

PARALLEL HIGH-SPEED ARCHITECTURE FOR EBCOT IN JPEG2000

 Yijun Li, Ramy E.Aly,and Magdy A.Bayoumi Samia A. Mashali

 University of Louisiana at Lafayette Electronic Research Institute (ERI)
 P.O.Box 44330 Egypt
 Lafayette, Louisiana 70504-4330, USA

ABSTRACT

In this paper, a parallel high-speed architecture for EBCOT is
proposed, which based on the parallel mode in JPEG2000. It
discovers the parallelism among three passes in bit-plane coding:
two passes can work on coding operation without the addition of
coding processing elements (PEs) by using parallel context
modeling. So it manages to make two bits encoded in one clock
cycle. In order to keep high throughput and reduce memory
requirement, the pipelined pass-switching arithmetic encoder is
adopted. The experimental results show that the proposed
architecture reduces the processing time by more than 16.6%
compared with the pass-parallel mode architecture in [3] and by
more than 38% compared with serial mode architecture in [2].

1. INTRODUCTION

Recently, JPEG2000 has been introduced by ISO/IEC as new
image compression standard, which provides a rich set of
features that are not available in existing standards, such as pixel
accuracy and resolution, random codestream access and
region-of-interest coding.

The first step in JPEG2000, shown in Fig.1, is to divide the
image into non-overlapping rectangular tiles. Then either (5,3)
wavelet transform supporting loss-less compression or (9,7)
wavelet transform supporting lossy compression are applied to
the tile components. If lossy compression is chosen, the wavelet
coefficients are scalar quantized. Then, each wavelet subband is
divided into code blocks. The wavelet coefficients in code blocks
are entropy coded by the embedded block coding with optimized
truncation (EBCOT). Data ordering organizes the compressed
data into a feature-rich code stream. In JPEG2000, EBCOT
algorithm, as entropy coding, is an important and complicated
component. It does bit-plane coding by using 3 passes. The
context labels are obtained by using four primitive encoders.
These labels determine how arithmetic encoder does and the data
are encoded with arithmetic encoder. So the EBCOT entropy
coder consumes too much time in JPEG2000 (typically more
than 50%) [2].

In this paper, a parallel high-speed architecture for EBCOT
is proposed, which supports the implementation of two encoded
bits in one single cycle. In section 2, entropy coding algorithm
(EBCOT) is discussed. In section 3, the parallel high-speed
architecture is proposed. The main architecture components are
explained in details in section 4. The simulation results are

illustrated in section 5, and our conclusion is presented in the
section 6.

2. ENTROPY CODING ALGORITHM (EBCOT)

2.1 Context Formation [1]

In terms of sign-magnitude representation, the quantized DWT
coefficients in each code block consist of one sign bit-plane and
several magnitude bit-planes. EBCOT codes these coefficients
bit-plane by bit-plane, starting from the most significant
bit-plane with at least a non-zero element to the least significant
bit-plane. Each bit-plane is coded in three coding passes. Each
bit in a bit-plane is coded once in only one of three coding passes.
Every four rows in each bit-plane are called “stripe”. In each
pass, the bits are scanned stripe by stripe from top to down.
Within a stripe, each 4-bits column is scanned column by column
from left to right. Within a column, each bit location is scanned
bit by bit from top to down.

 E B C O T

C o n tex t
F o r m a t io n

A r ith m e tic
E n c o d in g D

C X

Q u an t iz ed D W T
C o e f f ic ien t (C o d e B lo c k)

F ig . 1 B lo c k d iag r am o f JP E G 2 0 0 0 E n c o d e r

D W T
(Q u an t iza t io n)

I m ag e
(t ile s)

D a ta
O r d e r in g

C o m p r es s ed
D a ta

F ea tu r e r ic h
C o d e s t r eam

EBCOT has four primitives coding PEs: zero coding

(ZC), sign coding (SC), magnitude refinement (MR), and
run-length coding (RLC). Note that each bit location in a
code-block is associated with a binary state variable called
“significance state.” Significance states are initialized to ‘0’
(denotes insignificant). If the bit is insignificant and its value is
‘1’, its significance state may become ‘1’ (denotes significant). If
the bit is insignificant and any one of its neighbors is significant,
it is coded in significance propagation pass (pass 1) that is based
on ZC primitive. If the bit is significant, it is coded in magnitude
refinement pass (pass 2) that is based on MR primitive. Other
bits are coded in cleanup pass (pass 3) that is based on ZC and
RLC primitive. The coding primitives generate context labels
based on the sign and significance status of 8-connect neighbors

II - 4810-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Sign
Memory

Significance
Memory

(σ1)

Significance
Memory

(σ3)

Significant
Generate
Logic

Pipelined AE

NBC Bit
Generator

P3 Stat e
Variable P E

Fig.2 The propose d Architec ture for EB C OT

Data
M emory

Memories

P1,2 St ate
Variable P E

P1,3 Sign
Neighbor
Generator

Neighbor Processing

MR P E

Context Formation

Reg1 Reg 2

Pipelined Pass
Switching
Arith metic

Encoder

Paralle l Conte xt
Selector Logic

Paralle l Pixe l
Skipping Un it

Zero Coding
PE

Run Lengt h
Coding P E

Sign Coding
PE

Control Unit Pass Index Read memory

of the current bit.

2.2 Adaptive Binary Arithmetic Coding[1]

After context labels are formed, they are provided into the
adaptive binary arithmetic encoder (MQ coder), which is based
on the recursive probability interval subdivision of Elias coding.
For every context label, there is a corresponding state machine
associated with it. The state machine is same for every label, but
different label may work in the different states. It provides the
probability estimation for MQ coder. Each current probability
interval is partitioned into two subintervals: the more probable
symbol (MPS) subinterval and the less probable symbol (LPS)
subinterval. The probability estimations obtained from the state
machine determine the values of code register C and interval
register A for the next state. In order to keep the precision range
required for register A, renormalization procedure (both of A and
c are shifted) is adopted. It has a byte of compressed data
removed and outputted from the high order bits of the code
register C.

3.THE PROPOSED ARCHITECTURE

Column-based operation [2] is adopted in this proposed
architecture. State variables read one column at a time from
memories. 4 bits in each column are coded in three passes, but
each bit is coded once in only one of three passes. MR PE is only
needed in Pass 2, Zero Coding PE and RunLength Coding PE are
only needed Pass 1 or Pass 3 and SignCoding PE is only needed
when signs is encoded. The encoding of a bit belong to pass 1 or
pass 3 don’t conflict with the encoding of a bit in the same
column belong to pass 2. Also, there is no conflict between pass
2 and pass 3, because they are in different context window logic
and use different encoding processing elements (PE). Using this
independent relation between encoded bits and by adding a

simple logic control circuit, pass 2 can work in parallel with pass
1 or pass 3, shown in shade part in Fig.2. Pixel skipping [2] is
also applied to skip the bit that is not coded in the current pass.
However, the parallel working mode between pass 1, pass 3 and
pass 2 seems different. In pass 2, the bit need to be skipped that
is not coded in pass 2. In pass 1 or pass 3, the bit need to be
skipped that is coded in pass 2 and distinguished for pass 1 and
pass 3. Parallel pixel skipping unit, discussed in section 4.2, is
adopted for solving this dependent check. In the result, at most
two bits in each column can be coded in one single cycle.

Due to that two context labels can be done in one single
cycle, two registers are adopted. One is for context label from
pass 2, and other is for context label from pass 1 or pass 3 with a
special particular bit to identify pass 1 or pass 3. One arithmetic
encoder unit with pass-switching logic [3] is used for MQ coder.
Moreover, the arithmetic encoder, discussed in section 4.3, is
pipelined in two stages. So it uses less hardware instead of two
or more arithmetic encoder units and removes the memory
requirement for context label outputs. In order to solve the issues
of dependence between pass 1, pass 2 and pass 3, parallel context
window model, discussed in section 4.1, is adopted.

In the architecture, shown in Fig.2, the value and sign of
DWT coefficients are stored into data and sign memory
respectively. Since the significance state can only be changed in
pass 1 or pass 3, there are two memories about significance states:
significance state in significance memory (δ1) is associated with
the bit location in pass 1 and significance state in significance
memory (δ3) is associated with the bit location in pass 3. By
using significant generator logic, the final significance states are
supplied into the state variables. P1,2 state variable PE generates
the neighbor attributions (D,H,V [1]) for pass 1 and pass 2 by
using context window modeling, P3 state variable PE generates
the neighbor attributions D,H,V for pass 3 by using context
window modeling, and P1,3 sign neighbor generator generates
sign neighbor contributions for pass 1 and pass 3. According to
the neighbor contributions, need-be-coded (NBC) bits for pass 1

II - 482

➡ ➡

or pass 2 or pass 3 are determined respectively. The parallel pixel
skipping unit takes these NBC as the input and generate the NBC
index for pass 1, pass 2 and pass 3, i.e. what location bits are
coded and whether or not they are coded in parallel. These NBC
index will be as control signal to select neighbor contributions in
the corresponding location, which are provided into the four
primitive coding PE to generate the context labels. Due to the
parallel pass processing, at most two context labels are generated
in the single cycle. These output context labels are stored into
two registers. Then the AEs catch the corresponding context
labels and pass index from these two registers and do its
arithmetic encoding by using pipelined pass switching arithmetic
encoder.

4 ARCHITECTURE COMPONENTS

4.1Parallel Context Window Modeling

In order to get less memory access and more concurrency, the
pixel skipping and the column-based operation are adopted [2].
Therefore, data are supplied to context window one column at a
time. The 4 bits in a column can be coded in pass 1 or pass 2 or
pass 3, but one bit is code once in only one of three passes. In
pass 2, non-need-be-coded pixels in pass 2 are skipped. In pass 1
and pass 3, non-need-be-coded pixels in pass 1 and pass 3 are
skipped too. Due to MR coding PE is independent from Zero
coding PE and RLC coding PE. So they can do their coding in
parallel. The two bits, one of which is from pass 2 and the other
from pass 1 or pass 3, are then coded by four coding primitives.
So at most two bits can be coded in a single cycle.

Stripe-causal

Pass 3
Context
Window

Pass1,Pass 2
Context
Window

Fig.3 Context Window Logic

Stripe

Further, the dependent relationship exists between the three

coding passes in the parallel coding mode. The pass 3 context
window depends on the change in the significant status of the bit
in the processed column, which is occurred during pass 1,pass 2
context window. This means pass 3 context window has to be at
least 2 columns apart from pass 1, pass 2 context window, to give
a chance for pass 1,pass 2 context window to change the
significant status of the bits in the processed column, if needed.
In the proposed architecture, we use the context window logic,
shown in Fig.3, in which pass 3 context window lags 2 columns
behind pass 1, pass 2 context window to eliminate the
dependence of pass 3 on pass 1. “Stripe-causal” mode [7] is also
adopted to eliminate the dependence of coding operation on the

next stripe. Moreover, in order to reduce the memory
requirement, only two significance state variables, δ1 and δ3, are
introduced [3]. δ1 and δ3 represent the significant status in pass
1 and pass 3, respectively. So when first MR coding is applied
for the bit, its significance state can be represent in the term of δ1
XOR δ3. For the bit in pass 1 and pass 3, its significance states
are equal to δ1 or δ3.

4.2 Parallel Pixel Skipping Unit

Bit-plane
PS

S1

P1

P3

S2

4
4
4
4

bit- location
PS

Pass 2 PS

4

4

2

2 P2

16 4
MUX

1

1

1

1

2 Value o r
Sign Coding
in Pas1 or 3

P1,3 NBC Index

P2 NBC Index

Read
Memory

Clock

Clock

Fig.4 Para llel P ixel Sk ipp ing Unit

bit-p lanes in 4 b its

Change

Change

Change

Pixel Skipping (PS) can provide NBC bit location in one column.
NBC (Need-Be-Coded) bits in pass 2 are only obtained from the
context window for pass 1 and pass 2, so it can only use one
pixel skipping directly and skip non-NBC bits in one column.
NBC bits in pass 1 and pass 3 are obtained from both context
window for pass 1, pass 2 and context window for pass 3.
Meanwhile Sign coding for one bit needs to be done immediately
after value coding of the bit. So it is possible that at most four
NBC bits are in the same bit location. In order to handle it, two
pixel skipping units are adopted: bit-plane PS and bit-location PS.
PS is a simplified pixel skipping logic gate [6].

First, NBC bits (P1, P3, S1, S3) for sign coding and value
coding in pass 1 and pass 3 are ORed to 4 bits, which are
supplied to bit-location PS to skip non-NBC bits in pass 1 and
pass 3. The bits (P1, P3, S1, S3) in the same location for sign and
value in pass 1 and pass 3 constitute 4 bit-bitplanes that indicate
how many NBC bits are in the same bit location. These bit-plane
are multiplexed by the bit-location index from bit-location PS.
Then bit-plane PS indicates that the bit in the current bit-plane is
for value coding or sign coding in pass1 or pass 3. The change
signal from bit-plane PS is as clock signal of bit location PS. It
notifies that it finish coding of all NBC bits in the same location.
Bit-location PS provides the bit location in one column. The
change signal from Bit-location PS indicates that it finish coding
of all NBC bits in pass 1 and pass 3. Only the coding of all NBC
bits in pass 1, pass 2 and pass 3 is finished, one read memory
signal is set, then next column can be read into state variables
from memories.

4.3 Pipelined Pass Switching Arithmetic Encoder

To support the parallel mode, JPEG2000 uses two key methods
[7]: (1) Terminate the MQ coder at the end of each coding pass;
(2) Reset the MQ coder and all context states at the beginning of
each coding pass. To use less hardware and remove the memory

II - 483

➡ ➡

for high-speed outputs of two context labels, pipelined
pass-switching MQ coder is adopted. There are two stages:
MPS&LPS coding and normalizer&byteout. In MPS&LPS
coding stage, look up table is used to implement the state
machine for probability estimation. After MPS&LPS coding,
registers A’, C’ are used to store the internal values for coding
states. In normalizer&byteout stage, renormalization and byte
out procedure are implemented. P1, P2 and P3 registers store the
intermediate values for code register C, interval register A,
counter CT, B register, Index I and MPS. The number of registers
for context is 31. Pass index is used as control signal to select
one for pass 1, pass 2 and pass 3.

Fig.5 Block diagram of the arithmetic encoder

Reg 1
Reg 2

MPS&

LPS

Coding

Reg

A’,C’

Normalizer

&By teout

P1 Regs

P2 Regs

P3 Regs

Pass Index A, B, C, CT, I, M PS

CX

D

MUX

5. SIMULATION RESULTS

To prove the gain from this architecture, a MATLAB program is
written to calculate for each column the number of processing
cycles required. 20 images are picked from image processing test
images. Each image has 512*512 pixels, gray scale with 8 bit
pixels. For each image, a DC shift (-128), wavelet transform for
3 levels using 5/3 filter and quantization for 256 gray levels. The
image is divided into code blocks. Each code block is 16*16
pixels. The probability of the number of cycles required for
coding one column is shown in Fig.6. From the results, we can
calculate the time required in the architecture in [3] and the
proposed one here.

Time = # of code blocks * # of bitplanes * # of columns * time
for encoding a column

In both architectures, # of code blocks, # of bitplanes and #
of columns are the same. So our concern is on the time required
for encoding a column. The first architecture [2] needs 4
cycles for encoding each column. In the proposed architecture,
the time required is

Column encoding time = P2 *2 + P3 * 3 + P4 * 4
Where P2, P3, and P4 are the probability that a column needs 2, 3,
and 4 cycles for encoding one column. Using the probabilities
values shown in Fig. 1, in our proposed architecture, the time
required is

Column encoding time = 0.18 *2 + 0.21 *3 + 0.61 *4
 = 3.43 cycles

So it is clear that the proposed architecture requires less time for
encoding the column, this means increasing in the speed of the
whole system. We estimate that the proposed idea will increase
in the system speed by 16.6% than that for the parallel mode
architecture in [3]. The results also show that the proposed
architecture reduces the processing time by more than 38%

compared to the serial mode architecture proposed in [2].

Number of cycles
1 2 3 4 5

Pr
ob

ab
ili

ty

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Fig.6 Probability of Number of cycles required

 6. CONCLUSION

The hardware required for the proposed architecture is almost the
same as the parallel mode architecture in [3]. The experimental
results show that the proposed architecture reduces the
processing time by more than 16.6% compared with the
pass-parallel mode architecture in [3] and by more than 38%
compared with serial mode architecture in [2].

 ACKNOWLEDGEMENT

 The authors would like to acknowledge Dr. Beth Wilson for her
valuable comments and feedback. This work has been partially
supported by: NSF- INT0211620, DOE EETAP- DE- FG02-
97ER12220, and the Louisiana IT initiative.

 REFERENCES

[1]JPEG 2000 Part I Final Committee Draft Version 1.0,
ISO/IEC JTC1/SC29/WG1 N1646R, March 2000
[2]K.Chen, C.Lian, H.Chen, and L.Chen, “Analysis and
Architecture Design of EBCOT for JPEG-2000”, IEEE
ISCAS-2001, vol.2.pp.765-768,May 2001
[3]Jen-Shiun Chiang, Yu-Sen Lin, and Chang-Yo Hsieh,
“ Efficient Pass-Parallel Architecture for EBCOT in JPEG2000”,
IEEE ISCAS-2002, May 2002
[4]D.Taubman, “High Performance Scalable Image Compression
with EBCOT”, IEEE Trans. Image Processing, vol.9, no.7,
pp.1158-1170, July 2000
[5]D. Chai, and A. Bouzerdoum, “JPEG2000 image compression:
an overview,” Seventh Australian Intelligent Information
Systems Conference, pp. 237-241, Nov 2001
[6]Yijun Li, Ramy E.Aly, Beth Wilson, and Magdy A.Bayoumi,
“Analysis and Enhancements for EBCOT in High-Speed
JPEG2000 Architectures”, Proceeding of the 45th IEEE 2002
MWSCAS, Aug. 2002
[7]D.Taubman, E. Ordentkich, M.Weinberger and G.Seroussi,
“Embedded Block Coding in JPEG2000”, HPL_2001-35, HP
Labs, Palo Alto, Feb.2001

II - 484

➡ ➠

