
COMPARATIVE STUDY OF WIDEBAND SINGLE REFERENCE ACTIVE NOISE 
CANCELLATION ALGORITHMS ON A FIXED-POINT DSP 

 
Bharath Siravara, Mohamed Mansour, Randy Cole, and Neeraj Magotra 

 
Texas Instruments Inc.,  

Dallas, TX, 75243 
{bsiravara, mfmansour, rcole, nmagotra}@ti.com 

 
ABSTRACT 

 
In this paper, we present a comparative study of fixed-point 
implementations of various feedback Active Noise Cancellation 
(ANC) algorithms for headset applications.  Different adaptive 
algorithms for wideband ANC were implemented on a 
TMS320C54x fixed-point DSP with single-precision words. The 
performance of each of them was tested and analyzed using 
different types of noise signals.  
 

1. INTRODUCTION 
 

Over the past decade, environmental noise issues have gained 
attention due to the tremendous growth of technology that has 
led to noisy engines, heavy machinery, pumps, high speed wind 
buffeting and a myriad of noise sources. Exposure to high 
decibels of sound proves damaging to human beings from both a 
physical and a psychological aspect. The problem of controlling 
the noise level in the environment has been a focus of research 
over the years. The steady increase in the performance of DSPs 
coupled with the decrease in their power consumption has 
enabled the use of DSPs in a variety of portable hearing 
enhancement devices such as hearing aids, headsets, hearing 
protectors, etc.  For the large part, these applications tend to be 
battery powered and hence the energy consumption of the DSP 
is often the biggest constraint. Fixed-point DSPs tend to be 
much more energy efficient than their floating point 
counterparts. Hence, these ANC applications would be 
implemented on a fixed-point DSP. The paper presents a detailed 
study of fixed-point implementations of the various flavors of 
the feedback ANC algorithms for headset applications. To our 
knowledge, it’s the first work that compares performance using  
fixed-point DSP. 
The paper is organized as follows. In section 2, we describe the 
experimental setup. In section 3, we describe the implementation 
details of the feedback FXLMS algorithm and its variants. In 
Section 4, we discuss the coefficient quantization procedure. In 
section 5, we present the results of the simulations in terms of 
computational complexity and algorithm performance. 
  

2. EXPERIMENTAL SETUP 
 
ANC systems are broadly classified as feedforward systems 
where a coherent reference noise input is sensed or feedback 
systems [1] where the controller does not have the benefit of a 
reference signal. In the case of headsets and hearing protectors, it 

is better not to have a reference sensor on the outer casing of the 
headphone. The configuration for the feedback ANC system is as 
shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Feedback ANC system for a headset 
 

 The most common algorithm used for feedback ANC is the 
feedback FXLMS algorithm and its variations [1]. The system 
model for the algorithm is shown in Figure 2. In this model, 
W(z) is the adaptive filter, S(z) is the secondary path transfer 
function, and  Š(z) is the estimate of the secondary path transfer 
function S(z). We assume that there is no error in the estimation 
of S(z) i.e., Š(z)=S(z). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Feedback FXLMS algorithm. 
 
 
In this paper, we consider different adaptive algorithms namely 
the Least Mean Square (LMS), Normalized LMS (NLMS), 
adaptive IIR, and subband adaptive filtering.  These algorithms 
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were implemented in a mixture of fixed-point C and assembly on 
the TMS320C54x DSP. All data and filter coefficients were 
implemented using 16-bit word length. The sampling frequency 
is 24kHz. A variety of input signals were used to evaluate the 
performance of each of these algorithms including real-life noise 
recorded by the authors at car and plane noise environments. 
These are the most commonly used environments for noise 
canceling headsets. A commercially available headset, with a 
microphone mounted inside serving as an error sensor, was used 
in the simulations. The secondary path transfer function was 
calculated on the physical system using the LMS algorithm with 
white noise excitation. The impulse response and the transfer 
function of the secondary path are shown in Fig. 3. Note that, the 
impulse response as derived from real hardware components is 
far from ideal. 
 

 
 

 
3. ANC ALGORITHMS 

 
The basic model used for all our simulations is as shown in 

Fig. 2. The different variations of the FXLMS algorithm were 
used for the adaptive filtering block. In the basic FXLMS 
algorithm the adaptive filter W(z) is an  FIR filter and the filter 
coefficients are adapted using the LMS algorithm. The filter 
adaptation equations are [2, ch. 5]: 

 
 e(n)=d(n) − wT(n). x(n)   

w(n+1) = w(n)+µ.e(n).x’(n)  (1) 
 

Note that the input samples for adaptation x(n) is a processed 
version of the input to the adaptive filter x(n). This is necessary 
to ensure the alignment with the noise samples. In the following 
subsections we will introduce different variations of the FXLMS 
algorithm. These variations will be assessed in section 4. 
3.1 FXNLMS Algorithm 

The adaptation equation is quite similar to the basic FXLMS 
algorithm. However, the adaptation step is variable and inversely 
proportional to the second norm. of the input i.e., 

 
µ(n)= α / || x′(n)||2   (2) 

 

In our simulation we set α = 0.2. Note that, ||x′(n)||2 can be 
efficiently calculated using only two multiplication and two 
additions as follows 

||x′(n+1)||2 = ||x′(n)||2 + |xN′(n+1)|2 − |x1′(n)|2 
where xi′(n) is the ith component of the input vector at time n.  
The division in fixed-point arithmetic is not trivial. We used a 
Taylor-based division algorithm that has good convergence 
characteristics. The idea of the algorithm was to convert the 
division operation to multiplications and additions using the 
well-known formula: 
 

(1-x)-1 = 1 + x + x2 + x3 + x4 + ……..   
 

Convergence is guaranteed if  |x|<1. Here, we needed to evaluate 
x/y. Without loss of generality, we will assume that x < y, and x 
and y are unsigned with the same Q-value. If y = a − b (with b < 
a), then  
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Now, the crucial step is to choose a, so as to simplify the above 
calculation.  Our choice of a was the smallest power of 2 greater 
than y. For example if y= 1101b, then a = 10000b. In this case 
dividing by a is equivalent to right shifting. If a = 2r, then b/a = 
b<< (15-r), where “<<” denotes the right shifting. Note that, for 
this particular choice of a, we have b/a ≤ 1/2, and hence 
convergence is guaranteed. Typically 3 or 4 terms were enough 
to get good approximation. If n terms are used in the Taylor 
expansion, then the division will need (n−1) multiplications, and 
(n−1) additions. 
 
3.2 Adaptive IIR Filtering 

 
Usually a large filter order is needed for the adaptive filter 

W(z). This can be compensated by using adaptive IIR filters. 
However, a stability test is needed after each adaptation iteration. 

The choices for IIR adaptive filtering are either the output 
error method or the equation error method [2, chapter 15] with 
stabilization procedure. The complexity and memory 
requirement of both algorithms restrict their use for online ANC.  
However, we developed a simpler structure whose performance 
is very comparable to the above algorithms. 

 The basic idea of the algorithm is to use a cascade of second 
order IIR blocks, and test the stability of each block per se. The 
stability test for a second order IIR filter is straightforward. If the 
IIR filter has the form 1/(1+a1z

-1+ a2z
-2), then the stability test is 

[4, chapter 3]: 
 

|a2| < 1, and   |a1| < 1+ a2    (3) 
 
The structure of the ANC algorithm is shown in fig. 4. Each Bi(z) 
is a second order IIR filter. Define y(i)(n) as the output to Bi(z). 
Denote a1

(i)
 and a2

(i) as the coefficients Bi(z), then we have, 
  
y(i)(n) = y(i−1)(n) − a1

(i).y(i)(n−1) − a2
(i).y(i)(n−2)  (4) 

with   y(0)(n) =  Σk w(k)x(n−k) , and y(n) = y(L)(n)   
 

Figure 3. Impulse Response and Transfer Function of the 
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Figure 4. Adaptive IIR Topology 
 

The adaptation of the FIR filter coefficients is exactly as 
before. However, the adaptation of the IIR filter coefficients is a 
little more complicated. Each filter output y(i)(n) is convolved 
with Š(z) to produce y(i)’(n), then the filter coefficients are 
adapted according to 

 
ak

(i) (n+1) = ak
(i) (n)+µ.e(n). y(i)’(n− k)   (5) 

 
where i = 1,2,…,L, and k = 1,2. The simple stability test (3) is 
applied after each adaptation. If the test fails, then no adaptation 
takes place for any filter (including the FIR filter). In this case, µ 
is lowered (up to a certain value) by multiplying it by a factor 
less than 1.  
 
3.3 Subband Adaptive Filtering 
 

We used a single-stage of dyadic orthogonal wavelet 
decomposition for subband adaptive filtering implementation. 
Note that, the subband ANC algorithms proposed in the 
literature (e.g., [6]) are not suitable for real-time implementation  
because of the excessive computational requirements. Instead, 
we used the configuration shown in Fig. 5. To avoid the 
excessive delay with subband decomposition, we used the simple 
Haar wavelet [3, chapter 5] in our simulation.  

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Topology of Subband ANC 
 

4. QUANTIZATION ANALYSIS 
 

The main step in converting any algorithm from its floating point 
to its fixed-point version is to identify fixed-point parameters to 
represent each of the critical variables and coefficients. Thus 
each of these variables can be represented in the finite word 
length available so as to minimize the error due to quantization. 
The quantization analysis of the algorithms described in the 
previous section was done using a tool developed at TI called 
Fast Quantization Tool (FaQT) [7]. The FaQT tool is a PC based 
tool that tracks the values of a large number of variables and 
calculates the appropriate quantization formats for each of these 
variables. Each of the algorithms described in the previous 
section were implemented in floating point using C and the 
appropriate calls to the FaQT tool were inserted into the floating 
point simulation. The simulations using the FaQT tool were then 
run for a number of different input signals to determine the 
optimum quantization formats for each of the coefficients and 
variables. A fixed quantization format was used in the 
implementation wherein the representation of each of the 
variables was fixed beforehand and the fixed-point 
implementation did not have to track and adjust the format of 
any of the variables. Furthermore, the formats were chosen so as 
to completely avoid saturation. The fixed-point implementation 
was thus tweaked to ensure that the quantization effects due to 
the finite word length were minimal with a significant savings in 
the MIPS required to implement the algorithm on the DSP. The 
FaQT tool greatly helped in shortening the development time of 
the  fixed-point implementation of the algorithms. 

 
 

5. SIMULATION RESULTS 
 
5.1 Complexity 

 
In any fixed-point real time implementation resources are 

usually limited. Therefore simplicity is one of the main factors in 
deciding which algorithm to use. In what follows we describe the 
computation and memory requirements for each of the 
algorithms. The following notations are used: N is the FIR 
adaptive filter order, K is the order of Š(z), M is the IIR order. 
Note that, each filtering operation of order q will need in general 
q multiplications and q additions. In our implementation, we 
used circular indexing mode [5, chapter 5], hence the overhead 
in memory movements of all algorithms is minor and can be 
neglected. In table 1, we give the detailed MIPS requirement for 
each algorithm (normalized by the sampling frequency). 
Typically, for our application we have K ≤ 30, N ≤ 50, and M ≤ 
8. 

 
Algorithm Multiplications Additions Memory 

FXLMS 2N + 2K + 1 2N + 2K + 1 2N + K 

FXNLMS 2N + 2K + 6 2N + 2K+ 6 2N + K 

IIR 2N + 2M + 
(1+M/2)K 

2N + 2M + 
(1+M/2)K 

2N + M 
+ KM/2 

Subband 4N + 2K + 28 4N + 2K+30 4N + 
2K+ 18 

Table 1. Complexity of ANC Algorithms 
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The algorithms were profiled using the profile tool available 
with Code Composer Studio (CCS) development software to 
determine the MIPS requirements of each of the algorithms. The 
appropriate profile points were inserted and the CCS cycle count 
profiler was invoked to provide an accurate picture of the MIPS 
requirement of each of the algorithms. This also enabled us to 
ensure that the implementations met their real time deadlines. 
The complexity of each of the algorithms with different filter 
lengths is described in figure 6. In this figure, we plots the 
number of CPU cycles for each new data sample, i.e., the 
number of cycles for the interrupt routine that handles the new 
data sample. For subband filtering the number of cycles is not 
the same for each sample, hence the average is calculated. 

 
Figure 6. Algorithms Computational Requirements 

 
5.2 Experimental Results 
 

The algorithms described in section 3 were tested using plane 
and car noises recorded by the authors. The algorithms were 
tested versus different filter orders. For IIR adaptive filtering, the 
IIR order is fixed at 2, which is found to be sufficient for the 
given microphone transfer function. The results are illustrated in 
Figures 7. From the figure, we see that, the FXLMS algorithm 
outperforms the other algorithms especially for higher filter 
orders. The IIR implementation achieves around 10 dB 
improvement (for car noise) with filter order 3 for the MA part 
and 2 for the AR part.  

It is important to mention that, the performance is very 
dependent on the noise type as shown in the large variation 
between the two noise types. For example the improvement 
using subband filtering is around 10 dB for car noise and no 
more than 4 dB for plane noise (under the same parameters 
setting).  

Also note that, high orders of the IIR adaptive implementation 
lead to instability and hence the filter does not adapt efficiently 
with the new data. This will be considered in the future work. 

 
6. CONCLUSION 

 
In this study, we reviewed the common implementations of the 
FXLMS algorithm for active noise cancellation on fixed-point 
DSP. In this study, we concentrated on algorithms of practical 
importance. For example, we didn’t consider the FXRLS 
algorithm because of its excessive complexity (although its 
floating-point counterpart outperforms the algorithms that we 

have discussed in this paper). From the results, it is seen that, the 
conventional FXLMS algorithm and its NLMS implementation 
outperforms all the variations in the performance and the 
complexity. Compared with our floating-point implementations, 
the degradation after fixed-point implementation is around 2 dB.  

 
a. Car Noise 

 
b. Plane Noise 

Figure 7. Algorithms Performance 
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