in Proceedings of 2000 IEEE International

Conference on Computer Design: VLSI in Computers & Processors
(ICCD2000), Sept. 2000, pp. 430—436.

Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, and Masa-
haru Imai, “Design Space Exploration for DSP Applications using
the ASIP Development System PEAS-IIL,” in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Process-
ing, May 2002, vol. 3, pp. 3168-3171.

W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational
algorithm for the discrete cosine transform,” IEEE Trans. Commun.,
pp- 1004-1009, 1977.

