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ABSTRACT

We present a Decision Feedback Equalizer (DFE) based on the
proposed hybrid structure, which consists of the fast Kalman and
LMS algorithm, to guarantee the fast convergence speed,
computational complexity and numerical stability on the strong
multipath channels. The LMS algorithm recommended by ATSC
for HDTV does not guarantee TOV(Threshold Of Visibility) on
the strong multipath channels during the training period. Since the
fast Kalman algorithm is not only numerically instable but it also
has high computational complexity, we proposed a hybrid
structure to solve both of the problems. The fast Kalman algorithm
is applied during the training sequence for the fast convergence,
and then LMS algorithm is used to reduce the computational
complexity and avoid the instability problem for the payload data
part. The simulation result demonstrates that our hybrid structure
is numerically stable with the fast convergence speed and it
overcomes the strong multipath channel.

1. INTRODUCTION

The basic purpose of equalization is to improve the performance
of a high-speed communication system encountered with the
channel Intersymbol Interference(ISI). This ISI is caused by the
imperfect channel characteristics and seriously degrades the
receiver performance. In order to improve the Signal-to-Noise-
Ratio(SNR) and reduce the Symbol-Error-Rate(SER), some
equalization techniques are applied to high-speed communication
systems such as Cable Modem and HDTV system. Advanced-
Television-Systems-Committee(ATSC), which provides the
standard of the HDTV transmission and receiver system,
recommends an adaptive decision feedback equalizer using Least
Mean Square (LMS) algorithm [1]. In order to attain the
reasonable error rate on the strong multipath channel, the number
of equalizer taps is very large (over 200 taps) to be adequate. The
drawback of the LMS algorithm is slow convergence
speed[4][5][7]. Therefore the LMS algorithm with a short training
period(820 field sync) is unlikely to guarantee the reasonable
convergence characteristic on the severe multipath environment.
Recently, Recursive Least Squares (RLS) algorithms are actively
studied because of its fast convergence characteristics against the
strong ghosts and fading channel such as a terrestrial and mobile
environment [3][5]. The most widely used one of least-squares
algorithm is the fast Kalman algorithm witch has a remarkably
lower computational complexity( O(N) ) than that of conventional

Kalman algorithm( O(N?) ). In order to overcome the drawback of
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LMS algorithm, this paper focuses on the fast Kalman algorithm
that is remarkably faster than the LMS convergence speed.

The Fast recursive least squares algorithms exploit the shifting
property of most sequential estimation problems. In equalization,
this property expresses the fact that the number of new samples
entering and old samples leaving the equalizer is no N, but much
smaller integer p each iteration. Although the fast Kalman

algorithm is a nice solution to reduce the computational
complexity burden of the conventional Kalman algorithm, these
algorithms are unstable when implemented with finite precision
arithmetic. Increasing the word-length does not solve the
instability problem. The only effect of employing a longer word-
length will take longer to diverge[10]. Therefore we use hybrid
structure that consists of fast Kalman and LMS algorithm, which
has stable characteristic, to guarantee fast convergence speed for
training sequence part and be numerically stable for payload part.

In section 2, we discuss the data frame structure for HDTV.
Section 3 describes the least square algorithm and data
recombination for explaining the shift property of the fast Kalman
algorithm, and section 4 describes the fast Kalman algorithm with
DFE structure. Section 5 proposes the hybrid structure. In section
6, we prove our algorithm as showing the simulation result.

2. DATA FRAME FOR HDTV

Figure 1 shows how HDTV normal data are organized for
transmission[1]. Each data frame consists of two data fields and
each one contains 313 data segments. The first data segments of
each data field are a unique synchronizing signal(data field sync)
and include a training sequence used for the equalization in the
receiver. A field sync segment which consisted of PN511, PN63,
PN63, PN63, VSB mode signals and reserved signals(104) are
transmitted in a binary form and provided as a training
sequence[1].

As described above only 820 symbols except precode(12
symbol) are available for a training signal to detect the remaining
312 payload data segments. In this structure, training sequence is
fixed to be sent every other 312 segments. The main issue for
VSB data frame is to guarantee a reasonable error rate within a
training period to protect the payload data from the error
propagation.

In the 8-VSB HDTYV system, a fast convergence is inevitably
required because of the very short training sequence against a long
multipath and strong ghosts fading channel. We describe the fast
Kalman algorithm to solve the slow convergence speed of the
LMS algorithm.
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Figurel. VSB data frame
3. LEAST SQUARE ALGORITHM

The classical least squares problem is to find the adaptive
filter coefficient at each time instant so as to minimize the
accumulation of squared error between the filter output and
the desired output up to that time instant. For example in an
equalizer adjustment algorithm, suppose d(1),d(2),---,d(n) is a
training sequence during the initial equalizer training period(field
sync). Channel introduces intersymbol inter- ference and additive
noise. We assume that the sequence d(1),d(2), --,d(n)
transmitted over a channel and results in the received sequence are
y(1),¥(2),---,y(n) . To correct the transmitted signal, the
Decision Feedback Equalizer(DFE) applies the linear combination
of received sequence y(l),y(2),---,y(n—N,+1) and previously
decoded values d(n-1),d(n-2),---,d(n—N,) . We define the
following N -dimensional vector[11][12]:
Xy () =[y(n),y(n =D, y(n=N, +1)
d(n-1),d(n-2),---,d(n—N,)]
where N=N,+N,.
We indicate the dimensionality of vectors and matrices by
subscripts. The absence of subscript indicates scalar. X, (n) is an

)

N -dimensional vector, 4,,(n) is a matrix with N rows and P
columns. Matrix transpose will be represented by a superscript 7" .
The least squares problem in DFE is to find the N -dimensional
vector C,(n) of equalizer tap values, which minimizes the
following sum of squared error:

p . )

YA ey (k)€ ()] @

k=1
where the exponential forgetting factor A is such that 0 < 1 <1
and the a posteriori error residual, ey (), is

ey(n) =d(m)=Cy (n) - X, (n) 3)
where C,(n),C,(n),---,C, (n), are the tap gain of the forward filter,
Cy 15 >Cy ., » are the tap gain of the feedback filter. Using the

definition of the complex gradient operator[11], we can show that
the optimum value of the vector C, (n) which minimizes the value

of (2) is given by

Cy(n)==Ryy 7y (n) “

where Ryy (1) is a N x N correlation matrix given by

Ry (m)=2 A" X, (k) X, (k) + 61,y (%)
k=0

In practice, the parameter & is fixed at a small positive
constant to guarantee non-singularity of the matrix R, (n) . And

the cross correlation vector y,, (n) is given by

Yan(m) =D A [d" (k) X (k) | (6)
k=0

This sequence Cy (71) can be generated recursively as follows

Cy(n)=Cy(n=1)+ky(n)-e(n) O

ky(n) = Ryy (n)”! Xy (n) )

The inverse estimated covariance matrix R, (n)"' accelerates
the equalizer’s adaptation. The vector k, (7) can be generated by a
recursive algorithm which yields the Nx N matrix R, (n)"

without requiring explicit matrix inversion. The resulting
algorithm is the special case of the conventional Kalman
algorithm for equalizer adaptation. This algorithm’s complexity
arises from the N x N matrix used to compute k,(n) . The fast

Kalman algorithm to be presented here and is mathematically
equivalent to it, but exploits the shifting property to compute the
vectors  k,(n) recursively, without needing to compute

a N x N matrix.
In many other estimation and prediction applications, the input
vectors X (n) are such that X, (n+1) is obtained from X (n) by

shifting its components, introducing p new components and
deleting the p oldest components. For example the p =2 new
elements y(n) , d(n) enter the decision feedback equalizer at
time 72 + 1, while the elements y(n—N,) and d(n— N,) leave.
We defined a p -dimensional vector £, () which is the p new
elements and a vector p,(n) which is the p deleted old elements at
&(m)=y(n) and
p,(n)=y(n—N).For the decision feedback equalizer
&)= {y Z’(:)D} pa(n) = {y ;”(n iv;vf)”} . ©)
We also define an extended vector X, (n) , with M =N+ p
dimension, which contains the elements of &,(n) appended in proper

time n+1 . For the linear equalizer,

order to the elements of X, () . For example, in the case of the decision
feedback equalizer, with p =2
Xy () =[y(n+1),p(n), -, y(n =N, +1)
d(n)sd(n - 1),"',d(l’l - NZ)]

In general, there are obvious permutation matrices S,,, and

(10)

Q,,, which rearrange the elements of the extended vector X, (1)
to display &, (n), X y(n), p,(n) and X (n+1) in simple partitioned
form[13]:

£,(n) _ xeey
Sypy - Xy (m) =] L0y - Xy () = (1n
Xy p,(n)
Each row and column of S,,, and Q,,,, has a single 1 and
Suv” =Sy’ and 0y, =0, " (12)
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Swuv and Qu are identity matrices in the special case of the

linear equalizer[12].
4. FAST KALMAN ALGORITHM

The fast algorithm for computing the vector sequence {k, (n)} , which
is used to update the equalizer’s coefficient {C, (n)} , is specified

below. Before we apply the fast Kalman equations, we should
initialize and define some quantities [11].

. N x p matrices 4,,(n) =0,,and By, (n)=0,,

px pmatrix E, (n) with initial value £, (0)=61,,

rp
M dimensional vector I;M (n)where M =N+ p
p dimensional vector aﬁ (n),a,(n)B,(n) and u,(n)

N dimensional vector m (n), k,(1)=0,

And all x(n)=0 for n<0

ap(n)=&,(n)+ Ay, (n=)"- X, (n) (13)
Ay, (n) = Ay, (n=1) = ky (n)- &, (n) (14)
a,(n)=&,(n)+ Ay, (n)" - X, (n) (15)
E, (n) :EW(n—l)+aZ(n)a;(n)T (16)
E, (n)"-a,(n)
k(1) =85, | oo e 17)
ky(n)+ ANP(n) . Epp(n)'1 . aﬁ (n)
my (1)
O .];M (m)=| «n (18)
u,(n)
ﬂp(n):pp(n)+D,\,p(n—1)T-XN(n+1) (19)
5, (= B 1D =m®- 5,0 o)
1, —u,(n)-B,(n)
ky(n+1)=my(n)=B,,(n)-B,(n) 2D
e(n)=d(n)-Cy(n) - X, (n+1) (22)
Cy(n+1)=Cy(n)+ky(n+1)-e(n) (23)

5. NEW HYBRID FAST KALMAN/LMS STRUCTURE

The decision feedback equalizer has a better SER performance
than a linear equalizer on the multipath fading channel. Since the
linear equalizer does not work well on the channels with spectral
nulls which cause noise enhancement, the DFE which can
compensate dispersive channels without as much as noise
enhancement, is widely used. In Grand Alliance standards, a DFE
based on the LMS algorithm is recommended for equalizing
terrestrial HDTV channels. The advantage of the LMS algorithm
is with low computational complexity and numerical stability. In
spite of these merits, it has slow convergence characteristics,
which does not guarantee TOV during the period of 820 training
symbols on the strong multipath fading channel. Therefore we need

Table 1. Complexity and Stability for a linear channel

Algorithm Multip?ication Multiplication Stability
of Linear of DFE
Fast Kalman 7N +3 14N +12 X
C tional
enventiona 3N2 13N 3N2 43N X
Kalman
LMS 2N +1 2N +1 (0]
y(n) — y(n—-N+1) dn—N +N;) eeee d(n-1)

d(k)

Updating
Coefficient

) Fast Kalman Algorithm

D
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Figure 2. Proposed Hybrid fast Kalman/LMS Structure

the fast convergent algorithm such as the fast Kalman algorithm
(O(N)) which has a greatly lower computational complexity than

that of the conventional Kalman algorithm ( O(N?) ).

Unfortunately, the fast Kalman algorithm has two major
drawbacks that are high computational complexity compared with
the LMS algorithm and numerically instable problem when
implemented with finite precision arithmetic. In order to solve the
both of the problem, we proposed the hybrid fast Kalman/LMS
structure. In the Fig.2, we apply the fast Kalman algorithm for fast
convergence during the period of 820 training symbols, and then
we change the fast Kalman algorithm to the LMS algorithm for
the Forward Error Correction(FEC) and payload data part to avoid
both problems of the high computational complexity and instability.
The following tablel shows the computational complexity and
numerical stability of the LMS, conventional Kalman and fast
Kalman algorithm.

6. SIMULATION RESULT

In order to evaluate the equalization performance of our hybrid
structure, we examine it on the basis of Grand Alliance 8VSB
terrestrial transmission system by computer simulation. On the
simulation, we consider the adaptive equalization of two Brazil
Lab test channels in the point of stability and convergence speed.
The environment of Brazil C(Fig.3) channel is pedestrian channel
at 3 miles/h and Brazil D(Fig.3) channel is urban channel at 50
miles/h for simulation. Fig.4,5 are simulated with the same fixed
point system(Number system : Two’s complement representation,
word-length : 38, fractional-part : 24 for error part which is most
significant register to control the system) on the each described
Brazil C and D channel. Fig.4 a-1,b-1 are describe the MSE(Mean
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Square Error) and Fig.4 a-2,b-2 show constellation of equalizer
output. Fig.4 b-1,2 and Fig5 b-1,2 prove that our structure
performs very well and guarantees the numerical stability and low
computational load compared with the Fig.4 a-1,2 and Fig.5 b-1,2
which are simulated using the only fast Kalman algorithm during
the training and payload data part. Fig.6 describes the SER curve
of proposed algorithm. The simulation result of the LMS
algorithm is not presented because it does not guarantee the
TOV(14.9dB) on the strong multi path channels.
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6. CONCLUSION

In this paper, we proposed hybrid fast Kalman/LMS algorithm
which is applicable to the DFE of the strong and long multipath
channel. From the simulation result, we observe that our structure
is numerically stable and less computational effort compared with
using the only fast Kalman algorithm. And our structure also satisfies
the convergence speed during the training sequence on the pedestrian(at
3miles/h) and urban(at 50 miles/h) channel for terrestrial and mobile
communication. In the future, we will apply the blind equalizer to
adjust time varying channel without training sequence for the
payload data part.
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