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ABSTRACT 

 
We present a Decision Feedback Equalizer (DFE) based on the 
proposed hybrid structure, which consists of the fast Kalman and 
LMS algorithm, to guarantee the fast convergence speed, 
computational complexity and numerical stability on the strong 
multipath channels. The LMS algorithm recommended by ATSC 
for HDTV does not guarantee TOV(Threshold Of Visibility) on 
the strong multipath channels during the training period. Since the 
fast Kalman algorithm is not only numerically instable but it also 
has high computational complexity, we proposed a hybrid 
structure to solve both of the problems. The fast Kalman algorithm 
is applied during the training sequence for the fast convergence, 
and then LMS algorithm is used to reduce the computational 
complexity and avoid the instability problem for the payload data 
part. The simulation result demonstrates that our hybrid structure 
is numerically stable with the fast convergence speed and it 
overcomes the strong multipath channel. 
 

1. INTRODUCTION 
 
The basic purpose of equalization is to improve the performance 
of a high-speed communication system encountered with the 
channel Intersymbol Interference(ISI). This ISI is caused by the 
imperfect channel characteristics and seriously degrades the 
receiver performance. In order to improve the Signal-to-Noise-
Ratio(SNR) and reduce the Symbol-Error-Rate(SER), some 
equalization techniques are applied to high-speed communication 
systems such as Cable Modem and HDTV system. Advanced-
Television-Systems-Committee(ATSC), which provides the 
standard of the HDTV transmission and receiver system, 
recommends an adaptive decision feedback equalizer using Least 
Mean Square (LMS) algorithm [1]. In order to attain the 
reasonable error rate on the strong multipath channel, the number 
of equalizer taps is very large (over 200 taps) to be adequate. The 
drawback of the LMS algorithm is slow convergence 
speed[4][5][7]. Therefore the LMS algorithm with a short training 
period(820 field sync) is unlikely to guarantee the reasonable 
convergence characteristic on the severe multipath environment. 
Recently, Recursive Least Squares (RLS) algorithms are actively 
studied because of its fast convergence characteristics against the 
strong ghosts and fading channel such as a terrestrial and mobile 
environment [3][5]. The most widely used one of least-squares 
algorithm is the fast Kalman algorithm witch has   a remarkably 
lower computational complexity( ( )O N ) than that of conventional 
Kalman algorithm( 2( )O N ). In order to overcome the drawback of 

LMS algorithm, this paper focuses on the fast Kalman algorithm 
that is remarkably faster than the LMS convergence speed.  
   The Fast recursive least squares algorithms exploit the shifting 
property of most sequential estimation problems. In equalization, 
this property expresses the fact that the number of new samples 
entering and old samples leaving the equalizer is no N , but much 
smaller integer p  each iteration. Although the fast Kalman 
algorithm is a nice solution to reduce the computational 
complexity burden of the conventional Kalman algorithm, these 
algorithms are unstable when implemented with finite precision 
arithmetic. Increasing the word-length does not solve the 
instability problem. The only effect of employing a longer word-
length will take longer to diverge[10]. Therefore we use hybrid 
structure that consists of fast Kalman and LMS algorithm, which 
has stable characteristic, to guarantee fast convergence speed for 
training sequence part and be numerically stable for payload part. 
   In section 2, we discuss the data frame structure for HDTV. 
Section 3 describes the least square algorithm and data 
recombination for explaining the shift property of the fast Kalman 
algorithm, and section 4 describes the fast Kalman algorithm with 
DFE structure. Section 5 proposes the hybrid structure. In section 
6, we prove our algorithm as showing the simulation result.  
 

2. DATA FRAME FOR HDTV 
 

Figure 1 shows how HDTV normal data are organized for 
transmission[1]. Each data frame consists of two data fields and 
each one contains 313 data segments. The first data segments of 
each data field are a unique synchronizing signal(data field sync) 
and include a training sequence used for the equalization in the 
receiver. A field sync segment which consisted of PN511, PN63, 
PN63, PN63, VSB mode signals and reserved signals(104) are 
transmitted in a binary form and provided as a training 
sequence[1]. 
    As described above only 820 symbols except precode(12 
symbol) are available for a training signal to detect the remaining 
312 payload data segments. In this structure, training sequence is 
fixed to be sent every other 312 segments. The main issue for 
VSB data frame is to guarantee a reasonable error rate within a 
training period to protect the payload data from the error 
propagation. 
    In the 8-VSB HDTV system, a fast convergence is inevitably 
required because of the very short training sequence against a long 
multipath and strong ghosts fading channel. We describe the fast 
Kalman algorithm to solve the slow convergence speed of the 
LMS algorithm. 
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Figure1. VSB data frame 
 

3. LEAST SQUARE ALGORITHM 
 
The classical least squares problem is to find the adaptive 
filter coefficient at each time instant so as to minimize the 
accumulation of squared error between the filter output and 
the desired output up to that time instant. For example in an 
equalizer adjustment algorithm, suppose (1), (2), , ( )d d d n  is a 
training sequence during the initial equalizer training period(field 
sync). Channel introduces intersymbol inter- ference and additive 
noise. We assume that the sequence (1), (2), , ( )d d d n  
transmitted over a channel and results in the received sequence are 

(1), (2), , ( )y y y n . To correct the transmitted signal, the 
Decision Feedback Equalizer(DFE) applies the linear combination 
of received sequence 1(1), (2), , ( 1)y y y n N− +  and previously 
decoded values 2( 1), ( 2), , ( )d n d n d n N− − − . We define the 
following N -dimensional vector[11][12]: 

1

2

( ) [ ( ), ( 1), , ( 1)
( 1), ( 2), , ( )]

NX n y n y n y n N
d n d n d n N

= − − +
− − −

  (1) 

where 1 2N N N= + . 
We indicate the dimensionality of vectors and matrices by 
subscripts. The absence of subscript indicates scalar. ( )NX n  is an 
N -dimensional vector, ( )NPA n  is a matrix with N  rows and P  

columns. Matrix transpose will be represented by a superscriptT . 
The least squares problem in DFE is to find the N -dimensional 
vector ( )NC n of equalizer tap values, which minimizes the 
following sum of squared error: 

2*

1
( ) ( )

n
n k

N N
k

e k e kλ −

=

 ⋅ ⋅ ∑     (2) 

where the exponential forgetting factor λ  is such that 0 1λ≤ ≤  
and the a posteriori error residual, ( )Ne n , is 

( ) ( ) ( ) ( )T
N N Ne n d n C n X n= − ⋅    (3) 

where 1 2( ), ( ), , ( )NC n C n C n , are the tap gain of the forward filter, 

1 1 21, ,N N NC C+ + , are the tap gain of the feedback filter. Using the 
definition of the complex gradient operator[11], we can show that 
the optimum value of the vector ( )NC n which minimizes the value 
of (2) is given by 

1( ) ( )N NN NNC n R nγ−= − ⋅     (4) 

where ( )NNR n is a N N× correlation matrix given by 

0
( ) ( ) ( )

n
n k H

NN n n NN
k

R n X k X k Iλ δ−

=

= ⋅ ⋅ +∑   (5) 

    In practice, the parameter δ  is fixed at a small positive 
constant to guarantee non-singularity of the matrix ( )NNR n . And 
the cross correlation vector ( )NN nγ  is given by 

*

0
( ) ( ) ( )

n
n k

NN N
k

n d k X kγ λ −

=

 = ⋅ ∑    (6) 

This sequence ( )NC n can be generated recursively as follows 
( ) ( 1) ( ) ( )N N NC n C n k n e n= − + ⋅    (7) 

1( ) ( ) ( )N NN Nk n R n X n−= ⋅     (8) 

    The inverse estimated covariance matrix 1( )NNR n −   accelerates 
the equalizer’s adaptation. The vector ( )Nk n can be generated by a 

recursive algorithm which yields the N N× matrix 1( )NNR n −  
without requiring explicit matrix inversion. The resulting 
algorithm is the special case of the conventional Kalman 
algorithm for equalizer adaptation. This algorithm’s complexity 
arises from the N N× matrix used to compute ( )Nk n . The fast 
Kalman algorithm to be presented here and is mathematically 
equivalent to it, but exploits the shifting property to compute the 
vectors ( )Nk n  recursively, without needing to compute 
a N N× matrix.  
    In many other estimation and prediction applications, the input 
vectors ( )NX n are such that ( 1)NX n +  is obtained from ( )NX n by 
shifting its components, introducing p new components and 
deleting the p  oldest components. For example the 2p = new 
elements ( )y n , ( )d n  enter the decision feedback equalizer at 
time 1n + , while the elements 1( )y n N−  and 2( )d n N− leave.  
    We defined a p -dimensional vector ( )p nξ  which is the p new 

elements and a vector ( )p nρ  which is the p deleted old elements at 

time 1n + . For the linear equalizer, 1( ) ( )n y nξ = and 

1( ) ( )n y n Nρ = − . For the decision feedback equalizer 

2

( 1)
( )

( )
y n

n
d n

ξ
+ 

=  
 

, 1
2

1

( 1)
( )

( )
y n N

n
d n N

ρ
− + 

=  − 
.   (9) 

    We also define an extended vector ( )MX n , with M N p= +  
dimension, which contains the elements of ( )p nξ  appended in proper 

order to the elements of ( )NX n . For example, in the case of the decision 
feedback equalizer, with 2p =  

1

2

( ) [ ( 1), ( ), , ( 1)
( ), ( 1), , ( )]

MX n y n y n y n N
d n d n d n N

= + − +
− −

  (10) 

    In general, there are obvious permutation matrices MMS  and 

MMQ  which rearrange the elements of the extended vector ( )MX n  
to display ( ), ( ), ( )p N pn X n nξ ρ  and ( 1)NX n +  in simple partitioned 
form[13]: 

( )
( )

p

MM M

N

n
S X n

X

ξ
⋅ = ,

( 1)
( )

( )

N

MM M

p

X n
Q X n

nρ

+
⋅ =  (11) 

Each row and column of MMS and MMQ has a single 1 and  
1 T

MM MMS S− = and 1 T
MM MMQ Q− =    (12) 
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MMS  and MMQ  are identity matrices in the special case of the 
linear equalizer[12]. 
 

4. FAST KALMAN ALGORITHM  
 
The fast algorithm for computing the vector sequence{ ( )}Nk n , which 
is used to update the equalizer’s coefficient{ ( )}NC n , is specified 
below. Before we apply the fast Kalman equations, we should 
initialize and define some quantities [11].  
 
        N p× matrices ( ) 0Np NpA n = and ( ) 0Np NpB n =  

        p p× matrix ( )ppE n with initial value (0)pp ppE Iδ=  

        M dimensional vector ( )Mk n where M N p= +  

        p dimensional vector ( ), ( ) ( )b a
p p pn n nα α β and ( )p nµ  

        N dimensional vector ( )Nm n , (1) 0N Nk =  
 
And all ( ) 0x n =  for 0n ≤  
 

( ) ( ) ( 1) ( )a T
p p Np Nn n A n X nα ξ= + − ⋅    (13) 

( ) ( 1) ( ) ( )a
Np Np N pA n A n k n nα= − − ⋅    (14) 

( ) ( ) ( ) ( )b T
p p Np Nn n A n X nα ξ= + ⋅    (15) 

( ) ( 1) ( ) ( )b a T
pp pp p pE n E n n nα α= − +    (16) 

1

1

( ) ( )
( )

( ) ( ) ( ) ( )

b
pp p

T
M MM

b
N Np pp p

E n n
k n S

k n A n E n n

α

α

−

−

 ⋅
 =  
 + ⋅ ⋅ 

 (17) 
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m n
Q k n
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 
 ⋅ =  
  

    (18) 

( ) ( ) ( 1) ( 1)T
p p Np Nn n D n X nβ ρ= + − ⋅ +   (19) 

( 1) ( ) ( )
( )

( ) ( )

T
Np N p

Np
pp p p

B n m n n
B n

I n n
β

µ β
− − ⋅

=
− ⋅

   (20) 

( 1) ( ) ( ) ( )N N Np pk n m n B n nβ+ = − ⋅    (21) 
 

( ) ( ) ( ) ( 1)T
N Ne n d n C n X n= − ⋅ +    (22) 

( 1) ( ) ( 1) ( )N N NC n C n k n e n+ = + + ⋅    (23) 
 
5. NEW HYBRID FAST KALMAN/LMS STRUCTURE 
 
The decision feedback equalizer has a better SER performance 
than a linear equalizer on the multipath fading channel. Since the 
linear equalizer does not work well on the channels with spectral 
nulls which cause noise enhancement, the DFE which can 
compensate dispersive channels without as much as noise 
enhancement, is widely used. In Grand Alliance standards, a DFE 
based on the LMS algorithm is recommended for equalizing 
terrestrial HDTV channels. The advantage of the LMS algorithm 
is with low computational complexity and numerical stability. In 
spite of these merits, it has slow convergence characteristics, 
which does not guarantee TOV during the period of 820 training 
symbols on the strong multipath fading channel. Therefore we need  

Table 1. Complexity and Stability for a linear channel 

Algorithm 
Multiplication 

of Linear 
 Multiplication 

of DFE 
Stability 

Fast Kalman 7 3N +  14 12N +  X 

Conventional
Kalman 

23 3N N+  23 3N N+  X 

LMS 2 1N +  2 1N +  O 

 

1z− 1z− 1z− 1z− 1z− 1z−

∑

∑

∑

∑
Fast Kalman Algorithm

LMS Algorithm

( )y n 1( 1)y n N− + ( 1)d n −1 2( )d n N N− +

1( 1)NC n N− + 1( )NC n N−1 2( )NC n N N− −(1)NC

( )Z k ( )d k

Training
Signal

Updating
Coefficient

 
Figure 2. Proposed Hybrid fast Kalman/LMS Structure 

 
the fast convergent algorithm such as the fast Kalman algorithm 
( ( )O N ) which has a greatly lower computational complexity than 
that of the conventional Kalman algorithm ( 2( )O N ).   
    Unfortunately, the fast Kalman algorithm has two major 
drawbacks that are high computational complexity compared with 
the LMS algorithm and numerically instable problem when 
implemented with finite precision arithmetic. In order to solve the 
both of the problem, we proposed the hybrid fast Kalman/LMS 
structure. In the Fig.2, we apply the fast Kalman algorithm for fast 
convergence during the period of 820 training symbols, and then 
we change the fast Kalman algorithm to the LMS algorithm for 
the Forward Error Correction(FEC) and payload data part to avoid 
both problems of the high computational complexity and instability. 
The following table1 shows the computational complexity and 
numerical stability of the LMS, conventional Kalman and fast 
Kalman algorithm.  

 
6. SIMULATION RESULT 

 
In order to evaluate the equalization performance of our hybrid 
structure, we examine it on the basis of Grand Alliance 8VSB 
terrestrial transmission system by computer simulation. On the 
simulation, we consider the adaptive equalization of two Brazil 
Lab test channels in the point of stability and convergence speed. 
The environment of Brazil C(Fig.3) channel is pedestrian channel 
at 3 miles/h and Brazil D(Fig.3) channel is urban channel at 50 
miles/h for simulation. Fig.4,5 are simulated with the same fixed 
point system(Number system : Two’s complement representation, 
word-length : 38, fractional-part : 24 for error part which is most 
significant register to control the system) on the each described 
Brazil C and D channel. Fig.4 a-1,b-1 are describe the MSE(Mean 
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Square Error) and Fig.4 a-2,b-2 show constellation of equalizer 
output. Fig.4 b-1,2 and Fig5 b-1,2 prove that our structure 
performs very well and guarantees the numerical stability and low 
computational load compared with the Fig.4 a-1,2 and Fig.5 b-1,2 
which are simulated using the only fast Kalman algorithm during 
the training and payload data part. Fig.6 describes the SER curve 
of proposed algorithm. The simulation result of the LMS 
algorithm is not presented because it does not guarantee the 
TOV(14.9dB) on the strong multi path channels.  
 

 
Figure 3. Channel Impulse Response of Brazil C,D 

 

 
Figure 4.   MSE and Constellation for the Brazil C Channel 

 

 
Figure 5. MSE and Constellation for the Brazil D Channel 

 

 
Figure 6. SER curve of Proposed Structure 

 
6. CONCLUSION 

 
In this paper, we proposed hybrid fast Kalman/LMS algorithm 
which is applicable to the DFE of the strong and long multipath 
channel. From the simulation result, we observe that our structure 
is numerically stable and less computational effort compared with 
using the only fast Kalman algorithm. And our structure also satisfies 
the convergence speed during the training sequence on the pedestrian(at 
3miles/h) and urban(at 50 miles/h) channel for terrestrial and mobile 
communication. In the future, we will apply the blind equalizer to 
adjust time varying channel without training sequence for the 
payload data part. 
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