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ABSTRACT 
 
In this paper, a parallel high-speed architecture for EBCOT is 
proposed, which based on the parallel mode in JPEG2000. It 
discovers the parallelism among three passes in bit-plane coding: 
two passes can work on coding operation without the addition of 
coding processing elements (PEs) by using parallel context 
modeling. So it manages to make two bits encoded in one clock 
cycle. In order to keep high throughput and reduce memory 
requirement, the pipelined pass-switching arithmetic encoder is 
adopted. The experimental results show that the proposed 
architecture reduces the processing time by more than 16.6% 
compared with the pass-parallel mode architecture in [3] and by 
more than 38% compared with serial mode architecture in [2]. 
 
 

1. INTRODUCTION 
 
Recently, JPEG2000 has been introduced by ISO/IEC as new 
image compression standard, which provides a rich set of 
features that are not available in existing standards, such as pixel 
accuracy and resolution, random codestream access and 
region-of-interest coding.  

The first step in JPEG2000, shown in Fig.1, is to divide the 
image into non-overlapping rectangular tiles. Then either (5,3) 
wavelet transform supporting loss-less compression or (9,7) 
wavelet transform supporting lossy compression are applied to 
the tile components. If lossy compression is chosen, the wavelet 
coefficients are scalar quantized. Then, each wavelet subband is 
divided into code blocks. The wavelet coefficients in code blocks 
are entropy coded by the embedded block coding with optimized 
truncation (EBCOT). Data ordering organizes the compressed 
data into a feature-rich code stream. In JPEG2000, EBCOT 
algorithm, as entropy coding, is an important and complicated 
component. It does bit-plane coding by using 3 passes. The 
context labels are obtained by using four primitive encoders. 
These labels determine how arithmetic encoder does and the data 
are encoded with arithmetic encoder. So the EBCOT entropy 
coder consumes too much time in JPEG2000 (typically more 
than 50%) [2].  

In this paper, a parallel high-speed architecture for EBCOT 
is proposed, which supports the implementation of two encoded 
bits in one single cycle. In section 2, entropy coding algorithm 
(EBCOT) is discussed. In section 3, the parallel high-speed 
architecture is proposed. The main architecture components are 
explained in details in section 4. The simulation results are 

illustrated in section 5, and our conclusion is presented in the 
section 6. 
 

2. ENTROPY CODING ALGORITHM (EBCOT) 
 
2.1 Context Formation [1] 
 
In terms of sign-magnitude representation, the quantized DWT 
coefficients in each code block consist of one sign bit-plane and 
several magnitude bit-planes. EBCOT codes these coefficients 
bit-plane by bit-plane, starting from the most significant 
bit-plane with at least a non-zero element to the least significant 
bit-plane. Each bit-plane is coded in three coding passes. Each 
bit in a bit-plane is coded once in only one of three coding passes. 
Every four rows in each bit-plane are called “stripe”. In each 
pass, the bits are scanned stripe by stripe from top to down. 
Within a stripe, each 4-bits column is scanned column by column 
from left to right. Within a column, each bit location is scanned 
bit by bit from top to down. 

 
          E B C O T  

C o n tex t  
F o r m a t io n

A r ith m e tic  
E n c o d in g  D  

C X  

Q u an t iz ed  D W T  
C o e f f ic ien t  ( C o d e  B lo c k )

F ig . 1  B lo c k  d iag r am  o f  JP E G 2 0 0 0  E n c o d e r  

D W T  
( Q u an t iza t io n )

I m ag e
( t ile s )  

D a ta  
O r d e r in g  

C o m p r es s ed  
D a ta  

F ea tu r e  r ic h  
C o d e  s t r eam

 
EBCOT has four primitives coding PEs: zero coding 

(ZC), sign coding (SC), magnitude refinement (MR), and 
run-length coding (RLC). Note that each bit location in a 
code-block is associated with a binary state variable called 
“significance state.” Significance states are initialized to ‘0’ 
(denotes insignificant). If the bit is insignificant and its value is 
‘1’, its significance state may become ‘1’ (denotes significant). If 
the bit is insignificant and any one of its neighbors is significant, 
it is coded in significance propagation pass (pass 1) that is based 
on ZC primitive. If the bit is significant, it is coded in magnitude 
refinement pass (pass 2) that is based on MR primitive. Other 
bits are coded in cleanup pass (pass 3) that is based on ZC and 
RLC primitive. The coding primitives generate context labels 
based on the sign and significance status of 8-connect neighbors 
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of the current bit. 
 
 
2.2 Adaptive Binary Arithmetic Coding[1] 
 
After context labels are formed, they are provided into the 
adaptive binary arithmetic encoder (MQ coder), which is based 
on the recursive probability interval subdivision of Elias coding. 
For every context label, there is a corresponding state machine 
associated with it. The state machine is same for every label, but 
different label may work in the different states. It provides the 
probability estimation for MQ coder. Each current probability 
interval is partitioned into two subintervals: the more probable 
symbol (MPS) subinterval and the less probable symbol (LPS) 
subinterval. The probability estimations obtained from the state 
machine determine the values of code register C and interval 
register A for the next state. In order to keep the precision range 
required for register A, renormalization procedure (both of A and 
c are shifted) is adopted. It has a byte of compressed data 
removed and outputted from the high order bits of the code 
register C. 

 
3.THE PROPOSED ARCHITECTURE 

 
Column-based operation [2] is adopted in this proposed 
architecture.  State variables read one column at a time from 
memories. 4 bits in each column are coded in three passes, but 
each bit is coded once in only one of three passes. MR PE is only 
needed in Pass 2, Zero Coding PE and RunLength Coding PE are 
only needed Pass 1 or Pass 3 and SignCoding PE is only needed 
when signs is encoded. The encoding of a bit belong to pass 1 or 
pass 3 don’t conflict with the encoding of a bit in the same 
column belong to pass 2. Also, there is no conflict between pass 
2 and pass 3, because they are in different context window logic 
and use different encoding processing elements (PE). Using this 
independent relation between encoded bits and by adding a 

simple logic control circuit, pass 2 can work in parallel with pass 
1 or pass 3, shown in shade part in Fig.2. Pixel skipping [2] is 
also applied to skip the bit that is not coded in the current pass. 
However, the parallel working mode between pass 1, pass 3 and 
pass 2 seems different. In pass 2, the bit need to be skipped that 
is not coded in pass 2. In pass 1 or pass 3, the bit need to be 
skipped that is coded in pass 2 and distinguished for pass 1 and 
pass 3. Parallel pixel skipping unit, discussed in section 4.2, is 
adopted for solving this dependent check. In the result, at most 
two bits in each column can be coded in one single cycle.  

Due to that two context labels can be done in one single 
cycle, two registers are adopted. One is for context label from 
pass 2, and other is for context label from pass 1 or pass 3 with a 
special particular bit to identify pass 1 or pass 3. One arithmetic 
encoder unit with pass-switching logic [3] is used for MQ coder. 
Moreover, the arithmetic encoder, discussed in section 4.3, is 
pipelined in two stages. So it uses less hardware instead of two 
or more arithmetic encoder units and removes the memory 
requirement for context label outputs. In order to solve the issues 
of dependence between pass 1, pass 2 and pass 3, parallel context 
window model, discussed in section 4.1, is adopted.  

In the architecture, shown in Fig.2, the value and sign of 
DWT coefficients are stored into data and sign memory 
respectively. Since the significance state can only be changed in 
pass 1 or pass 3, there are two memories about significance states: 
significance state in significance memory (δ1) is associated with 
the bit location in pass 1 and significance state in significance 
memory (δ3) is associated with the bit location in pass 3. By 
using significant generator logic, the final significance states are 
supplied into the state variables. P1,2 state variable PE generates 
the neighbor attributions (D,H,V [1]) for pass 1 and pass 2 by 
using context window modeling, P3 state variable PE generates 
the neighbor attributions D,H,V for pass 3 by using context 
window modeling, and P1,3 sign neighbor generator generates 
sign neighbor contributions for pass 1 and pass 3. According to 
the neighbor contributions, need-be-coded (NBC) bits for pass 1 
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or pass 2 or pass 3 are determined respectively. The parallel pixel 
skipping unit takes these NBC as the input and generate the NBC 
index for pass 1, pass 2 and pass 3, i.e. what location bits are 
coded and whether or not they are coded in parallel. These NBC 
index will be as control signal to select neighbor contributions in 
the corresponding location, which are provided into the four 
primitive coding PE to generate the context labels. Due to the 
parallel pass processing, at most two context labels are generated 
in the single cycle. These output context labels are stored into 
two registers. Then the AEs catch the corresponding context 
labels and pass index from these two registers and do its 
arithmetic encoding by using pipelined pass switching arithmetic 
encoder.  

 
 

4 ARCHITECTURE COMPONENTS 
 
4.1Parallel Context Window Modeling 
 
In order to get less memory access and more concurrency, the 
pixel skipping and the column-based operation are adopted [2]. 
Therefore, data are supplied to context window one column at a 
time. The 4 bits in a column can be coded in pass 1 or pass 2 or 
pass 3, but one bit is code once in only one of three passes. In 
pass 2, non-need-be-coded pixels in pass 2 are skipped. In pass 1 
and pass 3, non-need-be-coded pixels in pass 1 and pass 3 are 
skipped too. Due to MR coding PE is independent from Zero 
coding PE and RLC coding PE. So they can do their coding in 
parallel. The two bits, one of which is from pass 2 and the other 
from pass 1 or pass 3, are then coded by four coding primitives. 
So at most two bits can be coded in a single cycle.  
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Further, the dependent relationship exists between the three 

coding passes in the parallel coding mode. The pass 3 context 
window depends on the change in the significant status of the bit 
in the processed column, which is occurred during pass 1,pass 2 
context window. This means pass 3 context window has to be at 
least 2 columns apart from pass 1, pass 2 context window, to give 
a chance for pass 1,pass 2 context window to change the 
significant status of the bits in the processed column, if needed. 
In the proposed architecture, we use the context window logic, 
shown in Fig.3, in which pass 3 context window lags 2 columns 
behind pass 1, pass 2 context window to eliminate the 
dependence of pass 3 on pass 1. “Stripe-causal” mode [7] is also 
adopted to eliminate the dependence of coding operation on the 

next stripe. Moreover, in order to reduce the memory 
requirement, only two significance state variables, δ1 and δ3, are 
introduced [3]. δ1 and δ3 represent the significant status in pass 
1 and pass 3, respectively. So when first MR coding is applied 
for the bit, its significance state can be represent in the term of δ1 
XOR δ3. For the bit in pass 1 and pass 3, its significance states 
are equal to δ1 or δ3.  
 
4.2 Parallel Pixel Skipping Unit 
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Pixel Skipping (PS) can provide NBC bit location in one column. 
NBC (Need-Be-Coded) bits in pass 2 are only obtained from the 
context window for pass 1 and pass 2, so it can only use one 
pixel skipping directly and skip non-NBC bits in one column. 
NBC bits in pass 1 and pass 3 are obtained from both context 
window for pass 1, pass 2 and context window for pass 3. 
Meanwhile Sign coding for one bit needs to be done immediately 
after value coding of the bit. So it is possible that at most four 
NBC bits are in the same bit location. In order to handle it, two 
pixel skipping units are adopted: bit-plane PS and bit-location PS. 
PS is a simplified pixel skipping logic gate [6].  

First, NBC bits (P1, P3, S1, S3) for sign coding and value 
coding in pass 1 and pass 3 are ORed to 4 bits, which are 
supplied to bit-location PS to skip non-NBC bits in pass 1 and 
pass 3. The bits (P1, P3, S1, S3) in the same location for sign and 
value in pass 1 and pass 3 constitute 4 bit-bitplanes that indicate 
how many NBC bits are in the same bit location. These bit-plane 
are multiplexed by the bit-location index from bit-location PS. 
Then bit-plane PS indicates that the bit in the current bit-plane is 
for value coding or sign coding in pass1 or pass 3. The change 
signal from bit-plane PS is as clock signal of bit location PS. It 
notifies that it finish coding of all NBC bits in the same location. 
Bit-location PS provides the bit location in one column. The 
change signal from Bit-location PS indicates that it finish coding 
of all NBC bits in pass 1 and pass 3. Only the coding of all NBC 
bits in pass 1, pass 2 and pass 3 is finished, one read memory 
signal is set, then next column can be read into state variables 
from memories. 
 
 
4.3 Pipelined Pass Switching Arithmetic Encoder 
 
To support the parallel mode, JPEG2000 uses two key methods 
[7]: (1) Terminate the MQ coder at the end of each coding pass; 
(2) Reset the MQ coder and all context states at the beginning of 
each coding pass. To use less hardware and remove the memory 
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for high-speed outputs of two context labels, pipelined 
pass-switching MQ coder is adopted. There are two stages: 
MPS&LPS coding and normalizer&byteout. In MPS&LPS 
coding stage, look up table is used to implement the state 
machine for probability estimation. After MPS&LPS coding, 
registers A’, C’ are used to store the internal values for coding 
states. In normalizer&byteout stage, renormalization and byte 
out procedure are implemented. P1, P2 and P3 registers store the 
intermediate values for code register C, interval register A, 
counter CT, B register, Index I and MPS. The number of registers 
for context is 31. Pass index is used as control signal to select 
one for pass 1, pass 2 and pass 3.  

 

Fig.5 Block diagram of the arithmetic encoder 
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5. SIMULATION RESULTS 
 

To prove the gain from this architecture, a MATLAB program is 
written to calculate for each column the number of processing 
cycles required. 20 images are picked from image processing test 
images. Each image has 512*512 pixels, gray scale with 8 bit 
pixels. For each image, a DC shift (-128), wavelet transform for 
3 levels using 5/3 filter and quantization for 256 gray levels. The 
image is divided into code blocks. Each code block is 16*16 
pixels. The probability of the number of cycles required for 
coding one column is shown in Fig.6. From the results, we can 
calculate the time required in the architecture in [3] and the 
proposed one here.  

Time = # of code blocks * # of bitplanes * # of columns * time 
for encoding a column 

In both architectures, # of code blocks, # of bitplanes and # 
of columns are the same. So our concern is on the time required 
for encoding a column.   The first architecture [2] needs 4 
cycles for encoding each column. In the proposed architecture, 
the time required is  

Column encoding time = P2 *2 + P3 * 3 + P4 * 4 
Where P2, P3, and P4 are the probability that a column needs 2, 3, 
and 4 cycles for encoding one column. Using the probabilities 
values shown in Fig. 1, in our proposed architecture, the time 
required is  

Column encoding time = 0.18 *2 + 0.21 *3 + 0.61 *4 
 = 3.43 cycles 

So it is clear that the proposed architecture requires less time for 
encoding the column, this means increasing in the speed of the 
whole system.  We estimate that the proposed idea will increase 
in the system speed by 16.6% than that for the parallel mode 
architecture in [3]. The results also show that the proposed 
architecture reduces the processing time by more than 38% 

compared to the serial mode architecture proposed in [2]. 
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              6. CONCLUSION 
 

The hardware required for the proposed architecture is almost the 
same as the parallel mode architecture in [3]. The experimental 
results show that the proposed architecture reduces the 
processing time by more than 16.6% compared with the 
pass-parallel mode architecture in [3] and by more than 38% 
compared with serial mode architecture in [2].  
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