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ABSTRACT

In this paper, we present a comparative study of fixed-point
implementations of various feedback Active Noise Cancellation
(ANC) algorithms for headset applications. Different adaptive
algorithms for wideband ANC were implemented on a
TMS320C54x fixed-point DSP with single-precision words. The
performance of each of them was tested and analyzed using
different types of noise signals.

1. INTRODUCTION

Over the past decade, environmental noise issues have gained
attention due to the tremendous growth of technology that has
led to noisy engines, heavy machinery, pumps, high speed wind
buffeting and a myriad of noise sources. Exposure to high
decibels of sound proves damaging to human beings from both a
physical and a psychological aspect. The problem of controlling
the noise level in the environment has been a focus of research
over the years. The steady increase in the performance of DSPs
coupled with the decrease in their power consumption has
enabled the use of DSPs in a variety of portable hearing
enhancement devices such as hearing aids, headsets, hearing
protectors, etc. For the large part, these applications tend to be
battery powered and hence the energy consumption of the DSP
is often the biggest constraint. Fixed-point DSPs tend to be
much more energy efficient than their floating point
counterparts. Hence, these ANC applications would be
implemented on a fixed-point DSP. The paper presents a detailed
study of fixed-point implementations of the various flavors of
the feedback ANC algorithms for headset applications. To our
knowledge, it’s the first work that compares performance using
fixed-point DSP.

The paper is organized as follows. In section 2, we describe the
experimental setup. In section 3, we describe the implementation
details of the feedback FXLMS algorithm and its variants. In
Section 4, we discuss the coefficient quantization procedure. In
section 5, we present the results of the simulations in terms of
computational complexity and algorithm performance.

2. EXPERIMENTAL SETUP

ANC systems are broadly classified as feedforward systems
where a coherent reference noise input is sensed or feedback
systems [1] where the controller does not have the benefit of a
reference signal. In the case of headsets and hearing protectors, it
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is better not to have a reference sensor on the outer casing of the
headphone. The configuration for the feedback ANC system is as
shown below.
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Figure 1. Feedback ANC system for a headset

The most common algorithm used for feedback ANC is the
feedback FXLMS algorithm and its variations [1]. The system
model for the algorithm is shown in Figure 2. In this model,
W(z) is the adaptive filter, S(z) is the secondary path transfer
function, and S(z) is the estimate of the secondary path transfer
function S(z). We assume that there is no error in the estimation
of S(z) i.e., $(2)=S(2).
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Figure 2. Feedback FXLMS algorithm.
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In this paper, we consider different adaptive algorithms namely
the Least Mean Square (LMS), Normalized LMS (NLMS),
adaptive IIR, and subband adaptive filtering. These algorithms
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were implemented in a mixture of fixed-point C and assembly on
the TMS320C54x DSP. All data and filter coefficients were
implemented using 16-bit word length. The sampling frequency
is 24kHz. A variety of input signals were used to evaluate the
performance of each of these algorithms including real-life noise
recorded by the authors at car and plane noise environments.
These are the most commonly used environments for noise
canceling headsets. A commercially available headset, with a
microphone mounted inside serving as an error sensor, was used
in the simulations. The secondary path transfer function was
calculated on the physical system using the LMS algorithm with
white noise excitation. The impulse response and the transfer
function of the secondary path are shown in Fig. 3. Note that, the
impulse response as derived from real hardware components is
far from ideal.
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Figure 3. Impulse Response and Transfer Function of the

3. ANC ALGORITHMS

The basic model used for all our simulations is as shown in
Fig. 2. The different variations of the FXLMS algorithm were
used for the adaptive filtering block. In the basic FXLMS
algorithm the adaptive filter W(z) is an FIR filter and the filter
coefficients are adapted using the LMS algorithm. The filter
adaptation equations are [2, ch. 5]:

e(n)=d(n) = w'(n). x(n)
w(n+l) = w(n)+ue(n).x’ (n) ey

Note that the input samples for adaptation x(n) is a processed
version of the input to the adaptive filter x(n). This is necessary
to ensure the alignment with the noise samples. In the following
subsections we will introduce different variations of the FXLMS
algorithm. These variations will be assessed in section 4.

3.1 FXNLMS Algorithm

The adaptation equation is quite similar to the basic FXLMS
algorithm. However, the adaptation step is variable and inversely
proportional to the second norm. of the input i.e.,

()= o/ Ly’ ()l 2)
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In our simulation we set o = 0.2. Note that, Ix’(n)I* can be
efficiently calculated using only two multiplication and two
additions as follows
I’ (n+ DI = I’ ()l + Ley' (n+ D = by ()P

where x/(n) is the i component of the input vector at time 7.
The division in fixed-point arithmetic is not trivial. We used a
Taylor-based division algorithm that has good convergence
characteristics. The idea of the algorithm was to convert the
division operation to multiplications and additions using the
well-known formula:

(l-x)'] =l+x++0+x

Convergence is guaranteed if Ixl<l. Here, we needed to evaluate
x/y. Without loss of generality, we will assume that x <y, and x
and y are unsigned with the same Q-value. If y=a — b (with b <
a), then

x_x
y a l—é
a
S ra+bidy iy PYLAVING S
a a a a a

Now, the crucial step is to choose a, so as to simplify the above
calculation. Our choice of a was the smallest power of 2 greater
than y. For example if y= 1101b, then a = 10000b. In this case
dividing by a is equivalent to right shifting. If a = 2', then b/a =
b<< (15-r), where “<<” denotes the right shifting. Note that, for
this particular choice of a, we have b/a < 1/2, and hence
convergence is guaranteed. Typically 3 or 4 terms were enough
to get good approximation. If n terms are used in the Taylor
expansion, then the division will need (n—1) multiplications, and
(n—1) additions.

3.2 Adaptive IIR Filtering

Usually a large filter order is needed for the adaptive filter
W(z). This can be compensated by using adaptive IIR filters.
However, a stability test is needed after each adaptation iteration.

The choices for IIR adaptive filtering are either the output
error method or the equation error method [2, chapter 15] with
stabilization procedure. The complexity and memory
requirement of both algorithms restrict their use for online ANC.
However, we developed a simpler structure whose performance
is very comparable to the above algorithms.

The basic idea of the algorithm is to use a cascade of second
order IIR blocks, and test the stability of each block per se. The
stability test for a second order IIR filter is straightforward. If the
IIR filter has the form 1/(1+a,z" '+ a,z’?), then the stability test is
[4, chapter 3]:

la;)l < 1,and lajl < 1+ a, 3)
The structure of the ANC algorithm is shown in fig. 4. Each B;(z)

is a second order IIR filter. Define y(n) as the output to Bi(z).
Denote a; and a,"” as the coefficients B,(z), then we have,

Y =y —a)"y(n-1) )"y (n-2) “
with yO(n) = S, w(k)x(n—k) , and y(n) = y"(n)




Figure 4. Adaptive IIR Topology

The adaptation of the FIR filter coefficients is exactly as
before. However, the adaptation of the IIR filter coefficients is a
little more complicated. Each filter output () is convolved
with S(z) to produce y([)’(n), then the filter coefficients are
adapted according to

a” (n+1) = ¢ (n)+pr.e(n). YO (n—k) )

where i = 1,2,...,L, and k = 1,2. The simple stability test (3) is
applied after each adaptation. If the test fails, then no adaptation
takes place for any filter (including the FIR filter). In this case, ¢
is lowered (up to a certain value) by multiplying it by a factor
less than 1.

3.3 Subband Adaptive Filtering

We used a single-stage of dyadic orthogonal wavelet
decomposition for subband adaptive filtering implementation.
Note that, the subband ANC algorithms proposed in the
literature (e.g., [6]) are not suitable for real-time implementation
because of the excessive computational requirements. Instead,
we used the configuration shown in Fig. 5. To avoid the
excessive delay with subband decomposition, we used the simple
Haar wavelet [3, chapter 5] in our simulation.
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Figure 5. Topology of Subband ANC
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4. QUANTIZATION ANALYSIS

The main step in converting any algorithm from its floating point
to its fixed-point version is to identify fixed-point parameters to
represent each of the critical variables and coefficients. Thus
each of these variables can be represented in the finite word
length available so as to minimize the error due to quantization.
The quantization analysis of the algorithms described in the
previous section was done using a tool developed at TI called
Fast Quantization Tool (FaQT) [7]. The FaQT tool is a PC based
tool that tracks the values of a large number of variables and
calculates the appropriate quantization formats for each of these
variables. Each of the algorithms described in the previous
section were implemented in floating point using C and the
appropriate calls to the FaQT tool were inserted into the floating
point simulation. The simulations using the FaQT tool were then
run for a number of different input signals to determine the
optimum quantization formats for each of the coefficients and
variables. A fixed quantization format was used in the
implementation wherein the representation of each of the
variables was fixed beforehand and the fixed-point
implementation did not have to track and adjust the format of
any of the variables. Furthermore, the formats were chosen so as
to completely avoid saturation. The fixed-point implementation
was thus tweaked to ensure that the quantization effects due to
the finite word length were minimal with a significant savings in
the MIPS required to implement the algorithm on the DSP. The
FaQT tool greatly helped in shortening the development time of
the fixed-point implementation of the algorithms.

S. SIMULATION RESULTS

5.1 Complexity

In any fixed-point real time implementation resources are
usually limited. Therefore simplicity is one of the main factors in
deciding which algorithm to use. In what follows we describe the
computation and memory requirements for each of the
algorithms. The following notations are used: N is the FIR
adaptive filter order, K is the order of S(z), M is the IIR order.
Note that, each filtering operation of order ¢ will need in general
g multiplications and ¢ additions. In our implementation, we
used circular indexing mode [5, chapter 5], hence the overhead
in memory movements of all algorithms is minor and can be
neglected. In table 1, we give the detailed MIPS requirement for
each algorithm (normalized by the sampling frequency).
Typically, for our application we have K <30, N <50, and M <
8

Algorithm | Multiplications Additions Memory
FXLMS 2N +2K +1 2N+2K +1 2N+ K
FXNLMS 2N+2K+6 2N +2K+6 2N+ K
IR 2N +2M + 2N +2M + 2N+ M
(1+M/2)K (1+M/2)K | + KM/2

Subband | 4N+2K+28 | 4N+2K+30 zg s

Table 1. Complexity of ANC Algorithms




The algorithms were profiled using the profile tool available
with Code Composer Studio (CCS) development software to
determine the MIPS requirements of each of the algorithms. The
appropriate profile points were inserted and the CCS cycle count
profiler was invoked to provide an accurate picture of the MIPS
requirement of each of the algorithms. This also enabled us to
ensure that the implementations met their real time deadlines.
The complexity of each of the algorithms with different filter
lengths is described in figure 6. In this figure, we plots the
number of CPU cycles for each new data sample, i.e., the
number of cycles for the interrupt routine that handles the new
data sample. For subband filtering the number of cycles is not
the same for each sample, hence the average is calculated.
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Figure 6. Algorithms Computational Requirements

5.2 Experimental Results

The algorithms described in section 3 were tested using plane
and car noises recorded by the authors. The algorithms were
tested versus different filter orders. For IIR adaptive filtering, the
IIR order is fixed at 2, which is found to be sufficient for the
given microphone transfer function. The results are illustrated in
Figures 7. From the figure, we see that, the FXLMS algorithm
outperforms the other algorithms especially for higher filter
orders. The IIR implementation achieves around 10 dB
improvement (for car noise) with filter order 3 for the MA part
and 2 for the AR part.

It is important to mention that, the performance is very
dependent on the noise type as shown in the large variation
between the two noise types. For example the improvement
using subband filtering is around 10 dB for car noise and no
more than 4 dB for plane noise (under the same parameters
setting).

Also note that, high orders of the IIR adaptive implementation
lead to instability and hence the filter does not adapt efficiently
with the new data. This will be considered in the future work.

6. CONCLUSION

In this study, we reviewed the common implementations of the
FXLMS algorithm for active noise cancellation on fixed-point
DSP. In this study, we concentrated on algorithms of practical
importance. For example, we didn’t consider the FXRLS
algorithm because of its excessive complexity (although its
floating-point counterpart outperforms the algorithms that we

have discussed in this paper). From the results, it is seen that, the
conventional FXLMS algorithm and its NLMS implementation
outperforms all the variations in the performance and the
complexity. Compared with our floating-point implementations,
the degradation after fixed-point implementation is around 2 dB.
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